
HDS 0.1 Linear model

Matti Pirinen, University of Helsinki

28.12.2023

Suppose that we want to model how the value of a numerical outcome variable y could be predicted from
p predictors xxx = (x1, . . . , xp). For example, y could be the price of an apartment and x1 could be the
district within Helsinki and x2 could be the number of bedrooms. Thus, we want to find a function f that
gives a good approximation for y when we input the predictor values xxx to the function f . We denote our
prediction by ŷ = f(xxx). We call such a function f a regression function and we talk about “regressing
y on xxx” when we estimate the regression function. A common approach in statistical modeling is to aim
for using the conditional expectation as the regression function: f(xxx) = E(Y |XXX = xxx). (Note: Capital
letters denote random variables and lower case letters are observed values for the random variables.) A
theoretical justification is that this function has the smallest mean squared error among all possible regression
functions. This means that the conditional expectation is the function f that, for any given value xxx, solves
the minimization problem

min
f(xxx)

E((Y − f(xxx))2 |XXX = xxx),

where the expectation is over random variable Y for the fixed value of XXX = xxx.

The simplest of regression models is the linear regression model that is our basic building block on this
course.

1. Linear model gives a baseline to which compare more complex models: if your complex model does not
do better than the linear model, most likely you want to use the linear model because of simplicity!

2. Linear model has a very good interpretability.

3. Weighted and correlated linear regression, generalized linear models (e.g. logistic regresison) and high-
dimensional regression (e.g. LASSO, ridge regression) are built on top of the linear model.

4. Linear model is a great vehicle to demonstrate statistical concepts (e.g. uncertainty, model fit, predic-
tions, inference).

To refresh the linear model,

• read the excellent chapter “3. Linear Regression” from ISLR.

Below is a brief summary of linear model including key formulas and R commands.

• If you have not applied linear regression much in practice using R, go through the additional notes for
Practical linear regression.

1

https://www.statlearning.com/
HDS0_practical_linearmodel.html

Definition

Suppose outcome y and p other variables (or predictors) xxx = (x1, . . . , xp) have been measured on n
units/individuals: data for unit i is (yi, xi1, . . . , xip). We want to study relationship between y and x’s. The
standard linear model assumes that there is a relationship

yi = β0 +
p∑

j=1
βjxij + εi,

where εi is an error term that captures the difference between the outcome and the linear predictor:
εi = yi −

(
β0 +

∑
j βijxij

)
. We can turn this linear model formulation into a useful statistical model by

assigning some distributional assumptions on the error terms εi. We always assume that E(εi) = 0, i.e.,
there is no systematic bias in errors towards either negative or positive values. One typical assumption is
homoscedasticity i.e, that the error terms have a constant variance Var(εi) = σ2. Another is that the
error terms for observations i and h are uncorrelated with each other, E(εiεh) = 0, and that the error terms
are independent of predictors xxx. Often the model is further restricted to the case where the error terms are
assumed to follow a Normal distribution, also called the Gaussian distribution. Note, however, that
there are also widely-used linear models that have correlated errors, possibly with heteroscedasticity (varying
error variance) and/or linear models where the errors are not Gaussian (i.e. are not distributed according to
a Normal distribution).

With the assumption E(εi) = 0, we see that the conditional expectation, which is our natural candidate for
the regression function, takes the form of the linear predictor:

E(Y | X = xxx) = E

β0 +
p∑

j=1
βjxij + εi

∣∣∣∣∣∣ X = xxx

 = β0 +
p∑

j=1
βjxij ,

and hence our goal is to estimate the unknown parameters βββ = (β0, . . . , βp)T of this function.

Terminology. It is conceptually important to distinguish the model parameters βββ = (β0, . . . , βp)T from
their estimates β̂̂β̂β =

(
β̂0, . . . , β̂p

)T

as well as to separate the error terms εi from their estimates that are

called residuals ε̂i = yi −
(

β̂0 +
∑p

j=1 β̂jxij

)
. The parameters and error terms are unknown quantities

that we will not know exactly, but we can estimate them, with varying levels of precision, using parameter
estimates and residuals.

When we have parameter estimates available, we can make a (linear model) prediction of an unobserved
outcome value yu of unit u, assuming that we know the predictors (xu1, . . . , xup) of unit u, as

ŷu = β̂0 +
p∑

j=1
β̂jxuj .

With this notation, the residual can be written as ε̂i = yi − ŷi.

Example 0.1 Let’s generate some data from a linear model with p = 1. (A linear model with only one
predictor is also called a simple linear regression model.) We want that our single predictor x1 explains
proportion ϕ of the total variance of outcome y (whereas the remaining proportion 1 − ϕ is left for the error
terms to account for). In data generation, we can first choose whichever variances for the predictor x1 and
error ε in the population, and then determine β1 based on those variances and the target value of ϕ. For
simplicity, let’s choose to set

Var(x1) = Var(ε) = 1.

2

This leads to following formulas

Var(x1β1) = β2
1 Var(x1) = β2

1 · 1 = β2
1

Var(y) = Var(x1β1 + ε) = Var(x1β1) + Var(ε) + 2 Cov(x1β1, ε) = β2
1 + 1 + 0 = β2

1 + 1
ϕ = Var(x1β1)/Var(y) = β2

1/(β2
1 + 1)

β1 = ±
√

ϕ/(1 − ϕ)

where the first uses Var(aX) = a2Var(X) for a constant a and random variable X, the second uses the fact
that x1 and ε are independent and hence their covariance term is zero, and the fourth solves β1 from the
second order polynomial of the third formula.

set.seed(3102017)
n = 200 # units (or samples) to be simulated
phi = 0.2 # variance explained by x_1, should be 0 < phi < 1.
b.0 = 0 # set intercept to 0, could equally well be any other value.
b.1 = sqrt(phi/(1-phi)) # could equally well have minus sign.
x = rnorm(n, 0, 1) # use Normal distribution, could be any other as long as var=1
eps = rnorm(n, 0, 1) # should be Normal in order that the standard tests are valid (or should it? see Exercises.)
y = b.0 + x*b.1 + eps # use linear model formula to generate outcome y.
check variance explained by x:
var(x*b.1) / var(y) # should be close to phi.

[1] 0.1983043

plot(x, y)
lm.fit = lm(y ~ x) # Fit a linear model by least squares method.
abline(lm.fit, col = "red") # Add estimated regression line in red.
abline(a = b.0, b = b.1, col = "blue", lty = 2) # Add true population regression line in blue.

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

x

y

Question: Where can you find the error terms and where the residuals in the figure above?

3

Exercise. Above we derived β1 to yield a given variance explained. Sometimes we might want to derive
β1 to yield a particular correlation between x1 and y. Show that by choosing β1 = sign(r)

√
r2/(1 − r2), we

have that cor(x1, y) = r, when Var(x1) = Var(ε) = 1.
Let’s see the basic output of the linear model in R using summary().

summary(lm.fit) # Show output from lm().

##
Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median 3Q Max
-3.05209 -0.75674 0.00068 0.72571 2.82434
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.11214 0.07310 -1.534 0.127
x 0.43150 0.07367 5.858 1.93e-08 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 1.033 on 198 degrees of freedom
Multiple R-squared: 0.1477, Adjusted R-squared: 0.1434
F-statistic: 34.31 on 1 and 198 DF, p-value: 1.931e-08

Estimates Let’s remind ourselves what is in this output and how it is computed. Linear model is typically
fit by the least squares criterion. That is, we look for the parameter vector estimate β̂̂β̂β = (β̂0, . . . , β̂p)T that
minimizes the residual sum of squares (RSS):

RSS = (yyy − XXXβ̂̂β̂β)T (yyy − XXXβ̂̂β̂β) =
∑

i

yi − β̂0 −
∑

j

xij β̂j

2

where XXX is n × (p + 1) matrix whose first column contains ones to represent the constant intercept (or
baseline) value β0. Using rules for derivatives for matrix calculations

∂RSS

∂β̂̂β̂β
= −2XXXTyyy − 2(XXXTXXX)β̂̂β̂β,

that has the zero at the Least Squares solution

β̂̂β̂β =
(
XXXTXXX

)−1
XXXTyyy,

assuming that XXXTXXX is of full rank. By treating XXX as a fixed matrix and assuming that the error term εεε has
mean 0, we have that the least squares estimator (LSE) is unbiased:

E
(
β̂ββ

∣∣βββ
)

= E
((

XXXTXXX
)−1

XXXT (XXXβββ + εεε)
∣∣βββ

)
= βββ +

(
XXXTXXX

)−1
XXXT E(εεε) = βββ,

When we consider a linear model in which error terms are uncorrelated and have the same variance σ2, i.e,
the variance matrix of εεε is Var(εεε | σ2) = σ2III, then LSE has as its sampling variance

Var
(
β̂̂β̂β

∣∣βββ
)

= Var
((

XXXTXXX
)−1

XXXT (XXXβββ + εεε)
∣∣βββ

)
= Var

(
βββ +

(
XXXTXXX

)−1
XXXTεεε

∣∣βββ
)

= Var
((

XXXTXXX
)−1

XXXTεεε
)

=
(
XXXTXXX

)−1
XXXT

(
σ2III

)
XXX

(
XXXTXXX

)−1

= σ2 (
XXXTXXX

)−1
,

4

where the second row uses the fact that Var(AAAεεε) = AAA Var(εεε)AAAT for a constant matrix AAA and random vector
εεε.

Often σ2 is also estimated, using σ̂2 = RSS/(n − p − 1). Residual standard error,
√

σ̂2, describes average
distance of an observation from the regression line. (It does not model exactly the expected distance, but
rather the square root of the expected squared distance.)

The summary(lm.fit) command produced

• parameter estimates (or Coefficients),
• their standard errors (SE) (estimates for square root of the sampling variance of the parameter esti-

mates),
• t-statistic (estimate/SE) and
• P-value under the null hypothesis that the parameter is 0 and errors are uncorrelated and have a

Normal distribution N(0, σ2).

Under the above assumptions, the sampling distribution of t-statistic is t-distribution and hence q% confi-
dence intervals are determined as β̂ ± a × SE, where a is the q/2% quantile of t-distribution with n − p − 1
degrees of freedom. When σ2 is known, the t-distribution is replaced by a Normal distribution, and same is
approximately true when n becomes large, even if an estimate σ̂2 is used in computing SE. In these cases,
we often talk about z-statistic instead of t-statistic.

Last paragraph in the output tells about the full model fit. R2 is the proportion of variance explained by
the linear model, i.e., R2 = 1 − RSS

n−1 /V̂ar(y). The adjusted version penalizes for additional predictors and
is defined as R2

adj = 1 − RSS
n−p−1 /V̂ar(y). Note that if there is only the intercept parameter β0 in the model

(p = 0), then R2 = R2
adj = 0, and if the model explains data perfectly (RSS = 0), then R2 = R2

adj = 1.
In all other cases, R2 values are between 0 and 1 and larger values mean more variance explained by the
model. (R2

adj can get negative values in cases where the model explains very poorly compared to the number
of parameters in the model.)

R2 should not be the only value used to judge how suitable the model is for the data. One should always plot
the data and the model fit in different ways to assess this question. For a simple linear model (p = 1), the
above scatter plot and regression line is a good start. More generally, plotcommand applied to an lm-object
gives the following four diagnostic plots (read http://data.library.virginia.edu/diagnostic-plots/).

par(mfrow=c(2,2)) #split the plot area in 2 rows and 2 columns, i.e. in 4 plots
plot(lm.fit) #make diagnostic plots

5

http://data.library.virginia.edu/diagnostic-plots/

−1.0 −0.5 0.0 0.5 1.0

−
3

−
1

0
1

2
3

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

76

128

55

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

76

128

55

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
76

12855

0.00 0.01 0.02 0.03 0.04

−
3

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

128

35

127

Validity of linear model Let’s list the assumptions behind the standard linear model and properties of
its least squares estimates (LSE).

yi = β0 +
p∑

j=1
βjxij + εi

1. Additivity and linearity. We assume that each predictor acts additively (there is + between terms
that involve different predictors) and that the effect of each predictor on outcome is linear (predictor
is simply multiplied by a β coefficient). (How to extend linear model outside these assumptions?)

2. Error terms are independent of each other and of predictors. If this does not hold, then the amount
of information in data does not correspond to the number of observations, and statistical inference
based on theoretical distributions will be invalid. Additionally, LSE is not an optimal unbiased point
estimate but a ganeralized least squares estimation, that takes into account the correlation between
errors, gives more precise estimates.

6

3. Errors have same variance (homoscedasticity). If this does not hold, then a weighted linear regression
would give more precise estimates.

4. Errors are Gaussian (i.e. have a normal distribution). Under this assumptions LSE coincides with the
maximum likelihood estimate and hence has many optimality properties. However, LSE has several
optimality properties even without this assumptions. For example, Gauss-Markov theorem says that
LSE β̂ has the smallest sampling variance among all linear and unbiased estimators of β as long as
errors are homoscedastic and uncorrelated, no matter what is their distribution. Gaussian errors is in
practice the least important assumption out of the ones listed here.

Example 0.2 (Auto) Let’s have a look at the Auto dataset that is included in ISLR package.

#install.packages("ISLR") #do this when you run first time
library("ISLR") #This loads several datasets from the book ISLR
#?Auto #To check help
str(Auto)

’data.frame’: 392 obs. of 9 variables:
$ mpg : num 18 15 18 16 17 15 14 14 14 15 ...
$ cylinders : num 8 8 8 8 8 8 8 8 8 8 ...
$ displacement: num 307 350 318 304 302 429 454 440 455 390 ...
$ horsepower : num 130 165 150 150 140 198 220 215 225 190 ...
$ weight : num 3504 3693 3436 3433 3449 ...
$ acceleration: num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
$ year : num 70 70 70 70 70 70 70 70 70 70 ...
$ origin : num 1 1 1 1 1 1 1 1 1 1 ...
$ name : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161 141 54 223 241 2 ...

#plot pairs except "name"
#pairs(subset(Auto, select=-name), cex=0.5, pch="+")
#We want to explain miles per gallon, mpg
#Let's start with horsepower
lm.fit = lm(mpg ~ horsepower, data = Auto)
summary(lm.fit)

##
Call:
lm(formula = mpg ~ horsepower, data = Auto)
##
Residuals:
Min 1Q Median 3Q Max
-13.5710 -3.2592 -0.3435 2.7630 16.9240
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.935861 0.717499 55.66 <2e-16 ***
horsepower -0.157845 0.006446 -24.49 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

7

plot(Auto$horsepower, Auto$mpg, cex = 0.6, pch = 3)
abline(lm.fit, col = "red", lwd = 2)

50 100 150 200

10
20

30
40

Auto$horsepower

A
ut

o$
m

pg

This model explains 60.5% of all variation in the data and is very clearly statistically significant (P-values
for horsepower and whole model are very low). But does it fit well the data, that is, does the linear model
adequately describe the relationship between the two variables? Let’s draw a residual plot by showing the
1st out of the standard diagnostic plots.

plot(lm.fit, 1) #plot only the 1st diagnostic plot that is the residuals

8

5 10 15 20 25 30

−
15

−
5

0
5

10
15

20

Fitted values

R
es

id
ua

ls

lm(mpg ~ horsepower)

Residuals vs Fitted

323
330

334

It seems that there is some pattern whereby the residuals do not agree with the assumption of errors being
independent of the linear predictor. In such cases adding some polynomial terms may help. Let’s add a
square term and plot the model fit and the residual plot again.

lm.fit.2 = lm(mpg ~ horsepower + I(horsepowerˆ2), data = Auto) #Note I() notation
summary(lm.fit.2)

##
Call:
lm(formula = mpg ~ horsepower + I(horsepower^2), data = Auto)
##
Residuals:
Min 1Q Median 3Q Max
-14.7135 -2.5943 -0.0859 2.2868 15.8961
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.9000997 1.8004268 31.60 <2e-16 ***
horsepower -0.4661896 0.0311246 -14.98 <2e-16 ***
I(horsepower^2) 0.0012305 0.0001221 10.08 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 4.374 on 389 degrees of freedom
Multiple R-squared: 0.6876, Adjusted R-squared: 0.686
F-statistic: 428 on 2 and 389 DF, p-value: < 2.2e-16

plot(Auto$horsepower, Auto$mpg, cex = 0.6, pch = 3)
abline(lm.fit, col = "red", lwd = 2) #first order model in red

9

x.val = seq(min(Auto$horsepower), max(Auto$horsepower), length = 100) #grid of 100 points from x-axis
#y values from the lm.fit.2 model for grid values in x.val:
y.val = predict.lm(lm.fit.2, newdata = data.frame(horsepower = x.val))

lines(x.val, y.val, col = "blue", lwd = 2) #2nd order model in blue
legend("topright", legend = c("linear","quadratic"), col = c("red","blue"), lwd = 2)

50 100 150 200

10
20

30
40

Auto$horsepower

A
ut

o$
m

pg

linear
quadratic

plot(lm.fit.2, 1)

10

15 20 25 30 35

−
15

−
5

0
5

10
15

Fitted values

R
es

id
ua

ls

lm(mpg ~ horsepower + I(horsepower^2))

Residuals vs Fitted

334
323

155

Now we explain 69% of mpg and residual plot is much more equal across fitted values. There is maybe some
increased variance for larger fitted values. The points named in residual plot are possible outliers.

pick = c("334","155") #note quotes since these are row names here, not indexes
cbind(Auto[pick,], lm.fit.2$fitted.values[pick], lm.fit.2$residuals[pick])

mpg cylinders displacement horsepower weight acceleration year origin
334 32.7 6 168 132 2910 11.4 80 3
155 15.0 6 250 72 3432 21.0 75 1
name lm.fit.2$fitted.values[pick] lm.fit.2$residuals[pick]
334 datsun 280-zx 16.80393 15.89607
155 mercury monarch 29.71355 -14.71355

Would cubic polynomial make even better fit?

lm.fit.3 = lm(mpg ~ poly(horsepower,3), data = Auto)
summary(lm.fit.3)

##
Call:
lm(formula = mpg ~ poly(horsepower, 3), data = Auto)
##
Residuals:
Min 1Q Median 3Q Max
-14.7039 -2.4491 -0.1519 2.2035 15.8159
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)

11

(Intercept) 23.446 0.221 106.105 <2e-16 ***
poly(horsepower, 3)1 -120.138 4.375 -27.460 <2e-16 ***
poly(horsepower, 3)2 44.090 4.375 10.078 <2e-16 ***
poly(horsepower, 3)3 -3.949 4.375 -0.903 0.367

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 4.375 on 388 degrees of freedom
Multiple R-squared: 0.6882, Adjusted R-squared: 0.6858
F-statistic: 285.5 on 3 and 388 DF, p-value: < 2.2e-16

Answer is no. (See similar R2 compared to quadratic fit.)

Let’s think about interpretation of parameters. In linear fit without the quadratic term each increase of 1
horsepower changes mpg by the same amount:

signif(lm.fit$coeff[2],2) #for linear model this is Delta mpg for 1 unit hpwr

horsepower
-0.16

whereas for quadratic fit it varies with horsepower (here given near 50 and 150):

diff(predict(lm.fit.2, newdata = data.frame(horsepower = c(49.5,50.5))))

2
-0.343136

diff(predict(lm.fit.2, newdata = data.frame(horsepower = c(149.5,150.5))))

2
-0.0970288

This ends our short summary of the linear regression model with R. If you have not applied linear regression
much in practice using R, go through additional lecture notes about Practical linear regression.

Centering the variables

In practice, we often mean-center the variables to simplify the linear model. Let’s write down the motivation
for that.

The least squares solution was derived by minimizing residual sum of squares (RSS). The solution β̂̂β̂β derived
by setting the first derivative to 0 satisfies the normal equations

(XXXTXXX)β̂̂β̂β = XXXTyyy ⇔ XXXT (yyy − XXXβ̂̂β̂β) = 0 ⇔ XXXT ε̂̂ε̂ε = 0.

When the model includes the intercept term, then the first column of XXX is full of 1s, and the first element
of the above vector XXXT ε̂̂ε̂ε = 0 is
111T ε̂̂ε̂ε =

∑
i ε̂i = 0. This shows that the sum of residuals of the least squares solution is 0 (when the

model includes the intercept term).

12

HDS0_practical_linearmodel.html

By summing each term in the residual over units we thus get 0, hence
n∑

i=1
(yi − β̂0 − xi1β̂1 − . . . − xipβ̂p) = n(y − β̂0 − x1β̂1 − . . . − xpβ̂p) = 0,

where bar means a mean value over units. Hence we see that with the least squares solution the linear model
equation is satisfied exactly for an “average” unit whose values of outcome y and each predictor xi are the
corresponding mean values over the samples:

y = β̂0 + x1β̂1 + . . . + xpβ̂p.

Suppose that we have mean-centered each predictor before fitting the model. Then xj = 0 for all j and
β̂0 = y. If we have also mean-centered outcome y, then β̂0 = 0. Thus, by mean-centering the predictors and
the outcome, we can simplify the computation by dropping the intercept term from the model since it equals
to zero in the least squares solution.

Consider such a mean-centered model and use αj as coefficients to distinguish from βj that correspond to
the original model (without mean-centered variables). We know that α0 = 0 and

yi − y = (xi1 − x1)α1 + . . . + (xip − xp)αp + εi

yi = (y − x1α1 − . . . − xpαp) + xi1α1 + . . . + xipαp + εi

We see that the latter form equals to the non-centered model

yi = β0 + xi1β1 + . . . + xipβp + εi,

if we set (y − x1α1 − . . . − xpαp) = β0 and αj = βj for j = 1, . . . , p. Since the least squares solution is unique
(when the model is of full rank), it follows that α̂j = β̂j for j = 1, . . . , p and hence mean-centering does
not change the values of other coefficients than the intercept.

We conclude that by mean-centering both the outcome and all predictors in a linear regression model, we
can drop the intercept term from the model (since its value will be 0) while the other coefficients have the
same values as without mean-centering. In R, we can fit a linear model without intercept term by using 0
or -1 in the call: lm(y ~ 0 + x) or lm(y ~ -1 + x).

Geometric interpretation in n-dimensional space

We can also interpret the least squares method as projecting the outcome vector yyy into the subspace defined
by the intercept xxx0 and p predictor vectors xxx1, . . . ,xxxp. Let’s define matrix HHH = XXX

(
XXXTXXX

)−1
XXXT with which

we can represent the fitted values as

ŷ̂ŷy = XXXβ̂̂β̂β = XXX
(
XXXTXXX

)−1
XXXTyyy = HHHyyy.

HHH is also called “hat-matrix” that puts a hat on yyy. In particular, HHH is a matrix of an orthogonal projection
because HHH = HHH2 and HHH = HHHT . Thus we conclude that the least squares method finds the fitted values by
projecting the observed values into the subspace defined by predictors.

13

	Definition
	Centering the variables
	Geometric interpretation in n-dimensional space

