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Statistical threshold measures P-value and Q-value are defined through frequentist properties of certain
procedures. Namely,

• P-value of 0.05 means that under the null hypothesis the probability of getting at least as extreme
data set (in terms of a particular test statistic) as the one we have observed, is 0.05.

• Q-value of 0.05 means that if we label this particular variable with Q-value of 0.05 as significant (i.e. as
a discovery), then the expected proportion of false discoveries among all the variables with Q-values ≤
0.05 is 0.05.

Two questions that come up:

1. These definitions seem quite clumsy. In the end, we just want to know what is the evidence that
the null hypothesis holds for this particular variable j. For example, we want to know a probability
Pr(Hj | Data). Neither P-value, nor Q-value answers this key question. Obviously, this question requires
more information than is used for computation of P-value or Q-value, and we will look soon what exactly
is needed.

2. What if I want to do inference on variable j and do not think that another variable k, that I just
happened to have observed at the same experiment/data set, should affect my inference on Hj in any
way? Both the P-value-based FWER control as well as the FDR control rely on the concept of a set
of hypotheses for which some error rates can be controlled after considering them as a single entity.
In particular, inference based on FWER and FDR depends on which set of hypotheses are considered
together. How could I decide which set of hypothesis I should consider together in order to make most
scientifically sound inference?

Example 4.1. Suppose that I plan to download data from the UK Biobank on 500,000 individuals and
their 10M genetic variants to test the association with diabetes status that is also available in the biobank.
However, due to technical issues, I am able to download only one small genotype file while the others are
unavailable and hence I have data only for 1000 genetic variants instead of 10M. I do the regression for
each of 1000 variants available and for one of them, variant v, I observe a P-value of 10−5. Should I call v
significant?

Discussion. Let’s use a FWER control at 5% level as then we would seem to have a strong control over how
likely we are to make any false discoveries. If I had observed all 107 variants and had done that many tests,
then FWER would say that significance threshold should be 0.05/107 = 5 × 10−9. However, if I compute
the threshold for the observed 1000 variables, it is 10,000 times higher, 0.05/1000 = 5 × 10−5. It seems that
whether I label this variant v as a discovery depends on whether I was successful in downloading the other
files. This seems unsatisfactory, when my interest is simply to determine how much evidence do I have that
this particular variant v is null. It does not seem conceptually sound that for the same observed data for
variable v, my inference on whether I think it is interesting depends on how many other things have been
tested “in the same experiment”. Deciding significance threshold based only on the number of tests done is
rarely conceptually satisfactory from scientific point of view. Similarly, Q-value is not a complete quantity to
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measure the status of any particular one variable, because Q-value of a particular variable may change when
more/less/other variables are included in the same study. This being said, Q-value uses the data on the
other variables to learn about common properties of all variables, e.g., in estimating π0, and hence Q-value
is, in many settings, an improvement over using the data on the other variables only through their total
count, as is done by the Bonferroni correction.

A fix to this conceptual problem can be formulated by Bayesian statistics and we will use Bayesian termi-
nology below. Same ideas go by name “local false discovery rates” in literature to emphasize that the
focus is now put on the particular test and not anymore on the whole tail of “at least as extreme data sets”,
as it was with P-values, FWERs and FDRs. Later we will have a look at how the local false discovery rate
has been implemented in the qvalue package.

Notation Throughout these notes we use Pr(·) as a function name that can mean either

• probability of an event, e.g., Pr(H0) is probability of the null hypothesis.
• probability density of a continuous variable, e.g., Pr(X = x | H0) = Pr(x | H0) is the value of the

probability density function of random variable X under hypothesis H0, evaluated at point x.

Probability and Bayes rule We denote probability of event A as Pr(A) and conditional probability of
event A given that event B has occurred by Pr(A | B) which can be represented as a ratio of probabilities of
two events as Pr(A ∩ B)/Pr(B). We also denote more simply Pr(A, B) = Pr(A ∩ B).

Bayes rule can be derived by writing the joint probability Pr(A, B) using expansions through conditional
probabilities in both ways possible:

Pr(B) Pr(A|B) = Pr(A, B) = Pr(A) Pr(B|A) =⇒ Pr(A|B) = Pr(A) Pr(B|A)
Pr(B) .

Bayes rule tells how observing event B updates the probability of A by a multiplicative factor Pr(B|A)/Pr(B),
hence its central role when quantifying how we learn from observations. Marginal probability of Pr(A) is the
probability of event A when we have not observed any information about event B (or any other events). In
Bayes rule, where event B also appears, the interpetation of Pr(A) is the prior probability of event A, i.e.,
probability of A before we have learned about B. And similar interpretation applies to Pr(B) by changing
the roles of A and B. Pr(A|B) is called the posterior probability of A, i.e., probability of A after we have
observed event B. Bayes rule tells exactly how the observations made determine the transition from a prior
probability to a posterior probability.

Example 4.2. Suppose we have a medical test for a disease D which has sensitivity of α = 0.99 (that is,
gives a positive result in 99% of true cases) and specificity of β = 0.99 (that is, gives a false positive result
in 1% of healthy individuals). What is the probability that individual who in a population screening tests
positive (+) truly has the disease, when the prevalence K of the disease is (a) 10% or (b) 0.1%?

Answer 4.2.

• Pr(+ | D) = α (sensitivity is α)
• Pr(+ | noD) = 1 − β (specificity is β)
• Pr(D) = K (prevalence is K, this is a prior probability of having D before accessing the test result)
• Pr(+) = Pr(+ | D) Pr(D) + Pr(+ | noD) Pr(noD) = αK + (1 − β)(1 − K)

Bayes rule says that the posterior probability of D (called positive predictive value (PPV) in epidemiol-
ogy) is

Pr(D | +) = Pr(D)Pr(+ | D)
Pr(+) = K α

K α + (1 − K) (1 − β) .

When a test is 99% sensitive and 99% specific, PPV is, depending on whether the prevalence is 10% or 0.1%,
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a = 0.99
b = 0.99
K = c(0.1, 0.001)
cbind(preval = K, PPV = a*K/(a*K+(1-b)*(1-K)))

## preval PPV
## [1,] 0.100 0.91666667
## [2,] 0.001 0.09016393

How come that only 9% of positives have the disease in the low prevalence setting even though the test
captures well (99%) both the true positives and the true negatives? Let’s consider 10,000 individuals. Out
of them, only 10 have D. Assume all those 10 test positive due to high sensitivity of the test. The remaining
9990 do not have D. But out of them 1%, i.e., ~100 still test positive. Thus, out of all 110 positive tests,
only 10 (~9%) were true positives and 100 (~91%) were false positives.

Using terminology from the previous lectures, we may formulate this result as saying that the FDR of this
screening procedure is about 91% when prevalence is 0.1% and about 8.4% when prevalence is 10%. In
particular, the practical usefulness of the test strongly depends on the population screened, and Bayes rule
is the way to determine exactly how.

Example 4.3. Let’s apply Bayesian inference to the parameter θ that represents the probability of a coin
landing heads up in a coin toss. We start by defining our prior probability distribution on θ. Suppose that
Uniform(0,1), which is also the Beta(1,1) distribution, is a good description of our prior beliefs.

Then we start tossing the coin and report value H(i) that is the number of heads in first i tosses. Our
sampling model for H(i) is

H(i) | θ ∼ Binomial(i, θ).

It follows (from a course on Bayesian inference) that the posterior distribution for θ is

θ | H(i) ∼ Beta(H(i) + 1, i − H(i) + 1).

Let’s draw the prior and the posterior distributions via their density functions after the following series of
observations: H(10) = 7, H(20) = 14 and H(30) = 21.

n = c(0, 10, 20, 30)
H = c(0, 7, 14, 21)
cols = c("black", "blue", "magenta", "red")
x = seq(0, 1, 0.005)
plot(NULL, xlim = c(0,1), ylim = c(0,6), xlab = expression(theta), ylab = "density")
for(ii in 1:length(n)){

y = dbeta(x, H[ii]+1, n[ii]-H[ii]+1)
lines(x, y, col = cols[ii], lwd = 2)

}
legend("topleft", leg = c("prior","10 obs.","20 obs.","30 obs."), col = cols, lwd = 2)
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We see that the point estimate from data H(i)/i = 0.7 at all three observations and that the posterior
distribution narrows down around that value as the sample size increases. There is little numerical difference
to pure maximum likelihood inference about θ when there are tens of tosses but conceptually there is a big
difference when we consider, e.g., Bayesian posterior probability intervals (credible intervals) vs. traditional
confidence intervals, as studied in courses on Bayesian inference.

Significance threshold and probability of the null hypothesis Let’s next see how a standard infer-
ence procedure based on a fixed significance level α relates to the probability of null hypothesis. This inference
procedure is simply to reject the null hypothesis Hj and call the variable j significant if the corresponding
P-value is ≤ α. Let’s take as our observed data simply the event of a significant P-value: S = {Pj ≤ α}.
Let’s also define the event of a true non-null effect as T = {Hj does not hold} and its complement of a null
effect: N = {Hj holds}. Naturally, Pr(T ) = 1 − Pr(N) and we are interested in Pr(T | S). Bayes rule gives

Pr(T | S) = Pr(T ) Pr(S | T )
Pr(S) and

Pr(N | S) = Pr(N) Pr(S | N)
Pr(S) .

By dividing the first equation by the second we have

Pr(T | S)
Pr(N | S) = Pr(T ) Pr(S | T )

Pr(N) Pr(S | N) .

This says that the odds of there being a true effect, after we have observed a significant P-value, are the
prior odds of a true effect (Pr(T )/Pr(N)) times the ratio of probabilities of getting significant results under
the alternative model vs. the null model. By definition, Pr(S | N) = α, i.e., under the null we get significant
results with probability α. The term Pr(S | T ) is called statistical power of the study to observe a true
effect. Thus,

Pr(T | S)
Pr(N | S) = prior-odds × power

significance threshold .

If we assume that we have a well-powered study to detect effects we are interested in, say power is above 80%,
we can replace power by ≈ 1 and ignore it for now. We see that whether a significant result is more likely
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to be a true positive than a false positive depends on the ratio of prior-odds of true effect and significance
threshold. If we want our inference procedure to produce significant results only for almost certain cases of
true positives, we need to choose our significance threshold small enough that it can overcome a possibly
small prior odds of a true effect in high-dimensional problems. Note however, that power will also drop when
we decrease the significance threshold so we cannot ignore it forever.

Example 4.4. Suppose that we are looking for genetic mutations that at least double the risk of diabetes
compared to a normal variant at that position of the genome. We have a large sample size so that we are
very well powered to find such variants. We think that there are not many such mutations around, maybe
only 10 or so in the genome that has 107 variants. Thus, we say that our prior probability that any one
variant increases risk is P (T ) = 10/107 = 10−6. What should our significance threshold be if we want to be
over 95% certain that a significant finding is truly a real effect?

p.T = 1e-6
prior.odds = p.T / (1 - p.T)
pwr = 1.0 #assume full power
post.odds = 0.95 / (1 - 0.95)
alpha = prior.odds*pwr/post.odds
paste(signif(alpha,3))

## [1] "5.26e-08"

Above we used the size of the genome to derive a prior probability of a true effect. Even though this may
coincide with the number of tests carried out in the actual analysis, a big conceptual difference is that the
derivation of α above is independent of the actual number of tests carried out. This derivation makes clear
that the requirement of a small significance threshold, that we often encounter in high-dimensional problems,
is not primarily because of the number of tests carried out, but because of a small prior probability that
any one of our measured variables is a true effect. Importantly, this derivation removes the problem in the
earlier Example 4.1: the significance threshold required should not change with the number of tests done,
but should be determined by the prior-odds and power of the study. In particular, the threshold does not
change depending on whether I analyse 1000 or 107 variants “in the same experiment”. Note, however, that
if there is prior knowledge that the 1000 variants are more likely to be non-zero because of their properties
by which they have been chosen among all 107 variants, then I can loosen the significance threshold for them,
but that is because the prior-odds are now different, not because the number of tests is different.

Questions.

1. In which cases we could use different prior odds for different variables?

2. What would smaller/higher prior odds mean in terms of significance level required for a fixed posterior
odds given that everything else remains constant?

3. What is the smallest possible value for “power” in formula above, and what does Bayes formula tell
about learning from data if we have a setting with that minimum possible power?

From significance to the observed data The methods that we have considered so far only determine
whether tests are “significant” or not. We could and should also make more efficient use of the observed
data than just labelling things significant or not significant. Or would you think that variables with P-values
0.04 and 10−10 should have the same posterior probability of being non-null?

Let’s now apply Bayes rule to the null hypothesis testing problem in a way where we condition on the full
observed data D and not just on whether P-value is below some threshold as we did above. Let’s mark the
null hypothesis by H0 and the alternative hypothesis by H1.

Pr(H0 | D) = Pr(H0) Pr(D | H0)
Pr(D) = Pr(H0) Pr(D | H0)

Pr(D | H0) Pr(H0) + Pr(D | H1) Pr(H1)
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We need to specify probabilistic models for the observed data under both hypothesis. After these models
are specified, the infrence is about letting the possible models compete both in how well they explain the
observed data (terms Pr(D | H1) and Pr(D | H0)) and in how probable they are a priori (terms Pr(H1) and
Pr(H0)).

Example 4.5. Bayesian inference shows that both the observed data AND the prior knowledge are crucial
for complete inference. Suppose, for example, that one morning you wake up and it is very dark outside.
This darkness could result either from H1: “Sun has disappeared” or from H0: “You have woken up > 1
hour earlier than usually”, and under both models Pr(D | Hi) is very high. So both models are consistent
with the observations and P-values computed under either of the models as null hypothesis would not
show inconsistencies between the observed data and either of the models. However, the prior odds of
Pr(H0)/Pr(H1) is extremely large and hence your posterior conclusion would be that you are extremely
more likely to have woken up early than woken up to the world without the sun.

In a simple linear regression model, the observed data consist of the outcome vector yyy and the tested variable
xxxj , Dj = (yyy,xxxj), and when we assume Gaussian errors, the model for a fixed value of regression coefficient
β and error variance σ2 is

Pr
(
D | β, σ2)

= N (yyy − xxxjβ; 0, σ2I) ∝ exp
(
−(yyy − xxxjβ)T (yyy − xxxjβ)/(2σ2)

)
Under the null model, we set β = 0 and in the alternative model, we can set β to some other value b1. If
we do not want to specify our model of non-null effects by a single value b1, we can use a Bayesian prior
distribution for β, for example, by saying that β ∼ N (b1, τ2

1 ). With this prior, the probability density of
data under H1 is given by weighting the above likelihood by the prior probability density of each possible
value of β:

Pr(D | H1) =
∫

β

Pr
(
D | β, σ2)

Pr(β | H1)dβ =
∫

β

N
(
yyy − xxxjβ; 0, σ2)

N
(
β; b1, τ2

1
)

dβ.

In both models we typically fix σ2 to its empirical maximum likelihood estimate as the competing regression
models do not typically differ in σ2, and hence we are less interested in σ2 than in β.

If we assume that, in the Gaussian prior of β, the mean parameter b1 = 0, then the integral can be done
analytically to give

Pr(D | H1) = c · N
(

β̂; 0, τ2
1 + SE2

)
,

where c is a constant and β̂ is the MLE of β and SE the corresponding standard error. Note that by replacing
τ1 with 0, we have

Pr(D | H0) = c · N
(

β̂; 0, SE2
)

.

These results tell that we can quantify how well each model/hypothesis explains the data by asking how
well each model can explain the MLE β̂. Let’s demonstrate this by (1) plotting the probability densities of
data under both models H0 (green) and H1 (orange) and by simulating one data set from each model and
by showing where the parameter estimate from each data set fall.

set.seed(16102017)
n = 1000 # sample size for SE calculation
sigma = var.x = 1
se = sigma/sqrt(n*var.x) # see HDS 0 notes for SE in linear model
tau = 0.5 # prior standard deviation for H1

# Let's draw probability densities of "data" under the two models, H0 and H1,
# as a function of the MLE estimate x
x = seq(-0.5, 0.5, by = 0.001)
y1 = dnorm(x, 0, sqrt(tauˆ2 + seˆ2) )
y0 = dnorm(x, 0, se)
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plot(x, y0, t = "l", col = "limegreen", lwd = 2,
xlab = "MLE of beta", ylab = "probability density of data")

lines(x, y1, col = "orange", lwd = 2)
legend("topright", legend = c("H0","H1"), col = c("limegreen","orange"), lwd = 2)

# We make a shortcut and don't simulate data at all, but we simulate MLEs
# Suppose we have two cases, first is null, second is alternative (beta=0.3)
b = c(0, 0.3)
b.mle = rnorm(2, b, se) #these are simulated MLE estimates
points(b.mle, c(0,0), pch = 19, col = c("darkgreen","orange2"))
bf.01 = dnorm(b.mle, 0, se) / dnorm(b.mle, 0, sqrt(tauˆ2 + seˆ2)) # Bayes factor between H0 and H1
text(b.mle[1], 2, signif(bf.01[1], 2), col = "darkgreen")
text(b.mle[2], 2, signif(bf.01[2], 2), col = "orange2")
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If β̂ is close to 0, then H0 explains the data better than H1, whereas the opposite is true when β̂ is farther
away from 0. With these parameters, H1 starts to dominate about when |β̂| ≥ 0.1.

Two points shown in the plot are examples of possible maximum-likelihood estimates that could result either
under H0 (green) or H1 (orange). The values shown are ratios of Pr(D | H0)/Pr(D | H1) computed at these
two points. When this ratio > 1, the null model H0 explains the data better than the alternative H1 and
when it is < 1 the opposite is true. This ratio is called Bayes factor (BF) and it is a multiplicative factor
that multiplies the prior odds to result in the posterior odds:

Pr(H0 | D)
Pr(H1 | D) = Pr(D | H0)

Pr(D | H1)
Pr(H0)
Pr(H1)

We are almost there having calculated a proper probability for the null hypothesis. We still need to agree
on the prior probability of the null hypothesis. For example, by continuing with our genomics application,
we had Pr(H0) = 0.999999 because we expected that there was only a very small probability (about 10−6)
that there was a true effect for any one variant. Then the posterior odds and posterior probabilities for the
null hypothesis are:
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post.odds = bf.01*(1 - 1e-6) / 1e-6
post.prob = post.odds / (1 + post.odds)
cbind(data = c("green","orange"), post.H0 = post.prob, post.odds = post.odds)

## data post.H0 post.odds
## [1,] "green" "0.999999659543705" "2937233.5737576"
## [2,] "orange" "6.49242701456545e-17" "6.49242701456545e-17"

For illustration, let’s check the P-values corresponding to these two data sets:

pchisq( (b.mle / se)ˆ2, df = 1, lower = F)

## [1] 6.583224e-02 2.512191e-25

So P-value of the first one is quite close to 0.05, but still the probabilistic analysis says that the observed
data have even made the null model more likely than it was prior to seeing the data. This is an example how
P-value does not compare probability of data under the null model to any other model, it simply measures
how likely the data are to raise under the null model. In principle, data can be quite unlikely under model
H0, but if it is even more unlikely under model H1, then we do not have evidence to prefer the alternative
model H1 over the null model.

Note that there were several assumptions made in the Bayesian anaysis about the effect sizes under H1
and also on the prior probabilities of the models, and the posterior probabilities will change when these
assumptions are changed. Therefore, P-values and Q-values remain useful simple summaries of data that
can be computed easily and with little additional assumptions. The important thing is to know what P-
values and Q-values are and what they are not. In particular, they are not probabilities of null hypothesis!
Additionally, it is important to understand what kinds of additional pieces of information would be needed
in order to do more complete probabilistic inference.

Questions.

1. What is the main conceptual benefit of having available a posterior probability of null hypothesis
compared to having a P-value under the null hypothesis?

2. What are the main practical complications of computing posterior probabilities compared to computing
P-values?

The role of marginal likelihood in Bayesian inference (Adapted from Rasmussen & Williams.)

In Bayesian analysis, the probability density of the data given the model, Pr(D | M), describes how well a
model (or “hypothesis”) describes the data. This term is called marginal likelihood. It is called marginal
because it has been marginalized over the parameters of the model that appear in the likelihood function
so that those parameters do not appear in the marginal likelihood. Typically, the marginalization means to
compute an integral over the parameter space of the product of the likelihood function Pr(D |θθθ), where θθθ is
the set of parameters of the model, and the prior distribution of the parameters Pr(θθθ | M) specified by the
model M.

Pr(D | M) =
∫

Pr(D |θθθ) Pr(θθθ | M)dθθθ :

For example, the null model may say that the slope parameter is exactly 0 whereas the alternative model
may say that the prior on slope is N (0, 1), and in both cases the likelihood function could be the likelihood
from the linear regression model with Gaussian errors.

Above we saw marginal likelihood values for two models H0 and H1 as a function of observed data that
were summarized by the estimate β̂ and its SE. In Figure below, we see an illustration of the behavior of the
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marginal likelihood for three different models with differing levels of complexity. The horizontal axis is an
idealized representation of all possible outcome vectors y that we could observe, and the vertical axis plots
the marginal likelihood. A simple model can only account for a limited range of possible data sets, but since
the marginal likelihood is a probability distribution over y it must normalize to one, and therefore the data
sets which the model does account for have a relatively large value of the marginal likelihood. Conversely for
a complex model: it is capable of accounting for a wider range of data sets, and consequently the marginal
likelihood doesn’t attain equally large values for any given data set that the simple model already explains
well. For example, the simple model could be a linear model, and the complex model a large neural network.
The Figure illustrates why the marginal likelihood doesn’t simply always favor the models that are most
complex in cases where the simple model already can explain the data.

0
2

4
6

8
10

12

Observed Data

m
ar

gi
na

l l
ik

el
ih

oo
d:

 P
(D

at
a 

| M
od

el
)

simplest
intermediate
complex

An attractive property of the marginal likelihood is that it automatically incorporates a trade-off between
model fit and model complexity. That is, it has an inherent guard against overfitting. This is the reason
why the marginal likelihood and the Bayesian approach is valuable in solving the model selection problem.

Note the difference between maximum lilkeilhood, where parameter values are estimated by optimizing the
likelihood, and marginal likelihood, where the parameter values are integrated out from the model to reveal
the descriptive power of the model in explaining the observed data set. Pure maximum likelihood method
always tends to favor more complex models because more complex models can be made fit better to any
observed data. However, more complex models also spread their explanatory power over much larger sets of
possible data sets than simpler models, and therefore their marginal likelihood for a certain data set can be
much lower than that of a simpler model.

In above Figure, which model would be the best explanation for each of the three data sets denoted by blue,
green and red points, respectively?

Example 4.6. Let’s consider two series of coin tosses of length n, where the number of observed heads are
h1 and h2. We want to infer whether the two series are conducted with a similar coin. Let’s apply Bayesian
inference through marginal likelihoods and let’s demonstrate the difference from the maximized likelihood.

Denote by θ1 and θ2 the proportion of heads for coins 1 and 2. The likelihood function for the whole
experiment is

Pr(h1, h2 | θ1, θ2) =
2∏

i=1

(
n

hi

)
θhi

i (1 − θi)n−hi
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Let’s define two models. Model H0 states that θ1 = θ2 and in the Bayesian version the shared parameter
θ = θ1 = θ2 has Uniform(0,1) as its prior distribution. Thus, model H0 is a simpler model with only one
unknown parameter. Model H1 says that the parameters θ1 and θ2 are not necessarily the same and they
are each given Uniform(0,1) prior independently of each other. We can compute the marginal likelihood for
both models using the Beta function (technically this is an integration problem and the Beta function is
defined as a shorthand for exactly these types of integrals):

Pr(h1, h2 | H0) =
∫ 1

0

(
n

h1

)(
n

h2

)
θh1+h2(1 − θ)2n−h1−h2dθ =

(
n

h1

)(
n

h2

)
B(h1 + h2 + 1, 2n − h1 − h2 + 1)

Pr(h1, h2 | H1) =
∫ 1

0

2∏
i=1

(
n

hi

)
θhi

i (1 − θi)n−hidθi =
2∏

i=1

(
n

hi

)
B(hi + 1, n − hi + 1)

Thus the Bayes factor of model H0 against model H1 is

BF01 = Pr(h1, h2 | H0)
Pr(h1, h2 | H1) = B(h1 + h2 + 1, 2n − h1 − h2 + 1)

B(h1 + 1, n − h1 + 1)B(h2 + 1, n − h2 + 1)

Let’s draw a picture of BF when n = 20 and h1 = 10 as h2 = 0, . . . , 20.

n = 20
h1 = 10
h2 = 0:n
bf = beta(h1 + h2 + 1, 2*n - h1 - h2 + 1) / beta(h1 + 1, n - h1 + 1) / beta(h2 + 1, n - h2 + 1)
plot(h2, bf, t = "b", lwd = 2, xlab = expression(h[2]), ylab ="Bayes factor H0 vs H1")
abline(h = 1, lty = 2, col = "gray", lwd=2)
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We see that the marginal likelihood favors the null model when h2 is in range [6,14] that includes the observed
h1 = 10. There, according to the marginal likelihood, the simpler model with a single parameter is better in
explaining the observed data than the more complex model with two parameters. When h2 is farther away
from h1, then the marginal likelihood says that we should rather use the two parameter model to explain
the data.
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Why is this not yet a complete Bayesian analysis? We haven’t considered the prior probabilities of H0 and
H1. If we assume them equal, then the Bayes factor is also the posterior odds. But if we have strong prior
beliefs that the coins are / aren’t similar, then the inference will be affected by the prior odds Pr(H0)/Pr(H1)
as well.
What about a maximized likelihood of the two models? MLE is θ̂1 = θ̂2 = h1+h2

2n for H0 and (θ̂1 = h1
n , θ̂2 =

h2
n ) for H1. Let’s plot the ratio of maximized likelihoods under the same assumptions as we did above for

the ratio of marginal likelihoods.

lratio = ((h1 + h2)/(2*n))ˆ(h1 + h2) * (1 - (h1 + h2)/(2*n))ˆ(2*n - h1 - h2) /
((h1/n)ˆh1 * (1 - h1/n)ˆ(n - h1)) / ((h2/n)ˆh2 * (1 - h2/n)ˆ(n - h2))
plot(h2, lratio, t = "b", lwd = 2, xlab = expression(h[2]), ylab ="Likelihood ratio H0 vs H1")
abline(h = 1, lty = 2, col = "gray", lwd = 2)
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We see that the maximized likelihood of the more complex model H1 is always larger than the maximized
likelihood of the simpler model H0 (except in one point where both are equal). Thus the ratio of maximized
likelihoods does not have a similar automatic adjustment for model complexity as the ratio of marginal
likelihoods. In high-dimensional models, the automatic adjustment for model complexity is a valuable
property of Bayesian inference as it helps to avoid overfitting.

Local False Discovery Rate in qvalue package Let’s see how these Bayesian ideas have been imple-
mented in the lfdr method of the qvalue package. The idea is to compute, for each tested hypothesis
Hj , lfdrj = Pr(Hj holds | all P-values), i.e., the probability of the null hypothesis given the distribution of
all P-values. Note that this is different from Qj that estimates FDR among all tests with smaller or equal
Q-values, and does not talk specifically about the probability of the hypothesis j. lfdrj can be seen as a
posterior probability of the null hypothesis Hj given the distribution of P-values.
The method assumes that the null P-values follow a Uniform(0,1) distribution and estimates the proportion
of true null hypotheses π̂0 as we studied earlier in lecture notes HDS3. Then the method forms an estimate
of the marginal density of the observed P-values, f̂(·). Because f(P ) = π0 · 1 + (1 − π0)g(P ) where g is the
density of non-null P-values, it follows that

lfdrj = Pr(Hj | Pj , f̂ , π̂0) = Pr(Hj | f̂ , π̂0) · Pr(Pj | Hj , f̂ , π̂0)
Pr(Pj | f̂ , π̂0)

= π̂0 · 1
f̂(Pj)

= π̂0

f̂(Pj)
.
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Since this posterior probability is based on empirical estimates of f̂ and π̂0, it is called an empirical Bayes
method.

Intuitively, lfdrj can be interpreted as comparing the number of null P-values near the observed P-value Pj

(that is, p π̂0 dP ) to the number of all P-values near Pj , (that is, p f̂(Pj) dP ), where dP is a small interval
around P-value Pj . The ratio of these two numbers estimates a probability that a P-value near Pj is null.

Example 4.7. Let’s repeat the P-value distribution from lecture 3 where m = 2000 of P-values came from
Beta(0.1,4.9) and p0 = 8000 from the null distribution. Let’s also compute lfdr for every P-value and show
the histogram of P-values and lfdrj values as implemented with hist() applied to output from qvalue().

set.seed(566)
p = 10000
m = 2000
beta.1 = 0.1 # weight for unit interval's end point 1
beta.0 = 4.9 # weight for unit interval's end point 0
null.pval = runif(p - m, 0, 1)
alt.pval = rbeta(m, beta.1, beta.0)#rbeta(m, beta.1, beta.0) #non-null = alternative distribution
pval = c(alt.pval, null.pval) #all P-values together
library(qvalue)
hist(qvalue(pval))

π̂0 = 0.795
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At every observed P-value pj , lfdrj is the ratio of value π̂0 to the density from the histogram and varies from
near 0 to near 1 from the smallest P-values to the largest P-values.

Example 4.8. Suppose that we are studying relationship between genetic variants and heart disease. We
already know from previous studies 10 variants that have strong effects on the disease and therefore they
also have very low P-values (let’s say 10−10) in our new data. We have tested 100 additional variants to
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determine whether they are also associated with the disease. Suppose that all new variants actually are null.
Let’s see how Q-values and lfdr values differ in their robustness to inclusion of the previously known variants
among the tested variants.

set.seed(11)
p0 = 100
pval0 = sort(runif(p0)) # null P-vals from smallest to largest
pval.all = c(pval0, rep(1e-10, 10)) #add 10 known variants at the end of vector
pval.all[1:5]

## [1] 0.0005183129 0.0137805955 0.0140479084 0.0143792452 0.0162145779

Qval0 = qvalue(pval0)
Qval.all = qvalue(pval.all)
rbind(Qval0$qvalues[1:5], Qval.all$qvalues[1:5]) # Q-values

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.015487016 0.09689723 0.09689723 0.09689723 0.09689723
## [2,] 0.001407911 0.03068907 0.03068907 0.03068907 0.03229908

rbind(Qval0$lfdr[1:5], Qval.all$lfdr[1:5]) # lfdr values

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.05114749 0.1812101 0.1822572 0.1835420 0.1903847
## [2,] 0.05122124 0.1799140 0.1809315 0.1821767 0.1887580

We see that Q-values of the smallest (null) P-values change quite a lot dependening on whether the 10
previously known strong effects were included in the analysis. lfdr values change much less. This is reflecting
the fact that Q-value talks about ALL P-values smaller than the focal P-value, whereas lfdr talks about the
status of the focal P-value.

There is nothing wrong with Q-values here. They work as expected here, i.e., they give smaller Q-values for
the null variables with the smallest P-values after there are 10 strong true effects included because inclusion
of these 10 true effects will allow us to also do more false discoveries for any given FDR level αF . The reason
why lfdr values are much less affected by the inclusion of additional variables is that lfdr directly measures
the probability that each particular variable is null, and does not say anything about status of those “more
extreme” observations than this particular one that we are considering.

Question.

1. Explain what does the values P-value = 0.016, Q-value=0.032 and lfdr=0.189 each tell about the
hypothesis shown at the 5th column above? (The 5th column above corresponds to the 15th smallest
P-value after we have added 10 P-values with value 1e-10 at the end of the P-value vector.)

Null hypothesis testing vs. effect sizes

So far, we have been equating statistical inference to testing the null hypothesis. This has been because in
high-dimensional problems our first interest is often to identify the important variables. However, in most
applications, eventually, we should be primarily interested in the effect size, rather than the probability
whether the effect is zero, let alone in its P-value. Furthermore, since almost all effects are non-zero when
we look carefully enough, it follows that if we simply increase our sample size, we will see a statistically
significant difference virtually in every possible comparison we can think of, at least in fields such as social
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sciences, humanities etc., that study very complex phenomena that are affected by numerous factors. In
those cases, a statistically highly significant result may not be at all significant in real life. For example,
suppose we can show that group A statistically significantly (P-value < 0.05) earn more than group B when
both groups have same education. If this result has been achieved from a large sample of individuals (say
millions), and the difference in earnings is very small, say 1%, then this result is unlikely to be surprising:
groups A and B are different in some identifiable way, otherwise you could not tell who belong to A and who
to B, and therefore we also expect at least some small differences between them in also in other things we
can measure. The real question is how large is the difference. If the difference between the groups turns out
to be large enough, say e.g. 10% in the income example, then we may want to seek for a further explanation
for it.

Null hypothesis testing is more informative in natural sciences such as physics, chemistry or genetics where
clear and plausible null hypotheses can be formulated and then tested, e.g., the mass-energy equivalence in
particle physics. They are also useful in ranking predictors to produce sparse models that, as we will see
soon, are key methods behind successful high dimensional statistical models.
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