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In the previous lecture, we considered a multiple testing problem where thousands of tests were done while
only a few of them were expected to be non-null. There the family-wise error control (FWER) seemed a
reasonable way to filter a few most prominent candidates for true positives from the vast set of null variables.

Let’s now consider situations where we may have a considerable amount of true positives m = p − p0 among
the p tested variable, e.g., m/p = 10%. Let’s start by writing up easy ways to generate realistic sets of
P-values for such a situation.

Distribution of z-scores Suppose that in linear regression y = µ + xβ + ε the true slope is β. If
Var(x) = vx and error variance is σ2, then the sampling variance of β̂ is vβ = σ2/(nvx) where n is the sample
size, and z-score for testing the slope is

z = β̂
√

vβ
∼ N

(
β

√
vβ

, 1
)

.

We can compute P-values for such z-scores using pchisq(zˆ2, df = 1, lower = F), because under the
null z ∼ N (0, 1) and hence z2 ∼ χ2

1, i.e., z2 follows the central chi-square distribution with one degree of
freedom. With this method, we can easily generate P-values for p0 null variables (β = 0) and m non null
variables β ̸= 0 and test various inference methods on those P-values. Note that the P-value distribution
of the non-null variables will depend on sample size n, true value β and the ratio of predictor and noise
variances vx/σ2, but the P-value distribution of the null variables is always the same, namely, Uniform(0,1).

Let’s generate P-values for p = 1000 variables that we assume each have been tested independently for a
linear association with its own outcome variable. Let’s also assume that m = 100 of them actually do have
an effect each explaining 1% of the variance of the corresponding outcome. We follow the procedure from
Lecture 0 to generate such data, and set σ2 = 1 and vx = 1.

set.seed(11102017)
n = 1000 #sample size
p = 1000 #number of variables to be tested
m = 100 #number of non-null tests
b = sqrt( 0.01 / (1 - 0.01) ) #This means each predictor explains 1%, See Lecture 0.
#Generating P-values: 1,...,m are true effects, m+1,...,p are null.
eff = c(rep(TRUE, m), rep(FALSE, p - m)) #indicator for non-null effects
pval = pchisq( rnorm(p, b*sqrt(n)*as.numeric(eff), 1)ˆ2, df = 1, lower = F)
boxplot(-log10(pval)[eff], -log10(pval)[!eff], col = c("limegreen","gray"),

names = c("EFFECTS","NULL"), ylab = "-log10 Pval")
abline(h = -log10(0.05), col = "blue", lty = 2) #significance threshold 0.05
abline(h = -log10(0.05 / p), col = "red", lty = 2) #Bonferroni corrected threshold of 0.05
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We see that true effects tend to have smaller P-values (i.e. larger -log10 P-values) than null effects, but there
is some overlap between the distributions and therefore, from P-values alone, we cannot have a rule that
would detect all true positives but would not report any false positives.
Remember the characterization of test results according to this table:

Test result not null null Total
negative (not significant) FN TN p-D
positive (significant, discovery) TD FD D
Total p-p0 p0 p

Let’s print such a table when we first do inference based on a P-value threshold (say 0.05) and then use the
Bonferroni correction.

alpha = 0.05
dis = (pval < alpha) # logical indicating discoveries
table(dis, !eff, dnn = c("discov","null"))

## null
## discov FALSE TRUE
## FALSE 10 851
## TRUE 90 49

dis = (p.adjust(pval, method = "bonferroni") < alpha)
table(dis, !eff, dnn = c("discov","null"))

## null
## discov FALSE TRUE
## FALSE 73 900
## TRUE 27 0

The problem with the raw P-value threshold is that there are many false discoveries (over one third of all
discoveries are false). The problem with the Bonferroni correction is that only a third of all true effects are
discovered. We want something in between. We want to directly control the proportion of false discoveries
made out of all discoveries.
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Definition of false discovery rate

Let’s define False Discovery Proportion (FDP) as a random variable

FDP = FD
max{1, D}

=
{ FD

D , if D > 0.
0, if D = 0.

False Discovery Rate (FDR) is the expectation of FDP:

FDR = E(FDP).

Thus, it is the (expected) proportion of false discoveries among all discoveries. By controlling FDR at a
given level αF , we will tolerate more false discoveries as the number of tests increases as long as we will also
keep on doing more true discoveries. If a method guarantees to keep αF = 0.1, then, in expectation, when
we make 10 discoveries we allow 1 of them to be a false discovery, whereas when we make 100 discoveries
we allow 10 false discoveries among them. Note the difference to FWER control where we always allow at
most 1 false discovery in the experiment, no matter whether we are doing 1, 10, 1000 or 100,000 discoveries
altogether.

Given a rule for calling variables significant, the false positive rate is the rate that truly null variables are
called significant and is measured by a P-value threshold. The FDR, instead, is the rate at which significant
variables are truly null. For example, a false positive rate of 5% means that, on average, 5% of the truly null
variables in the study will be called significant. A FDR of 5% means that, on average, among all variables
called significant, 5% of them are truly null.

Let’s see which P-value threshold would yield a false discovery proportion (FDP) of αF = 0.05 in our ongoing
example. (Note FDP is the realized value of FD/D whereas FDR is its expectation. In real life, we can’t
know FDP, but in these simulations we can!)

sort.pval = sort(pval) # sorted from smallest to largest
sort.eff = eff[order(pval)] # whether each sorted pval is from a true positive
fdp = cumsum(!sort.eff)/(1:p) # which proportion of discoveries are false
cols = rep("red",p); cols[sort.eff] = "orange" # true pos. in orange
plot(log10(sort.pval), fdp, xlab = "log10 P-value", ylab = "FDP",

col = cols, cex = 0.7, pch = 20)
alpha = 0.05
i = max( which(fdp < alpha) )
print( paste("fdp <",alpha,"when P-value is <",signif(sort.pval[i],3)) )

## [1] "fdp < 0.05 when P-value is < 0.00632"

abline(v = log10(sort.pval[i]), col = "blue")
abline(h = alpha, col = "red")
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# shows the step where fdp < alpha breaks
cbind(D=i:(i+1), FD=fdp[i:(i+1)]*c(i,i+1), fdp=fdp[i:(i+1)], pval=sort.pval[i:(i+1)])

## D FD fdp pval
## [1,] 75 3 0.04000000 0.006315223
## [2,] 76 4 0.05263158 0.006431357

So if we had a method that controlled FDR at 0.05, we expect it to give roughly D=75 discoveries of which
FD=3 are false. Compare this to D=139 and FD=49 with unadjusted P-value threshold of 0.05 and to D=27
and FD=0 with Bonferroni adjusted threshold of 0.05/p. But how can we in general control FDR given the
set of P-values? Such a method was formulated by Yoav Benjamini and Yosef Hochberg in 1995.

Benjamini-Hochberg procedure (1995) Let Hj be the null hypothesis for test j and let Pj be the
corresponding P-value. Denote the ordered sequence of P-values as P(1) ≤ P(2) ≤ . . . ≤ P(p) and let H(j) be
the hypothesis corresponding to the jth P-value. Benjamini-Hochberg procedure at level αF (BH(αF )) is to

reject the null hypotheses H(1), . . . , H(k), where k is the largest index j for which P(j) ≤ j

p
αF .

Theorem (BH). For independent tests and for any configuration of false null hypotheses, BH(αF ) controls
the FDR at level αF .

Original proof in Benjamini and Hochberg (1995, J. R. Statist. Soc. B. 57(1):289-300).

Intuitive explanation why BH works. Consider P-value P(j). Since P(j) is the jth smallest P-value, if
we draw a significance threshold at P(j) we have made exactly j discoveries. On the other hand, we expect
that out of all p0 null effects about p0 · P(j) give a P-value ≤ P(j). Thus we have an approximation for false
discovery proportion at threshold P(j)

FDP(P(j)) ≈
p0 · P(j)

j
≤

p · P(j)

j
.
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If we simply ask that for which j is this estimated FDP(P(j)) ≤ αF , we get
p · P(j)

j
≤ αF ⇔ P(j) ≤ j

p
αF ,

which is the condition of the BH procedure.
A rigorous proof of the BH theorem is much more complicated than the intuitive argument above, as shown
below.
Proof of BH. (Adapted from Aditya Guntuboyina.)
Assume we have p hypotheses and corresponding P-values PPP = (P1, . . . , Pp) and that BH(αF ) method rejects
k of these hypotheses. This means that when the P-values are in the ascending order (P(1), . . . , P(p)), then
k is the largest index that satisfies the BH-condition

P(k) ≤ k

p
αF . (1)

We can write FDP as 1
max{k,1}

∑
j∈I0

I{Pj ≤ αF · k/p}, where I0 is the set of p0 true null hypotheses, and I
is an indicator function.

FDR = E(FDP) = E

∑
j∈I0

I{Pj ≤ αF · k/p}
max{k, 1}

 (2)

The problem with trying to simplify this further is that Pj and k are not independent. The idea in this
proof is to replace k with a closely related quantity k̃j that is independent of Pj .
For any j, denote by P̃PP j = (P1, . . . , Pj−1, 0, Pj+1, . . . Pp) the sequence of P-values where Pj has been changed
to 0. Denote by k̃j the number of rejections that BH(αF ) method does when it is applied to P̃PP j . Importantly,
k̃j only depends on (Pi)i ̸=j but not on Pj , that, by an assumption of the BH theorem, is independent of
(Pi)i ̸=j .
Clearly k ≤ k̃j since the difference between the two sequences of P-values is that the element j in P̃PP j is
0 ≤ Pj while all other elements are the same between the two sequences. It is also clear that k̃j ≥ 1 since
BH(αF ) always rejects the hypothesis corresponding to P-value 0.
We next show that

I{Pj ≤ αF · k/p}
max{k, 1}

≤ I{Pj ≤ αF · k̃j/p}
k̃j

, for all j = 1, . . . , p. (3)

Since the right-hand side is non-negative, the inequality (3) holds when I{Pj ≤ αF · k/p} = 0.

Consider then the remaining case I{Pj ≤ αF · k/p} = 1. Since k is the largest index for which the BH-
condition (1) holds, Pj ≤ P(k), and hence the ordered sequences of P-values PPP and P̃PP j agree on every element
that is ≥ Pj . In particular, they agree on every element that is ≥ P(k). Since k was the largest index in
ordered sequence PPP for which the BH-condition (1) holds, it follows that BH(αF ) rejects exactly the same
hypotheses from both sequences. Thus k̃j = k and I{Pj ≤ αF · k̃j/p} = I{Pj ≤ αF · k/p} = 1, which proves
the inequality (3) also in this case.
Let’s get back to formula (2) and apply (3).

FDR = E(FDP) = E

∑
j∈I0

I{Pj ≤ αF · k/p}
max{k, 1}

 ≤ E

∑
j∈I0

I{Pj ≤ αF · k̃j/p}
k̃j


= E

E

∑
j∈I0

I{Pj ≤ αF · k̃j/p}
k̃j

∣∣∣∣∣∣ k̃j

 = E

∑
j∈I0

E(I{Pj ≤ αF · k̃j/p} | k̃j)
k̃j


= E

∑
j∈I0

αF k̃j

pk̃j

 = p0

p
αF ≤ αF .
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The last line follows since the sum is over p0 true null hypotheses whose P-values are uniformly distributed
in (0,1) and because Pj is independent of k̃j . This proves that BH(αF ) controls FDR at level αF (actually
even more strictly at level αF · p0/p). □

Like in the Holm procedure, in BH the rejection of the tested hypotheses depends not only on their P-values
but also on their rank among all the P-values. We see that the critical threshold increases from the Bonferroni
threshold αF /p for the smallest P-value to the unadjusted threshold αF for the largest P-value. Crucially, if
any P-value P(j) is below its own threshold j · αF /p, it means that also ALL the hypotheses corresponding
to the smaller P-values will be rejected, no matter whether they are below their own thresholds.

Let’s apply BH to our current data, first manually and then by using p.adjust.

alpha = 0.05
i.BH = max(which(sort.pval <= ((1:p)*alpha)/p))
print(paste("Reject 1,...,",i.BH," i.e, if P-value <=",signif(sort.pval[i.BH],3)))

## [1] "Reject 1,..., 66 i.e, if P-value <= 0.00298"

print(paste0("Discoveries:",i.BH,
"; False Discoveries:",sum(!sort.eff[1:i.BH]),
"; fdp=",signif(sum(!sort.eff[1:i.BH])/i.BH,2)))

## [1] "Discoveries:66; False Discoveries:2; fdp=0.03"

pval.BH = p.adjust(pval,method = "BH")
# These are pvals adjusted by a factor p/rank[i]
# AND by the fact that no adjusted P-value can be larger than any of other adjusted
# P-values that come later in the ranking of the original P-values (See home exercises)
sum(pval.BH < alpha) # should be D given above

## [1] 66

Let’s draw a picture with the P-value threshold (blue), Bonferroni threshold (purple) and BH threshold
(cyan). Let’s sort the P-values from the smallest to the largest and draw the P-values on -log10 scale.

plot(1:p, -log10(sort.pval), pch = 3, xlab = "rank", ylab = "-log10 pval", col = cols, cex = 0.7)
abline(h = -log10(alpha), col = "blue", lwd = 2)
abline(h = -log10(alpha/p), col = "purple", lwd = 2)
lines(1:p, -log10((1:p)*alpha/p), col = "cyan", lwd = 2)
legend("topright", legend = paste(c("P=","BH","Bonferr."), alpha),

col = c("blue","cyan","purple"), lwd = 2)
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Figure tells that BH quite nicely draws the threshold around the point where the true effects start to mix
with the null effects, whereas Bonferroni is very stringent and the raw P-value based significance level is very
liberal, when the goal is to separate the orange from the red.

Exercise. Suppose that all your p = 1000 P-values were between (0.01, 0.05), so they are not very small
but still they are at the left tail of the whole Uniform(0,1) distribution. How would the three methods
(Bonferroni, BH, “P<0.05”) label variables significant in this case, when we control each at level 0.05 as in
Figure above? Earlier we saw that by using a significance level of P ≤ 0.05, we tend to get a lot of false
positives when p is large. How can our FDR method, that should keep the false discovery rate small, then
agree with the traditional significance threshold in this case? Why does it think that there are not a lot of
false positives among these 1000 variables?

Benjamini-Yekutieli procedure It is important to remember that BH procedure was proven for inde-
pendent test statistics and therefore it is not as generally applicable as the Bonferroni and Holm methods.
(In practice, however, BH has been shown to be quite robust to violations of the independence assumption.)
An extension of BH was proven to control FDR in all cases by Benjamini and Yekutieli (The Annals of
Statistics 2001, Vol. 29, No. 4, 1165-1188).

Theorem. When the Benjamini-Hochberg procedure is conducted with αF /
(∑p

j=1
1
j

)
in place of αF , the

procedure controls the FDR at level ≤ αF . (Proof skipped.)

This Benjamini-Yekutieli (BY) procedure can also be done by p.adjust.

alpha = 0.05
i.BY = max(which(sort.pval <= ((1:p)*alpha/sum(1/(1:p))/p)))
print(paste("Reject 1,...,",i.BY," i.e, if P-value <",signif(sort.pval[i.BY],2)))

## [1] "Reject 1,..., 44 i.e, if P-value < 0.00029"

print(paste0("Discoveries:",i.BY,
"; False Discoveries:",sum(!sort.eff[1:i.BY]),
"; fdp=",signif(sum(!sort.eff[1:i.BY])/i.BY,2)))
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## [1] "Discoveries:44; False Discoveries:0; fdp=0"

pval.BY = p.adjust(pval,method = "BY") # these are pvals adjusted by factor p/rank[i]*sum(1/(1:p))
sum(pval.BY < alpha) # should be D given above

## [1] 44

As we see, BY is more conservative than BH, which is the price to pay for the proven guarantees of the
control of FDR in case of all possible dependency structures.

Relationship between FWER and FDR We have

FDR = E(FDP) = Pr(D = 0) · 0 + Pr(D > 0) · E
(

FD
D

∣∣∣∣ D > 0
)

= Pr(D > 0) · E
(

FD
D

∣∣∣∣ D > 0
)

.

FDR weakly controls FWER. If all null hypotheses are true, then the concept of FDR is the same as
FWER. To see this note that here FD = D and therefore if FD = 0 then FDP = 0 and if FD > 0 then
FDP = 1. Thus, FDR = E(FDP) = Pr(FD > 0) = FWER. This means that FDR weakly controls FWER:
If all null hypotheses are true, then any method that controls FDR at level α also controls FWER at level
α. However, if some null hypotheses are false, then FDR doesn’t typically control FWER.

FWER controls FDR. Because FDP ≤ I(FD > 0), where I is the indicator function, by taking expectation,

FDR = E(FDP) ≤ Pr(FD > 0) = FWER.

Thus, any method that controls FWER at level α also controls FDR at level α.

Examples Example 2.1. Let’s see how BH controls FWER under the global null hypothesis.

p = 1000 #variables for each data set
alpha = 0.1 #target FWER
R = 1000 #replications of data set
res = matrix(NA, ncol = 3, nrow = R) #collect the number of discoveries by BH, Holm, Bonferr.
for(rr in 1:R){
#Generate P-values that are null.

pval = runif(p)
res[rr,] = c(sum(p.adjust(pval, method = "BH") < alpha),

sum(p.adjust(pval, method = "holm") < alpha),
sum(p.adjust(pval, method = "bonferroni") < alpha))

}
apply(res > 0, 2, mean) #which proportion report at least one discovery?

## [1] 0.102 0.097 0.097

All are close to the target FWER value α = 0.1.

Example 2.2. BH method has a property that status of being a discovery at level α can change if a new
variable is included among the tested variables.

pval = c(0.014, 0.09, 0.05, 0.16)
p.adjust(pval, method = "BH")

## [1] 0.056 0.120 0.100 0.160
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p.adjust(c(pval, 0.001), method = "BH")

## [1] 0.03500000 0.11250000 0.08333333 0.16000000 0.00500000

Now the status at FDR level α = 0.05 of P-value 0.014 has changed when we added one more variable
with lower P-value. This is because this new variable is taken as a discovery and, intuitively, this inclusion
then allows some more false discoveries to be included among the discoveries without breaking the idea of
controlling FDR.

Example 2.3. Bonferroni, Holm and BH behave differently in whether the P-values close to each other can
become the same after the adjustment. Let’s demonstrate this with one tie in the middle of 4 P-values.

pval = c(0.01, 0.02, 0.02, 0.03)
rbind(pval, p.adjust(pval, "bonferroni"))

## [,1] [,2] [,3] [,4]
## pval 0.01 0.02 0.02 0.03
## 0.04 0.08 0.08 0.12

rbind(pval, p.adjust(pval, "holm"))

## [,1] [,2] [,3] [,4]
## pval 0.01 0.02 0.02 0.03
## 0.04 0.06 0.06 0.06

rbind(pval, p.adjust(pval, "BH"))

## [,1] [,2] [,3] [,4]
## pval 0.01000000 0.02000000 0.02000000 0.03
## 0.02666667 0.02666667 0.02666667 0.03

Bonferroni multiplies each P-value by same value (here 4) and hence tie will stay as it is but not unite with
its neighbors.

Holm first multiplies by (p − j + 1), i.e., the 2nd value by 3 (to get 0.06) and 3rd value by 2 (to get 0.04)
and the 4th value stays as it is (0.03). But then it needs to make sure that the adjusted P-values are in
ascending order and it does this, for each P-value, by taking the maximum with P-values on the left. Hence
all last 3 P-values become 0.06.

BH first multiplies by (p/j), i.e., the 1st value by 4 (to get 0.04), the 2nd value by 2 (to get 0.04) and 3rd
value by 4/3 (to get 0.0266667) and the 4th value stays as it is (0.03). It also makes sure that the adjusted
P-values become in ascending order but it makes this by taking, for each P-value, the minimum with all
other P-values on the right hand side. Hence also 1st and 2nd P-values become 0.0266667.

We say that Holm method is a step-down procedure and BH method is a step-up procedure. Note that in
this terminology, “up” and “down” refer to the ordering of the test statistics and not to the ordering of the
P-values.

Step-down procedures start from the hypothesis with the largest test statistic (and lowest P-value) and
step down through the sequence of hypotheses in descending order of their test statistics while rejecting
the hypotheses. The procedure stops at the first non-rejection and labels all remaining hypotheses as not-
rejected.
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Step-up procedures start from the hypothesis with the lowest test statistic value (and highest P-value)
and step up through the sequence of hypotheses in ascending order of their test statistics while retaining
hypotheses. The procedure stops at the first rejection and labels all remaining hypotheses as rejected.

Single step procedures are the ones where the same criterion is used for each hypothesis, independent of
its rank among the test statistics. The Bonferroni correction and fixed significance level testing are examples
of single step procedures.

Questions.

1. If you use BH(αF ) method to choose the significant variables, are you guaranteed to have at most αF D
false discoveries among the chosen variables, where D is the total number of discoveries made by the
procedure?

2. If you have p = 1000 variables to test, when should you use FDR control and when FWER control?

3. What could be a situation when you would rather use BY procedure than BH procedure to control for
FDR?
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