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So far, we have used P-values for inference based on the false positive rate (this is the definition of P-
value itself), on family-wise error rate (FWER; Bonferroni and Holm) and on false discovery rate (FDR;
Benjamini-Hochberg and Benjamini-Yekutieli). See the slides for a summary of these three approaches.

Here we will consider a quantity called Q-value that can be attached to each test and that gives an empirical
estimate of FDR among all tests whose Q-values are smaller or equal to the given Q-value. We will follow the
exposition of Storey and Tibshirani (2003, PNAS 100: 9440-9445), whose work led to the qvalue R-package.
Before defining Q-value, we will first refine the BH method by empirically estimating p0, the number of null
tests. Remember that the proof of BH theorem showed that the BH(αF ) method actually controls FDR
at level p0/p · αF . Thus, when p0 is considerably smaller than p, we can improve the accuracy of an FDR
method by estimating p0.

(Technical note: In this text, we are assuming that the procedure to define discoveries has produced at least
one discovery. That is, we assume that D > 0 even though we do not explicitly write it out in the formulas
below. To be precise, this quantity is called the positive false discovery rate (pFDR). Even though
the pFDR is a slightly modified version of the FDR we defined previously, in practice the two become equal
when Pr(D > 0) ≈ 1, which is the case in any interesting analysis setting where at least some discoveries are
expected to be made.)

Let’s define, for each P-value threshold t ∈ [0, 1],

FDR(t) = E
(

FD(t)
max{D(t), 1}

)
,

where random variables FD(t) = #{null P-values ≤ t} and D(t) = #{P-values ≤ t} in an experiment where
in total p P-values are available.

To refine our understanding of the FDR methods, let’s think that the random variables FD(t) and D(t)
result from p draws of P-values from a mixture distribution between Uniform(0,1) (for null P-values) and
an alternative distribution with cdf Φ1 and pdf ϕ1 (for non-null P-values), with a mixture proportion π0 for
the null distribution. In other words, the cdf Φ and pdf ϕ of the P-values are

Φ(t) = π0 · t + (1 − π0)Φ1(t), t ∈ [0, 1], (1)
ϕ(t) = π0 · 1 + (1 − π0)ϕ1(t), t ∈ [0, 1]. (2)

We can interpret sampling from such a mixture distribution as a two-step process. Namely, we first choose
between the null distribution (with probability π0) and the alternative distribution (with probability 1−π0),
and second, conditional on the chosen distribution, we sample a P-value from the chosen distribution.

Example 3.1. Suppose we do p = 10, 000 tests of which m = 2000 are non-null, i.e., we can model this as
a mixture distribution with π0 = p−m

p = 0.80. The null P-values come from Uniform(0,1) and the non-null
P-values come from distribution Beta(0.1,4.9). (Note that Beta(0.1,4.9) gives values in [0,1] that have a
mean of 0.1/(0.1+4.9) = 0.02 and a skew to right; there is no particular reason why in real data the non-null
P-values had exactly this distribution, but this is used for a demonstration purpose here; see figures below.)
Let’s plot the theoretical (orange) and empirical (green) density functions for (1) null tests, (2) non-null
tests and (3) for all tests combined, i.e., the mixture distribution of the null and alternative distributions.
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p = 10000
m = 2000
beta.1 = 0.1 # weight for unit interval's end point 1
beta.0 = 4.9 # weight for unit interval's end point 0
null.pval = runif(p - m, 0, 1)
alt.pval = rbeta(m, beta.1, beta.0) # non-null = alternative distribution
pval = c(alt.pval, null.pval) # all P-values together
eff = c(rep(TRUE, m), rep(FALSE, p - m)) # indicator for non-null effects

par(mfrow = c(1,3)) # Empirical histogram and theoretical curve for (1), (2), (3)
hist(null.pval, breaks = 20, prob = TRUE, col = "limegreen",

main = "null", xlab = "", xlim = c(0,1), sub="",
lwd = 1.5, lty = 2, xaxs="i", border = NA)

curve(dunif(x, 0, 1), 0, 1, add = TRUE, col = "orange", lwd = 2)

hist(alt.pval, breaks = 20, prob = TRUE, col = "limegreen",
main = "non-null", xlab = "", xlim = c(0,1), sub="",
lwd = 1.5, lty = 2, xaxs="i", border = NA)

curve(dbeta(x, shape1 = beta.1, shape2 = beta.0), 0, 1, add = TRUE,
col = "orange", lwd = 2)

legend("topright", fill = c("limegreen","orange"),
legend = c("empir.","theor."), cex = 1.5)

hist(pval, breaks = 20, prob = TRUE, col = "limegreen",
main = "combined", xlab = "", xlim = c(0, 1), sub="",
lwd = 1.5, lty = 2, xaxs="i", border = NA)

curve( (p - m)/p * 1 + m/p * dbeta(x, shape1 = beta.1, shape2 = beta.0), 0, 1,
add = TRUE, col = "orange", lwd = 2)
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Density plots show how the null P-values follow the uniform distribution and the non-null P-values are
enriched for small values near 0.

summary(null.pval)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000108 0.2521960 0.4999947 0.5002426 0.7467176 0.9998005

summary(alt.pval)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000000 0.0000001 0.0001608 0.0196240 0.0081581 0.7202532
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When these two distributions are combined in the rightmost panel, the enrichment of small P-values is still
present but has a smaller weight of 20% compared to the weight of 80% given to the null distribution.

Since Φ(t) is the probability that a randomly sampled P-value from this mixture distribution ≤ t, the random
variables D(t) and FD(t) are distributed as

D(t) ∼ Bin(p, Φ(t)) (3)
FD(t) | D(t) ∼ Bin(D(t), θt), where (4)

θt = Pr(NULL | P ≤ t) = Pr(NULL) Pr(P ≤ t | NULL)
Pr(P ≤ t) (5)

= π0t

π0t + (1 − π0)Φ1(t) . (6)

Using the law of total expectation: E(Y ) = E(E(Y | X)), and assuming that D(t) > 0, we have that

FDR(t) = E
(

FD(t)
D(t)

)
= E

(
E

(
FD(t)
D(t)

∣∣∣∣ D(t)
))

= E
(

1
D(t)E(FD(t) | D(t))

)
= E

(
1

D(t)θt D(t)
)

= θt.

On the other hand, E(FD(t)) = E(E(FD(t) | D(t))) = E(D(t)θt) = θt · E(D(t)) Thus

E(FD(t))
E(D(t)) = θt · E(D(t))

E(D(t)) = θt = FDR(t).

So we can estimate FDR(t) by the ratio of expectations of FD(t) and D(t). And what could we use as
estimates for these expectations?

For each P-value threshold t, denote the number of all discoveries at threshold t by D̂(t) = #{P-values ≤ t}.

We use this to estimate E(D(t)) ≈ D̂(t).

To estimate E(FD(t)), we remember that the null P-values are uniformly distributed and hence E(FD(t)) =
p0 ·t = π0 ·p ·t. In estimating π0 we again rely on the fact that the null P-values are uniformly distributed and
that most P-values near 1 are expected to be from the null distribution. Let’s remind us how our P-value
distribution looked like.

hist(pval, breaks = 40, prob = TRUE, col = "limegreen", main = "All P-values",
xlab = "", xlim = c(0,1), sub = "", lwd = 1.5, lty = 2, xaxs = "i", border = NA)

abline(h = 1, lty = 2, lwd = 2)
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We can see that the density of P-values > 0.2 looks fairly flat. If we assume that the density of the non-
null P-values is ≈ 0 in this region, then the density function of P-values in this region is approximately
π0 · 1 + (1 − π0) · 0 = π0. Thus the value of the density function in this flat part gives an estimate of the
overall proportion of null P-values π0. The constant density function over any interval (λ, 1] is the probability
mass in the interval divided by the length of the interval (1 − λ). With empirical data, this probability mass
is
#{Pj > λ | j = 1, . . . , p}/p. We can apply such an estimate for any value λ to yield an estimator

π̂0(λ) = #{Pj > λ | j = 1, . . . , p}
(1 − λ)p .

Parameter λ should be large enough that there are not many non-null effects among the P-values > λ but,
simultaneously, λ should be small enough that there are enough null P-values > λ so that the estimate has
a reasonable precision. An inclusion of a few non-null P-values > λ makes this estimate conservative, i.e.,
an overestimate of π0. That keeps us on the safe side and leads to an overestimate of FDR(t).

If we take λ = 0, then π̂0(λ) = 1 which is too conservative when a considerable proportion of the tests are
expected to be truly non-null. On the other hand, as we set λ closer to 1, the variance of π̂0(λ) increases due
to the decreasing number of P-values exceeding λ, which makes the estimate more unreliable. Therefore, as
a simple, practical choice for λ, we could use 0.5, but an optimal threshold would depend on the data set.
Let’s see how the choice of λ affects the estimate π̂0(λ) in our current example data.

lambda = seq(0, 1, by = 0.05)
pi.0 = sapply(lambda, function(x) {sum(pval > x)}) / p / (1 - lambda)
plot(lambda, pi.0, t = "b", xlab = expression(lambda), ylab = expression(hat(pi)[0]))
abline(h = 1 - m/p, col = "red", lty = 2) #this is the true value
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Indeed, we see that with values near λ = 0.5, the estimate π̂0(λ) is a good one whereas its quality deteriorates
towards either of the endpoints of the interval.

With this estimator for π̂0, we have the estimate

F̂DR(t) = F̂D(t)
D̂(t)

= p · P̂r(NULL P-value) · Pr(P ≤ t | NULL P-value)
D̂(t)

= p · π̂0 · t

D̂(t)
.

Let’s plot our estimate of F̂DR(t) in orange as a function of t by using the value π̂0(0.5) estimated above.
Let’s also plot a curve that corresponds to a conservative assumption π0 = 1 in red and let’s add the true
empirical FDP(t) curve in blue, which we are able to do here since we know which P-values were simulated
from the null.

pval.sorted = sort(pval)
pi.0 = pi.0[which(lambda == 0.5)]
par(mar = c(5,6,2,1)) # widen left margin for text
plot(pval.sorted, p * pi.0 * pval.sorted / (1:p), xlab = "t",

ylab = expression(paste(hat(FDR),"(t) or FDP(t)")), t = "l", col = "orange",
xlim = c(0,1), ylim = c(0,1), lwd = 1.5)

#Add line for conservative assumption pi.0 = 1:
lines(pval.sorted, p * 1 * pval.sorted / (1:p), xlab = "t",

col = "red", lwd = 1.5)
#Add empirical FDP line
fdp = cumsum(!eff[order(pval)]) / (1:p) #true false discovery proportion in data
lines(pval.sorted, fdp, xlab = "t", lty = 3, col = "blue", lwd = 1)
legend("bottomright", leg = expression(hat(pi)[0], pi[0] == 1 ,paste("true fdp")),

col = c("orange", "red", "blue"), lty = c(1, 1, 3), lwd = c(2, 2, 1))
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Note that the derivation of BH approach (in lecture notes HDS2) made the conservative assumption π0 = 1
(or equivalently p0 = p) which corresponds to the red curve in the figure above. Now we have improved that
estimate by empirically estimating π̂0 < 1 (orange curve). In this particular simulated data set, we know the
actual false discovery proportion for any threshold t (blue curve). We see that, as expected, the red line is
clearly conservative: F̂DR(t) > FDP(t). The orange line instead becomes an accurate estimate for FDP(t).
In practice, an empirically estimated π̂0 will sometimes lead to higher and sometimes lower values of F̂DR(t)
compared to the true FDP(t), whereas assumption π0 = 1 is expected to be conservative in general.

Let’s also check whether F̂DR(t) estimated using the empirical π̂0 averages to FDP(t) over many data sets.

R = 1000 #replications of data generation
lambda = 0.5
res.fdr.lambda = matrix(NA, nrow = R, ncol = p ) #lambda = 0.5
res.fdr.1 = matrix(NA, nrow = R, ncol = p ) #lambda = 1
for(rr in 1:R){

pvs = c(rbeta(m, beta.1, beta.0), runif(p - m)) #m non-nulls and p-m nulls
pvs.sorted = sort(pvs)
pi.0 = sum(pvs > lambda)/p/(1 - lambda)
fdr.lambda = p * pi.0 * pvs.sorted / (1:p)
fdr.1 = p * 1 * pvs.sorted / (1:p)
fdp = cumsum(!eff[order(pvs)]) / (1:p)
res.fdr.lambda[rr,] = fdr.lambda - fdp
res.fdr.1[rr,] = fdr.1 - fdp

}
par(mar = c(5,6,2,1)) # widen left margin for text
plot(1:p, colSums(res.fdr.lambda) / R, col = "orange", t="l", lwd = 1.5,

ylim = c(-0.01, 0.2), ylab = expression(paste(hat(FDR),"(t) - FDP(t)")),
xlab = "P-values in increasing order")

lines(1:p, colSums(res.fdr.1) / R, col = "red", t = "l", lwd = 1.5)
abline(h = 0, lty = 3, col = "blue", lwd = 1)
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legend("topleft", leg = expression(hat(pi)[0], pi[0] == 1, paste("true fdp")),
col = c("orange","red","blue"), lty = c(1, 1, 3), lwd = c(2, 2, 1))
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We see that on average F̂DR(t) estimated using π̂0 is very close to true FDP(t) at any point t, (but in any
one instance it can be either smaller or larger). As expected, Figure also shows that use of π0(λ = 0) = 1
results in overestimates for FDP throughout the threshold values t. Why does the red curve end at value
0.2?

Questions.

1. What was the piece of information from the observed P-value distribution that together with the
number of tests p can be used to estimate π0, the proportion of null P-values?

2. Which assumption about π0 was done in the earlier derivation of the BH method?

3. In which case could an empirical estimate of π0 be misleading?

Definition of Q-value We define Q-value of a variable/test as the minimum FDR expected if we
call that variable a discovery. To compute it we only use P-values. Thus for P-value Pj the Q-value is

Qj = Q(Pj) = min
t≥Pj

FDR(t).

Note that the minimum is needed because we will call j a discovery, if we will call any other variable with
at least as large P-value a discovery. This idea is exactly the same as the step-up procedure property of the
BH method. In practice, we use an estimate for F̂DR(t) to compute Q-values.

The Q-value for a particular hypothesis test is the expected proportion of false positives incurred when
calling all tests with at most as large Q-values as significant/discoveries. Therefore, calculating the Q-values
for each test and thresholding them at the Q-value level αF produces a set of significant variables among
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which a proportion of αF is expected to be false positives. Typically, P-value is described as the probability
of a null test statistic being at least as extreme from the null hypothesis as the observed one. Q-value of a
particular test can be described as the expected proportion of false positives among all tests with at least as
extreme Q-value as the observed one.

Suppose that variables with Q-values ≤ 5% are called significant. This results in an FDR of 5% among the
significant variables. A P-value threshold of 5% yields a false positive rate of 5% among all null variables in
the data set. In light of the definition of the false positive rate, a P-value cutoff says little about the content
of the variables actually called significant. The Q-values provide a more meaningful measure among the
variables called significant. Because significant variables will likely undergo some subsequent verification, a
Q-value threshold can be phrased in practical terms as the proportion of significant variables that turn out
to be false leads.

qvalue package The definition of Q-value is independent of any algorithm to compute Q-values, and
therefore using ‘Q-values’ doesn’t strictly speaking imply which method has been used to compute them.
However, often Q-value is associated with a common approach to compute Q-values from P-values using
the qvalue package by John Storey. qvalue() uses an empirical estimate π̂0 in defining Q-values through
F̂DR(t). The only difference to our derivation above, where we computed π̂0 at λ = 0.5, is that by default
qvalue() first computes π̂0(λ) at a grid of λ values < 0.95 and then fits a spline from which it estimate π̂0
as the spline-predicted value π̂0(λ = 1). (One can override this default smoothing by passing to the qvalue
function a fixed value of λ through an input parameter lambda.)

Let’s apply qvalue and see what its basic output functions produce.

#do this the first time to install qvalue package from Bioconductor:
#if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
#BiocManager::install("qvalue")
library(qvalue)
q = qvalue(pval) #this makes Q-values out of P-values
str(q)

## List of 8
## $ call : language qvalue(p = pval)
## $ pi0 : num 0.795
## $ qvalues : num [1:10000] 9.10e-08 2.24e-01 4.52e-01 1.52e-14 2.24e-04 ...
## $ pvalues : num [1:10000] 3.92e-09 6.47e-02 2.03e-01 1.15e-16 2.33e-05 ...
## $ lfdr : num [1:10000] 7.17e-07 7.56e-01 9.39e-01 7.17e-07 2.15e-03 ...
## $ pi0.lambda: num [1:19] 0.826 0.82 0.811 0.806 0.807 ...
## $ lambda : num [1:19] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ...
## $ pi0.smooth: num [1:19] 0.819 0.816 0.814 0.811 0.808 ...
## - attr(*, "class")= chr "qvalue"

We have fields for the estimated value of π0 (pi0), for the P-values (pvalues) that were given as input and
the estimated Q-values (qvalues). Additionally, there are values of π̂0(λ) at the grid given in lambda, and
their smoothed estimates from the spline fitted to these points. Local false discovery rate (lfdr) will be
discussed in next lecture.

These Q-values were computed using π0 value

signif(q$pi0, 3)

## [1] 0.795
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Basic plots of qvalue

plot(q)
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summary(q)

##
## Call:
## qvalue(p = pval)
##
## pi0: 0.7947102
##
## Cumulative number of significant calls:
##
## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1
## p-value 960 1224 1598 1859 2150 2624 10000
## q-value 747 979 1296 1434 1598 1839 10000
## local FDR 589 747 986 1114 1188 1307 4671

This table tells, for example, that there are 2150 P-values below 0.05, but it is estimated that if we want to
make a set of discoveries that had at most 5% false positives among them, we should only choose 1596 of the
smallest P-values. From the P-value vs Q-value plot above, we see that the Q-value 0.05 would correspond
to a P-value of about 0.01 in these data.

In the previous lecture, we used the Benjamini-Hochberg method to define thresholds for a given FDR level.
Let’s see how qvalue compares to the BH method in determining the discoveries at a given FDR level. Here
we will use αF = 0.1.

alpha = 0.1
BH.pval = p.adjust(pval, method = "BH")
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bh = c(sum(BH.pval < alpha), sum(BH.pval[(m+1):p] < alpha))
qval = c(sum(q$qvalues < alpha), sum(q$qvalues[(m+1):p] < alpha))
data.frame(D = c(bh[1],qval[1]),

TD = c(bh[1],qval[1]) - c(bh[2],qval[2]),
FD = c(bh[2],qval[2]),
FDP = c(bh[2],qval[2]) / c(bh[1],qval[1]),
row.names = c("BH", "qvalue"))

## D TD FD FDP
## BH 1736 1611 125 0.07200461
## qvalue 1839 1661 178 0.09679173

Here qvalue gave 50 more true positives and 53 more false discoveries than BH, and was the more accurate
method to approximate the target false discovery proportion of 10% (9.6% vs. 7.2%). We will study more
systematically the differences between BH and qvalue in the home exercises.

The contents of the course so far is well summarized by a 7-page document about multiple testing and FDR
by John Storey: False Discovery Rates, 2010. The last bit in there about “Bayesian Derivation” is the topic
of our next lecture.

Questions:

1. What does it mean when a test statistic has Q-value of 0.05 and how is it different from having a
P-value of 0.05?

2. Which one is typically smaller, Q-value or P-value? (Or neither?)

Extra: Using covariate information with FDR Recently, the standard FDR methods (BH, Storey’s
Q-values) have been extended to include additional covariate information. For example, when studying
differences between brain measurements under two conditions, the physical coordinates of each measured
spot in brain may associate with the proportion of true positive differences between the conditions. In such
a case, tests could be binned depending on the coordinates, and a dependency between π̂0 and physical
coordinates could be estimated. Examples of such methods are Independet Hypothesis Weighting (IHW)
and swfdr.
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