
HDS 10. Nonlinear Dimension Reduction with t-SNE and UMAP

Matti Pirinen, University of Helsinki

15.1.2024

We have seen how the PCA extracts such linear combinations of the p original variables that are maximally
informative among all linear combinations. Often the leading PCs have a clear and interpretable structure
and therefore the PCA is a widely-used method to visualize and reduce high-dimensional data.

PCs are global linear functions of data and hence the leading PCs tend to capture such directions from the
input space on which the distant data points remain distant from each other also in the leading PCs as such
directions maximize the variance of the projected points. However, for high-dimensional data that happen
to be structured in some non-linear way on some lower dimensional subspace, it would also be important to
keep similar samples close together in the low-dimensional representation, which may not be possible by any
global linear function such as a PC.

Many methods for dimension reduction that try to capture more of the local structure are non-linear and
are not guaranteed to yield a globally optimal solution, which means
that the result may change with the seed of the random number generator that initializes the algorithm.

Here we study two methods: t-SNE and UMAP. Let’s first see what they produce in practice and then
come back to what is going on under the hood.

1000 Genomes data

The 1000 Genomes Project has produced genotype data from across the world. Here we consider a subset
of n = 1092 individuals from the following 14 populations, divided into 4 continental groups,

• ASW [AFR] (61) - African Ancestry in Southwest US
• CEU [EUR] (85) - Utah residents (CEPH) with Northern and Western European ancestry
• CHB [ASN] (97) - Han Chinese in Beijing, China
• CHS [ASN] (100) - Southern Han Chinese
• CLM [AMR] (60) - Colombian in Medellin, Colombia
• FIN [EUR] (93) - Finnish from Finland
• GBR [EUR] (89) - British from England and Scotland
• IBS [EUR] (14) - Iberian population in Spain
• JPT [ASN] (89) - Japanese in Toyko, Japan
• LWK [AFR] (97) - Luhya in Webuye, Kenya
• MXL [AMR] (66) - Mexican Ancestry in Los Angeles, CA
• PUR [AMR] (55) - Puerto Rican in Puerto Rico
• TSI [EUR] (98) - Toscani in Italia
• YRI [AFR] (88) - Yoruba in Ibadan, Nigeria

Each individual has been measured on p = 4212 genetic variants (each can have value 0, 1 or 2) from
chromosomes 15-22.

1

https://lvdmaaten.github.io/tsne/
https://umap-learn.readthedocs.io/en/latest/index.html
https://www.internationalgenome.org/


X = read.table("geno_1000G_phase1_chr15-22.txt", as.is = TRUE, header = TRUE)
dim(X)

## [1] 1092 4215

X[1:4, 1:10]

## id population group X1 X2 X3 X4 X5 X6 X7
## 1 HG00096 GBR EUR 0 0 0 0 2 0 0
## 2 HG00097 GBR EUR 1 1 0 0 1 0 0
## 3 HG00099 GBR EUR 0 0 0 0 1 1 0
## 4 HG00100 GBR EUR 0 0 1 0 2 0 1

table(X[,"group"], X[,"population"])

##
## ASW CEU CHB CHS CLM FIN GBR IBS JPT LWK MXL PUR TSI YRI
## AFR 61 0 0 0 0 0 0 0 0 97 0 0 0 88
## AMR 0 0 0 0 60 0 0 0 0 0 66 55 0 0
## ASN 0 0 97 100 0 0 0 0 89 0 0 0 0 0
## EUR 0 85 0 0 0 93 89 14 0 0 0 0 98 0

Let’s do the PCA and plot the 12 leading PCs in pairwise plots coloring each individual by their continental
group (Africa, Americas, Asia or Europe) given by the group variable.

x = as.matrix(X[, 4:ncol(X)])
n = nrow(x)
p = ncol(x)
pr = prcomp(x, scale = TRUE)

grs = names(table(X$group))
grs.col = hsv(c(0.1, 0.3, 0.9, 0.6), 1, 1) # define distinct colors for groups
cols.gr = rep(NA, n) # color of the group of each individual
for(ii in 1:length(grs)) cols.gr[X$group == grs[ii]] = grs.col[ii]

par(mfrow = c(2,3))
for(ii in 1:6){

plot(pr$x[ ,2*ii - 1], pr$x[ ,2*ii], col = cols.gr, pch = 3,
xlab = paste0("PC", 2*ii-1), ylab = paste0("PC", 2*ii))

if(ii == 1) legend("bottomright", col = grs.col, leg = grs, pch = 3, cex = 1.3)
}

2



−10 0 10 20 30 40

−
20

−
10

0
10

PC1

P
C

2

AFR
AMR
ASN
EUR

0 10 20 30

−
10

−
5

0
5

PC3

P
C

4

−20 −15 −10 −5 0 5 10

−
5

0
5

10

PC5

P
C

6

−10 0 10 20 30

−
10

0
10

20

PC7

P
C

8

−20 −10 0 10 20 30

−
30

−
20

−
10

0
10

20
30

PC9

P
C

10

−10 0 10 20

−
10

0
10

20
30

40

PC11
P

C
12

Visually, the PCs 1-8 seem to capture broader structure whereas the PCs from 9 onward seem to separate
small groups of possibly more closely related pairs or triples.

Let’s next color the points by the population rather than by the continent.

# 3 AFR, 3 AMR, 3 ASN and 5 EUR populations given colors and plotting symbols
pops = c("ASW","LWK","YRI","CLM","MXL","PUR","CHB","CHS","JPT","CEU","GBR","IBS","TSI","FIN")
pops.col = hsv(c(0.15, 0.1, 0.125, 0.25, 0.35, 0.4,

0.85, 0.9, 0.95, 0.6, 0.65, 0.7, 0.75, 0.5), 1, 1)
pops.pch = c(3,2,0, 0,2,3, 0,2,3, 0,2,1,5,3) # plotting symbol for each population

cols.pop = rep(NA, n)
pchs.pop = rep(NA, n)
for(ii in 1:length(pops)) {

cols.pop[X$population == pops[ii]] = pops.col[ii]
pchs.pop[X$population == pops[ii]] = pops.pch[ii]

}

par(mar = c(4,4,0.5,8), xpd = TRUE)
plot(pr$x[,1], pr$x[,2], col = cols.pop, pch = pchs.pop, xlab = "PC1", ylab = "PC2")
legend("topright", inset = c(-0.15, 0), leg = pops, col = pops.col, pch = pops.pch)

3



−10 0 10 20 30 40

−
20

−
10

0
10

PC1

P
C

2
ASW
LWK
YRI
CLM
MXL
PUR
CHB
CHS
JPT
CEU
GBR
IBS
TSI
FIN

par(mfrow = c(2,2), mar = c(4,4,1,0.5))
for(ii in 1:4){

plot(pr$x[ ,2*ii - 1], pr$x[,2*ii], col = cols.pop, pch = pchs.pop,
xlab = paste0("PC", 2*ii - 1), ylab = paste0("PC", 2*ii))

if(ii == 0) legend("bottomright", col = grs.col, leg = grs, pch = 3, cex = 1.3)
}
legend("bottomright", leg = pops, col = pops.col, pch = pops.pch, cex = 0.8)

4



−10 0 10 20 30 40

−
20

−
10

0
10

PC1

P
C

2

0 10 20 30

−
10

−
5

0
5

PC3

P
C

4

−20 −15 −10 −5 0 5 10

−
5

0
5

10

PC5

P
C

6

−10 0 10 20 30

−
10

0
10

20

PC7

P
C

8

ASW
LWK
YRI
CLM
MXL
PUR
CHB
CHS
JPT
CEU
GBR
IBS
TSI
FIN

Let’s then compare the PCA plots to t-SNE and UMAP, using the R packages Rtsne and umap, respectively,
that we apply to compress the first 8 PCs further to just two dimensions.

#install.packages("Rtsne")
library(Rtsne)
set.seed(67)
tsne = Rtsne(X = pr$x[,1:8], perplexity = 10, theta = 0.0, pca = FALSE)
par(mar = c(4,4,4,8), xpd = TRUE)
plot(tsne$Y, col = cols.pop, pch = pchs.pop, main = "t-SNE", xlab = "", ylab = "")
legend("topright", inset = c(-0.15,0), leg = pops, col = pops.col, pch = pops.pch)

5



−50 0 50

−
50

0
50

t−SNE

ASW
LWK
YRI
CLM
MXL
PUR
CHB
CHS
JPT
CEU
GBR
IBS
TSI
FIN

#install.packages("umap")
library(umap)
set.seed(67)
umap.res = umap(pr$x[,1:8])
par(mar = c(4,4,4,8), xpd = TRUE)
plot(umap.res$layout, col = cols.pop, pch = pchs.pop, main = "UMAP", xlab ="", ylab = "")
legend("topright", inset = c(-0.15,0), leg = pops, col = pops.col, pch = pops.pch)

6



−15 −10 −5 0 5 10 15 20

−
5

0
5

UMAP

ASW
LWK
YRI
CLM
MXL
PUR
CHB
CHS
JPT
CEU
GBR
IBS
TSI
FIN

Wee see that t-SNE and UMAP largely group individuals from a same population close together and separate
them from the other populations whereas they do not put so much emphasis on making, for example, the
two African ancestry populations YRI and LWK equally distant from all 5 European populations or all 3
Asian populations, as the PCs 1 and 2 did above. Thus, we see that t-SNE and UMAP may indeed preserve
more of the local structure around the neighborhood of each sample but consequently cannot simultaneously
be completely faithful to the overall global structure as defined by the leading PCs. In a sense, t-SNE and
UMAP try to present both the local and global structure in only two dimensions, and for this they need to
find a trade-off between these two goals.

t-SNE: t-distributed Stochastic Neighbor Embedding

t-SNE was introduce in “Visualizing Data using t-SNE” by van der Maaten & Hinton (2008).

It builds on earlier work on Stochastic Neighbor Embedding (SNE), where the idea is to measure distance
in the high-dimensional input space by a conditional probability. If xxxi and xxxj are two p-dimensional data
points, we can compute a conditional probability pj|i that xxxi would pick as its neighbor the point xxxj if
neighbors would be chosen from a Gaussian distribution centered on xxxi and having a same variance σ2

i in
each dimension (we come back to how σ2

i will be chosen later).

pj|i ∝ exp
(

−∥xxxi − xxxj∥2
2

2 σ2
i

)
and

∑
j ̸=i

pj|i = 1.

This probability is larger for points that are closer to xxxi than for those that are farther away. Similarly,

7

http://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf


we can define pi|j . Finally, we can average (and normalize by n) these two probabilities to get pij = pji =
1

2n (pi|j + pj|i) to represent the similarity between xxxi and xxxj by a single value.

The goal of the SNE is to map the p-dimensional input values xxxi to two dimensional (or three dimensional)
output points yi in such a way that the distances qij defined by a similar density function evaluation in the
output space would optimally match the input space distances pij . Here “optimally” means in terms of the
Kullback-Leibler divergence of the distribution Q = (qij) from the distribution P = (pij):

KL(P || Q) =
∑
i<j

pij log
(

pij

qij

)
,

which is always non-negative and equals to zero if and only if the distributions are the same. Minimizing this
cost function puts more emphasis on making pairs with high pij to have similarly high qij , but less emphasis
on matching the two when pij is small. Hence, the SNE is expected to preserve particularly well the local
structure in the data and pay less attention to what happens between long distances.

What t-SNE adds on top of the SNE is that the distribution Q = (qij) is defined using the density function of
the t-distribution with 1 degree of freedom, also known as the Cauchy distribution, rather than by
a Gaussian, as was done in the SNE. This means that, in the low-dimensional output space, the conditional
probabilities in t-SNE are defined as

qj|i ∝
(
1 + ∥yyyi − yyyj∥2

2
)−1 and

∑
j ̸=i

qj|i = 1,

and these are symmetrized and normalized as above: qij = qji = 1
2n (qi|j + qj|i).

The Cauchy distribution has thick tails, and therefore t-SNE can tolerate more discrepancy between the
distances in input and output spaces when it comes to the points that are moderately far from each other in
the input space. This helps to avoid the crowding problem: in the high-dimensional input space, there are
potentially many equidistant points with moderate distance from a particular point, and not all of these can
be similarly accounted for in the low-dimensional space. The Cauchy distribution makes sure that some of
these points can be more spread out in the output space without a very high penalty.

Perplexity In the input space, the distances are defined by a Gaussian density with a data point specific
variance σ2

i . This parameter determines how t-SNE measure of distance from xxxi decays with the Euclidean
distance from xxxi, with larger values of σ2

i meaning a slower decay and smaller values meaning a quicker
decay. In order to preserve the local structure around each point, t-SNE adjusts σ2

i in such a way that all
the conditional distributions (pj|i)i≤n have approximately the same perplexity, which can be interpreted as
an effective number of neighbors. The target perplexity is given as a parameter to the algorithm and is
typically between 5 and 50. For example, a value of 15 means roughly that the closeness values pj|i from
xxxi to about 15 of its most closest data points are all large enough so that those points can be considered as
“neighbors” but the same is not true for some larger set of points than the 15 closest ones. In other words,
the similarity measured from xxxi decays with such a rate that about 15 points are “nearby”. Effectively
this means that about 15 closest neighbors are taken into account when constructing the low-dimensional
representation.

Let’s see how different perplexities show up in the results:

par(mfrow=c(1,3))
for(perp in c(3, 5, 20)){

tsne = Rtsne(X = pr$x[,1:8], perplexity = perp, theta = 0.05, pca = FALSE)
plot(tsne$Y, col = cols.pop, pch = pchs.pop,

main = paste0("Perplexity = ",perp), xlab ="", ylab = "")
}

8



−100 −50 0 50 100

−
10

0
−

50
0

50
10

0
Perplexity = 3

−50 0 50

−
10

0
−

50
0

50

Perplexity = 5

−40 −20 0 20 40 60

−
60

−
40

−
20

0
20

40
60

Perplexity = 20

theta parameter is a trade-off between the accuracy and computational complexity, where 0 means the
largest accuracy and larger values mean more computationally efficient but less accurate approximations.
The default is 0.5.

Resources to learn more about t-SNE

• StatQuest video on t-SNE (11:48)
• How to Use t-SNE Effectively
• How to tune hyperparameters of tSNE
• Roberto Stelling’s blog
• “Visualizing Data using t-SNE” paper by van der Maaten & Hinton (2008).

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

UMAP was introduced in 2018 by L.McInnes, J.Haley, J.Melville. They summarize the motivation for UMAP
compared to t-SNE: similar quality of visualization with a much more efficient algorithm. Additionally,
UMAP is better able to maintain the global structure than t-SNE, which, on the other hand, may make
UMAP to discard some details of the local structure compared to t-SNE.

Methodologically, UMAP uses similar ideas as t-SNE although the theoretical derivation is more mathemat-
ical. A description of the differences from t-SNE can be found from the Appendix C of the UMAP paper.
Another description is “How exactly UMAP works?” by Nikolay Oskolkov.

The main parameters of UMAP are n_neighbors, the number of closest neighbors that are considered,
min_dist, the minimum distance of the points in the output space, n_components, the output dimension
and metric that defines the distance of the input space. These are clearly explained at the UMAP website.

An illustrative site about UMAP: https://pair-code.github.io/understanding-umap/

Let’s see how n_neighbors compares to the effect of perplexity in t-SNE that we saw above.

par(mfrow=c(1,3))
set.seed(81)
umap.config = umap.defaults # umap takes parameters in a config object
for(nbors in c(3, 5, 20)){

umap.config$n_neighbors = nbors
umap.res = umap(pr$x[,1:8], config = umap.config)
plot(umap.res$layout, col = cols.pop, pch = pchs.pop,

main = paste0("neighbors = ",nbors), xlab ="", ylab = "")
}

9

https://www.youtube.com/watch?v=NEaUSP4YerM
https://distill.pub/2016/misread-tsne/
https://towardsdatascience.com/how-to-tune-hyperparameters-of-tsne-7c0596a18868
https://observablehq.com/@robstelling/t-sne_en
http://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://arxiv.org/pdf/1802.03426.pdf
https://arxiv.org/pdf/1802.03426.pdf
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://umap-learn.readthedocs.io/en/latest/parameters.html
https://pair-code.github.io/understanding-umap/


0 20 40 60

0
20

40
60

neighbors = 3

−10 −5 0 5 10 15 20

−
5

0
5

10

neighbors = 5

−15 −10 −5 0 5 10 15 20

−
5

0
5

neighbors = 20

Discussion

• Most non-linear dimension reduction techniques (including t-SNE and UMAP) lack the strong in-
terpretability of Principal Component Analysis where the dimensions are the directions of greatest
variance in the source data. If strong interpretability is needed, the PCA is recommended.

• As t-SNE and UMAP are based on the distance between observations rather than the source features,
they do not produce easily interpretable loadings per each variable that the PCA can provide for each
output dimension.

• A core assumptions of UMAP is that there exists manifold structure in the data. Because of this,
UMAP may find manifold structure within the noise of a dataset, a type of overfitting. As more data
is sampled, UMAP becomes more robust. However, care must be taken with small sample sizes of
noisy data, or data with only large-scale manifold structure.

• If data are high-dimensional, say p > 100, it is often useful to first apply PCA and take some tens
of the leading PCs as input for t-SNE or UMAP to further reduce the data to 2 or 3 dimensions for
visualization.

10


	1000 Genomes data
	t-SNE: t-distributed Stochastic Neighbor Embedding
	UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

