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Suppose that we have a large number p of variables of which some could be explaining outcome y. How do
we know which ones are important? What are the statistical measures we can use to rank the variables?

Example 1.1

1. Genome-wide association study. We have n individuals measured on p ∼ 106 positions on the
genome where each xij has value of 0,1 or 2 denoting how many copies of the reference DNA letter
the individual i carries at position j of the genome. In addition, each individual has been measured
for cholesterol levels (outcome y). Which genomic positions affect cholesterol levels? We can do
linear regression of y on each predictor xj separately, which leads to the regression summary statistics
(β̂j ,SEj ,Pj) for each xj . The task is to infer which of the 106 predictors are truly altering the cholesterol
levels.

2. Tumour - normal comparison. We compare the levels of p (in thousands) proteins between the
tumour sample and a control sample from a healthy tissue of the same patient. When we have hundreds
of patients we can compute t-statistics from a paired t-tests for each protein to see whether it has a
different level in the tumour compared to the healthy tissue across the patients. Again we end up with
p estimates for differences (β̂), their SEs and P-values, one for each of the p proteins. Which proteins
are statistically clearly differentiated between the tumour and normal samples?

3. Brain images. Imaging data are very high dimensional. For example, we could define thousands
of regions from the brain that could be compared between certain groups of individuals, e.g., groups
stratified by age, sex or a psychiatric condition. How do we determine which regions show differential
activity between the groups?

P-value

In a standard statistical inference framework, P-value is used as a basis for inference. The purpose for using
P-value is to see whether the observed data seem inconsistent with the null hypothesis. Typically, the null
hypothesis states that the variable is not important, or technically, that its effect size is 0. We have one null
hypothesis per each variable.

P-value is a probability of getting something “at least as extreme” as what has been observed,
if the null hypothesis was true.

Therefore, a small P-value is interpreted as evidence that the null hypothesis may not be true. Logic goes
that if P-value is very small, then it would be very unlikely to observe the kind of data at hand under the
null hypothesis – and therefore either the null hypothesis is not true or we have encountered a very unlikely
event.
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A more formal definition of P-value Suppose that we have

• observed data y,
• defined a null hypothesis (NULL) that determines a way to generate data sets that are similarly

structured as y,
• defined a test statistic t = t(Y ) whose value can be computed from the data in such a way that larger

values of the test statistic (in our opinion) imply higher discrepancy between the data and the null
hypothesis.

P-value (of data y) is a probability that if an additional data set Z were generated according to the null
hypothesis, then the corresponding test statistic t(Z) computed from data Z would be at least as large as
our observed t(y). That is,

P-value of data y is Pr(t(Z) ≥ t(y) | Z ∼ NULL).

Important. P-value is NOT a probability that the null hypothesis is true: P-value is a probability of
observing a certain kind of data under the null hypothesis, it is NOT a probability of the null hypothesis
given data.

Example 1.2 Let’s do one linear regression with p = 1 and put its P-value in its place in the null
distribution of t-statistic. The goal is to test whether the slope (β1) of the model y = β0 + xβ1 + ε is zero.
The null hypothesis is H0 : β1 = 0. By fitting the linear model with lm() we get the estimate β̂1 of slope
and its P-value. Here P-value tells that if the true slope β1 = 0, what is the probability that we observe a
data set from which the computed slope is at least as large (in absolute value) as our observed β̂1. Most
often we don’t work with the null distribution of β̂1, which depends on the sample size and the variances of
x and ε, but instead we consider the null distribution of the t-statistics t = β̂1/SE1, which has distribution
t(n − p − 1), i.e., t-distribution with n − p − 1 degrees of freedom. (When n − p − 1 > 50, t(n − p − 1) is very
accurately the same as N (0, 1) and hence does not noticably depend on the sample size.)

set.seed(29)
n = 100
x = rnorm(n) # predictor
y = rnorm(n) # outcome, independent of x
lm.fit = lm(y ~ x)
x.grid = seq(-3, 3, 0.05) # to define the plotting region
plot(x.grid, dt(x.grid, df = n-2), lty = 2, lwd = 2, t = "l",

xlab = expression(hat(beta)/SE), ylab = "density", main = "NULL DISTR") #null distribution of t-stat.
t.stat = summary(lm.fit)$coeff[2,3] # observed t-statistic: Estimate/SE
points(t.stat, 0, pch = 19, cex = 2, col = "red")
segments(t.stat*c(1,-1), c(0, 0), t.stat*c(1, -1), rep(dnorm(t.stat, 0, 1),2), col = "red")
text(2, 0.25, paste0("P=",signif(summary(lm.fit)$coeff[2,4], 3)), col = "red")
legend("topright", pch = 19, col = "red", leg = "observed t")
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P-value is the probability mass outside the red segments, i.e., the sum of the two tail probabilities. It tells
how probable, under the null, it is to get at least as extreme observation as we have got here, when the
extremeness is measured as distance away from 0.

GAME: Guess a P-value What is (approximately) the P-value

1. That in 10 fair coin tosses we get 9 Heads and 1 Tails? Is it 10−2 or 10−7 or 10−17?

2. That in 100 fair coin tosses we get 90 Heads and 10 Tails? Is it 10−2 or 10−7 or 10−17?

3. That if we (say, 20 people) would make a random sitting order, you would keep your current place? Is
it 0.05 or 10−3 or 10−20?

4. That if we (say, 20 people) would make a random sitting order, no-one would change places? Is it 0.05
or 10−3 or 10−20?

5. That physicists used as the significance level to claim Higg’s Boson found in 2012? Is it 0.05 or 10−4

or 10−7?

S-value P-value is often used as an attempt to quantify how “surprised” one is when observing a particular
kind of data set assuming that the null hypothesis holds. However, without experience, it may not be easy
to interpret how surprised one would be, for example when observing a P-value of, say, 0.03 or 0.001. S-value
(or surprise value) is a tool for giving a more intuitive interpretation to numerical P-values.

Think that you are flipping n coins and your null hypothesis is that the coins are fair, that is, have probability
of 0.5 of landing heads up. Suppose that you observed that all coins landed heads up. This is not at all
surprising if you only have one or two coins since such events happen for a fair coin with probability of 0.5
(n = 1) or 0.25 (n = 2). However, if you have n = 100 coins and all land heads up, then it seems almost
impossible to believe that the coins are fair (rather than biased favoring heads) since the observed outcome
seems so surprising under the null hypothesis.
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For any n, the probability (under the null) of observing only heads in n tosses is 2−n. We can use this to
turn any observed probability P (such as P-value) to a corresponding n = − log2(P ) that tells that how
many coins should we have observed to have yielded only heads in order for us to experience the same
amount of surprise as what observing an event with probability P describes. This value n is called S-value
corresponding to the given probability P .

Thus, for example, the standard P-value threshold of 0.05 corresponds to S-value of n(0.05) = − log2(0.05) =
4.32 coin flips, P-value of 0.001 corresponds to n(0.001) = − log2(0.001) = 9.97 coin flips and P-value of
10−6 corresponds to n(10−6) = − log2(10−6) = 19.93 coin flips.

Liberal P-value threhsolds and replicability crisis Recently, there has been much discussion about
how traditional use of P-values (“significance testing at threshold of P < 0.05”) has led to poor replicability
of the reported scientific findings and hence poor science, in particularly with high dimensional data sets
with “multiple testing issues”. We will have a look at this problem next. For some of this discussion, you
can see also

• R. Nuzzo: Scientific method - statistical errors from 2014.

• American Statistical Association’s Statement on Statistical Significance and P-Values from 2016.

Distribution of summary statistics

Let’s generate some data, first without any real effects. Our purpose is to see how a large set of P-values
behave.

set.seed(6102017)
n = 1000 # individuals
p = 5000 # variables measured on each individual
X = matrix( rnorm(n*p), nrow = n, ncol = p) # nxp matrix of randomly sampled variables
y = rnorm(n) # outcome variable that is not associated with any of x

# By mean-centering y and each x, we can ignore intercept terms (since they are 0, see Lecture 0)
X = as.matrix( scale(X, scale = F) ) # mean-centers columns of X to have mean 0
y = as.vector( scale(y, scale = F) )

# Apply lm() to each column of X separately and without intercept (see Lecture 0.)
lm.res = apply(X, 2 , function(x) summary(lm(y ~ -1 + x))$coeff[1,])
# lm.res has 4 rows: 1 = beta, 2 = SE, 3 = t-stat and 4 = P-value
pval = lm.res[4,] # pick the P-values

par(mfrow = c(1,2))
plot(density(lm.res[3,]), sub = "", xlab = "t-stat", main = "", lwd = 2) # should be t with n-2 df
curve(dt(x, df = n-2), from = -4, to = 4, add = T, col = "blue", lwd = 2, lty = 2) # t distr in blue
curve(dnorm(x, 0, 1), from = -4, to = 4, add = T, col = "red", lwd = 2, lty = 3)# normal distr in red
hist(pval, breaks = 50, xlab = "P-value", main = "", col = "steelblue")
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On the left side, we see that the empirical distribution of t-statistic (black) accurately follows its theoretical
t(n − 2) distribution (blue), and that since n is large enough, this distributions is indistinguishable from the
normal distribution N (0, 1) (red).

Histogram on the right side shows that the P-values seem distributed uniformly between 0 and 1. This is
indeed their distribution when the data follows the null hypothesis, as we will establish later.

To quantitatively assess whether the histogram truly looks “uniform”, we can determine that under the
unifrom distribution we would expect each bin to have p/50 = 5000/50 = 100 P-values and that with ≥ 95%
probability, in any one bin, the value would then be within interval

qbinom(c(0.025 ,0.975), size = p, prob = 1/50)

## [1] 81 120

Thus, the variation in the histogram seems consistent with the null distribution.

Let’s also compare the distributions via QQ-plots. Under the null hypothesis, we expect that the t-statistics
follows (approximately) the normal distribution and the P-values follow the uniform distribution. To see
particularly well the smallest P-values, which are often the most interesting observations, we will show the
P-values on the -log10 scale, where the smallest P-values have the largest -log10 values.

par(mfrow = c(1, 2)) #Let's make qqplots for t-stats and for P-values
qqnorm(lm.res[3,], cex = 0.5, pch = 3)
qqline(lm.res[3,], col = "red")
#((1:p)-0.5) / p gives us
#p equally spaced values in (0,1) to represent quantiles of Uniform(0,1).
qqplot(-log10( ((1:p)-0.5) / p), -log10(pval), xlab = "Theoretical",

ylab = "Observed", main = "QQ-plot for -log10 P-val", cex = 0.5, pch = 3)
abline(0, 1, col = "red")
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What are QQ-plots? In a QQ-plot, quantiles of two distributions are plotted against each other. If the
distributions are similar, then the differences between adjacent quantiles are proportional between the dis-
tributions and the QQ-plot forms a line. In the above plots, the red line can be used for assessing visually
whether the points seem to be close to it, in which case the two distributions are similar. We conclude that
here the t-statistics follows well the standard Normal distribution and the P-values follow the Uniform(0,1).

Why are P-values distributed as Uniform(0,1) under the null? For any given value q ∈ (0, 1),

Pr(P ≤ q | NULL) = Pr(test stat falls within the most extreme region of prob. mass q | NULL) = q,

thus the cumulative density function (cdf) of P-value is F (x) = x, 0 ≤ x ≤ 1, which equals the cdf of
Uniform(0,1). Let’s use the empirical cdf of the P-values to demonstrate this.

par(pty = "s")
plot(ecdf(pval),

xlab = "significance threshold", ylab="proportion Pval < thresh",
main = "ECDF of P-values")
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We have named the x-axis as “significance threshold” following the traditional framework where certain
cutoff value for the P-values is used to label P-values as “significant” or “non-significant”. From the y-axis
we can read which proportion of the P-values of these random predictors are below each possible significance
threshold in (0,1). This confirms empirically that, for any given threshold α, the proportion of P-values from
the null that are ≤ α is expected to be α.

For example, if we would use a standard significance threshold α = 0.05 to determine “statistical significance”
of each predictor, we would here label

sum( pval < 0.05 )

## [1] 259

≈ 250 = 0.05 · 5000 predictors as “significant” even though they were all just random noise! If we had had
done the test for p = 10000 predictors, we would expect 500 of them to have reached P < 0.05 even when
none of them truly had non-zero effects, and so on. This increasing flood of false positives with an increasing
number p of tests is a multiple testing problem arising in the standard hypothesis testing framework,
when the significance level α is kept fixed while p grows.

Let’s then add some (m = 50) predictors that have non-zero effects on the outcome y. Now our data will
have m predictors with non-zero effects and p − m predictors with zero effects.

set.seed(6102017)
n = 1000 # individuals
p = 5000 # variables measured on each individual
m = 50 # number of predictors that have an effect: they are x_1,...,x_m.
b = 0.5 # effect size of predictors that have an effect
X = matrix(rnorm(n*p), n, p) # random predictors
y = X[,1:m] %*% rep(b,m) # outcome variable that is associated with x_1,...,x_m
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# by mean-centering y and each x, we can ignore intercept terms (since they are 0)
X = as.matrix(scale(X, scale = F)) # mean-centers columns of X
y = as.vector(scale(y, scale = F))

# apply lm to each column of X separately and without intercept
lm.res = apply(X, 2 , function(x) summary(lm(y ~ -1 + x))$coeff[1,])
# has 4 rows: 1 = beta, 2 = SE, 3 = t-stat and 4 = P-value
pval = lm.res[4,]

par(mfrow = c(1,2))
plot(density(lm.res[3,]), sub = "", xlab = "t-stat", main = "", lwd = 2) #under null is t with n-2 df
curve(dnorm(x), -4, 4, col = "red", lty = 3, add = T) #normal distribution in red
hist(pval, breaks = 40, xlab = "P-value", main = "", col = "dodgerblue")
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The left plot shows that the density function of the t-statistic has longer tail to the right than the Normal
distribution. This is because the non-zero predictors were chosen to have positive effects in these data. Since
the proportion of the non-zero predictors is small (1%), the longer right tail is not that clearly observable
in the density function. The histogram, instead, shows clearly that the P-value distribution differs from the
null assumption of uniform distribution by an enrichment of the smallest of P-values.

Let’s try QQ-plots.

par(mfrow = c(1,2)) #Let's make qqplots for t-stats and for P-values
qqnorm(lm.res[3,], cex = 0.5, pch = 3)
qqline(lm.res[3,], col = "red")
#Now we use ppoints() to give the p quantiles from the uniform:
qqplot(-log10(ppoints(p)), -log10(pval), xlab = "Theoretical",

ylab = "Observed", main = "QQ-plot for -log10 P-val", cex = 0.5, pch = 3)
abline(0, 1, col = "red")
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With QQ-plots, we see a clear deviation from the null distribution at the right tail of the test statistic (left
panel) as well as in the smallest P-values (right panel). The right-side QQ-plot shows that, under the null,
we would expect that the smallest P-value would be around 10−4, whereas we observe at least ~30 P-values
< 10−4 with the smallest P-values around 10−10.

The next question is how can we make a statistically sound inference about which ones of the tested predictors
are non-zero effects?

Multiple testing framework

Let’s introduce some notation using traditional terminology from hypothesis testing. Let Hj =
"predictor j is null" be the null hypothesis for predictor xj , j = 1, . . . , p. If the test shows statistical
evidence that xj may not be null, then we say that the test gives a positive result for xj or that we “reject
Hj”. Otherwise we say that the test gives a negative result for xj , or that we “do not reject Hj”. Further
names used for positive tests are calling predictor “statistically significant” or just “significant”, or calling
it a “discovery”. Typically, we mean by these that the predictor is interesting enough to deserve further
examination/replication attempts etc. It typically does NOT mean that we would be highly certain about
its non-null status.

We test p predictors and denote by p0 the number of them that are truly null. Of course we cannot know
either the value of p0 nor which ones of the predictors are truly null. Let’s use the following notation and
terminology:

Test result null not null Total
positive (significant, discovery) FD TD D
negative (not significant) TN FN p-D
Total p0 p-p0 p

• p is the total number of hypotheses tested.
• p0 is the number of true null hypotheses, an unknown parameter.
• p − p0 is the number of truly non-null (“alternative”) hypotheses.
• FD is the number of false discoveries or false positives. (Type I errors.)
• TD is the number of true discoveries or true positives.
• FN is the number of false negatives or false non-discoveries. (Type II errors.)
• TN is the number of true negatives or true non-discoveries.
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• D = FD + TD is the number of discoveries, i.e., rejected null hypotheses.

Of these, we observe only p and D and will make statistical inference about the rest.

P-values and family-wise error rate (FWER)

The simplest inference procedure is to fix a statistical significance threshold α and call each predictor
significant (at significance level α) if its P-value ≤ α. We know that under the null the distribution of
P-values is uniform, i.e., Pr(P ≤ α | NULL) = α for α ∈ [0, 1]. Thus α is also the Type I error rate, or
false positive rate, the rate at which null predictors are (wrongly) labelled as significant. Mathematically,
this can be written as E(FD/p0) = α, where E(·) denotes the expected value of a random variable. Thus,
we expect that when we test p0 independent null predictors, then α · p0 predictors will reach the significance
level α. In conclusion, the traditional significance level testing controls the false positive rate.
For example, for the common significance threshold α = 0.05, 1 in 20 null predictors will reach P ≤ α. Thus,
if we tested p0 ≈ 106 predictors, we would expect 50,000 significant results at significance level α = 0.05
already even when there are no true positives to be found at all among the tested predictors. Such increasing
numbers of false discoveries are a problem for scientific inference. Therefore, in the multiple testing setting,
we often use methods that control a much more stringent family-wise error rate (FWER) instead of the
false positive rate.
FWER is the probability of making at least one false discovery across all the tests carried out in a multiple
testing setting:

FWER = Pr(FD ≥ 1) = E(FD ≥ 1).
Of these two forms, Pr(FD ≥ 1) seems a more natural definition; the latter formulation via the expecta-
tion means the expected value of the indicator function of the event {FD ≥ 1}, and it is shown here for
a comparison with other inference procedures that are defined through expected values of some random
variables.
Example 1.3. Suppose that 10 independent groups do a clinical trial on the same drug on the same
disease and one of the groups observes an effect at significance level 0.05 and publishes the result (while
the other groups don’t observe any non-zero effect). What is the FWER of such a procedure under the
null hypothesis? That is, what is the probability for the observation “at least one P-value ≤ 0.05 out of 10
independent P-values” under the null hypothesis that there is no non-zero effect in any study?

Pr(at least one P ≤ 0.05 | NULL) = 1 − Pr(all P > 0.05 | NULL) = 1 − (1 − 0.05)10 ≈ 0.401.

Thus, when we do 10 independent tests, each at significance level 0.05, the overall FWER of this set of tests
is 0.401, that is, 8-fold compared to 0.05. This example shows why it is problematic that only “significant”
results tend to get published: A proper assessment of the drug should be done based on all 10 available
studies, NOT only on the one that happened to give “significant” result, since the unique significant result
is likely to be biased towards a larger effect size given that the other studies on the same topic didn’t report
any “significant” results.

Bonferroni correction The simplest way to control FWER at level α is to apply significance threshold
αB = α/p for each test, i.e., report as significant the predictors whose P-value ≤ αB . This is called the
Bonferroni correction for multiple testing (after Italian mathematician Carlo Bonferroni). Proof that it does
the job is

FWER = Pr

 p0⋃
j=1

{Pj ≤ αB}

∣∣∣∣∣∣NULL

 ≤
p0∑

j=1
Pr (Pj ≤ αB | NULL) = p0 · αB = p0

α

p
≤ p

α

p
= α.

This procedure does not assume anything about the dependency between separate tests or the proportion
of truly null hypotheses. Its advantages are thus complete generality and very simple form that is easy to
apply in practice.
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Exercise. In genome-wide association studies (GWAS) a significance threshold 5 × 10−8 has become a
standard threshold called “genome-wide significance threshold”. If you think it as a result of the Bonferroni
correction to achieve FWER of 0.05, which assumption has been made about the effective number of tests
done in a GWAS?
Exercise. Assume that you test the association of 10 clinical variables (such as cholesterol levels or blood
pressure) with a disease outcome Y, and the smallest P-value you get is 0.008 for variable X. What would
you report as statistical evidence from this experiment?
Bonferroni correction controls FWER, but it is very stringent and hence has a low statistical power to detect
true effects. This has motivated a lot of research on how to improve power. As an example of such work,
let’s consider Holm method. It has only a small improvement on power over the Bonferroni correction,
but it serves as an introduction to step-wise testing procedures that we will study next.

Holm method

• Order the P-values from the lowest to the highest: P(1) ≤ . . . ≤ P(p), and let the corresponding
hypotheses be H(1), . . . , H(p).

• For a given significance level α, let j be the smallest index such that P(j) > α
p+1−j .

• Reject the null hypotheses H(1), . . . , H(j−1) and do not reject H(j), . . . , H(p).
• If j = 1 then do not reject any of the null hypotheses and if no such j exist then reject all of the null

hypotheses.

Proof that Holm method controls FWER. Let I0 be the set of p0 indexes of the true null hypotheses. Let
k be the index of the first true null hypothesis among the order sequence of P-values, i.e., H(1), . . . , H(k−1)
are false but H(k) is true. We want to show that probability that H(k) is rejected is ≤ α. Since there are
p0 − 1 true nulls in the ordered sequence of hypothesis after H(k), it follows that

k + p0 − 1 ≤ p =⇒ 1
p + 1 − k

≤ 1
p0

=⇒ α

p + 1 − k
≤ α

p0
.

Pr
(

P(k) ≤ α

p + 1 − k

)
≤ Pr

(
P(k) ≤ α

p0

)
= Pr

(⋃
i∈I0

{
Pi ≤ α

p0

})
≤
∑
i∈I0

Pr
(

Pi ≤ α

p0

)
= p0

α

p0
= α.

Example 1.4. Suppose we have 5 P-values {0.4, 0.001, 0.8, 0.011, 0.12}. Which hypotheses would be rejected
at FWER of 0.05 using Bonferroni method or using Holm method?

fwer = 0.05
p.ex = 5 #use ".ex" to not mix up with p=5000 existing variables that we will reuse later
pval.ex = c(0.4, 0.001, 0.8, 0.011, 0.12)
#Bonferroni rejects:
(pval.ex <= fwer/p.ex)

## [1] FALSE TRUE FALSE FALSE FALSE

#For Holm we first sort P values in ascending order
sorted.pval = sort(pval.ex)
#we compute individual rejection threshold for EACH hypothesis in ascending order
alpha.holm = fwer/( p.ex + 1 - (1:p.ex) )
rbind(sorted.pval, alpha.holm)

## [,1] [,2] [,3] [,4] [,5]
## sorted.pval 0.001 0.0110 0.12000000 0.400 0.80
## alpha.holm 0.010 0.0125 0.01666667 0.025 0.05
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#Let's find min index where P-value > holm threshold. We reject smaller indexes.
i = min( which(sorted.pval > alpha.holm) )
paste("reject:", paste(sorted.pval[1:(i-1)], collapse=" ") )

## [1] "reject: 0.001 0.011"

Here Bonferroni rejected only 0.001 while Holm rejected 0.001 and 0.011.

Holm method is (slightly) more powerful than Bonferroni, because the P-value threshold for rejecting the
null is higher except for the hypothesis having the smallest P-value, in which case the threshold is the same
in both methods (α/p).

Exercise. Assume that both Bonferroni and Holm methods have rejected the hypotheses corresponding to
the k smallest P-values. What is the ratio of P-value thresholds that is needed to reject the next hypothesis
with these methods?

How do we do Bonferroni and Holm corrections in R? Let’s use our existing data where we had p = 5000
predictors and m = 50 of them were true effects and p0 = p − m = 4950 were null and P-values are stored
in pval.

p.thresh = 0.5 #this is very liberal significance level for raw P-values, but not after FWER adjustment
sum( pval < p.thresh )

## [1] 2535

sum( p.adjust(pval, method = "holm") < p.thresh )

## [1] 37

sum( p.adjust(pval, method = "bonferroni") < p.thresh )

## [1] 37

#Let's see how many true and false discoveries we have
signif.tests = (pval < p.thresh)
S = sum(signif.tests[1:m]) #True discoveries
V = sum(signif.tests[(m+1):p]) #False discoveries
print(paste("Raw P-values: TD =",S,"FD =",V))

## [1] "Raw P-values: TD = 50 FD = 2485"

signif.tests = (p.adjust(pval, method = "holm") < p.thresh)
S = sum(signif.tests[1:m]) #True discoveries
V = sum(signif.tests[(m+1):p]) #False discoveries
print(paste("Holm: TD =", S, "FD =", V))

## [1] "Holm: TD = 37 FD = 0"
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Bonferroni and Holm methods gave the same inference here. By controlling FWER at 0.5 we got 37 of true
positives and no false positives. By looking at P-values directly, all 50 true positives and over 2485 false
positives(!) reached the level 0.5.

Note that p.adjust literally adjusts the P-values, i.e., it multiplies the P-value by the correction factor that
for Bonferroni method is p and for Holm method is p + 1 − k for the kth smallest P-value. In addition,
for Holm method, it makes sure that the adjusted P-values have the same order as the unadjusted ones, by
taking maximum over all adjusted P-values on the left hand side of each adjusted P-value when the adjusted
P-values are in ascending order.

Criticism towards FWER control By controlling FWER we can clearly keep the number of false
positives low in the total experiment. However, the price for requiring so stringent statistical evidence is
that we may also lose a lot of true positives. Eventually, the balance between avoiding false positives and
catching true positives needs to be set by lossess associated with each of these types of errors. Often the
FWER control becomes problematic when there are many discoveries to be made and not a large penalty for
making a few false positives as well. The FWER methods simply do not have power to make those discoveries
because they are so afraid of making even a single false discovery. Therefore, less stringent multiple testing
correction methods have been developed to control the false discovery rates (FDRs), which will be our next
topic.

Another, and maybe even larger conceptual problem with FWER is to justify why the goal should be to
control simultaneously particularly this one set of possibly independent hypotheses in a frequentist manner.
The world is full of all kinds of hypotheses, how can we choose exactly which ones we should control jointly
and why don’t we instead control simultaneously for all possible tests that we will ever do? We will come
back to this conceptual problem later and seek answers from Bayesian inference.
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