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The slide set referred to in this document is “GWAS 9”.

Consider GWAS data on n individuals and p SNPs. GWAS summary statistics can include a varying
combination of the following information, for each variant l, or region reg,

• Association statistics Al =
(

EAl, β̂l, SEl, Pl

)
where EA is the effect allele for which the effect size

β̂l is reported, SEl is the standard error and Pl the P-value for variant l. These statistics are of size
4p, and hence the ratio of their size to the whole data is 4/n.

• Information statistics Il = (EAFl, INFOl, QCl, . . .), where EAF is the effect allele frequency (some-
times given only in controls), INFO is an imputation information score, and QC includes quality control
measures, such as Hardy-Weinberg P-value and missingness rate of the genotype calls. They make a
fraction of around 10/n of total data (assuming 10 pieces of information per variant).

• LD-matrix Rreg for certain region(s) of the genome. For a region of size preg, the size of Rreg is about
1
2 p2

reg, whereas that of the raw data is npreg. Thus, the ratio is preg/(2n).

When n is of order 105, the summary statistics take only a tiny fraction of the space required by the raw data.
Additionally, raw genotype-phenotye data are sensitive, personal data and cannot be shared freely, whereas
usually there is no legal restrictions for sharing the GWAS summary statistics. For these reasons, large
consortia, such as GIANT or CARDIoGRAMplusC4D, are distributing their results as summary statistics.
Therefore there is a need for methods that can further analyze the summary statistics, e.g., in fine-mapping,
in imputation, in heritability estimation or in gene-level testing. The utilization of summary statistics is
reviewed by Pasaniuc & Price 2017.

Example 9.1. Reminder how the central association statistics are related to each other.

• If we are given b.est=β̂ and se=SE, we can compute the P-value as pchisq((b.est/se)ˆ2, df=1,
lower=F).

• If we are given β̂ and P-value pval, we can compute SE as sqrt(b.estˆ2 / qchisq(pval, df=1,
lower=F)).

• If we are given SE and P-value, we can compute b.est=β̂ for the trait increasing allele as
sqrt(seˆ2*qchisq(pval, df=1, lower=F)). (We need to know which allele is the trait increasing
from external information.)

• Assuming that no (strong) covariates have been applied, we can further infer one of sample size, MAF
or case-proportion from SE given that the other two are known according to the formulas given in
GWAS3. We can also estimate an SE from these parameters and use it with a given effect estimate to
derive a P-value.
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In these notes, we go through how the association summary statistics are produced through meta-analysis
of multiple individual GWAS and how some analyses, that we have so far done from raw data, could be
done using only the summary data. We end with an introduction to polygenic scores that utilize summary
statistics to predict phenotypes from genetic data.

9.1. Meta-analysis

Suppose we have results from K independent GWAS on the same phenotype. (Here independent means
that the samples of the GWAS are not overlapping.) Hence, for each variant l, we have K sets of GWAS
association statistics Akl =

(
β̂kl, SEkl, Pkl

)
. How could we combine these K pieces of information into a

single combined estimate of the effect size, SE and P-value of each variant?

A combination of summary-level results from multiple studies on the same question is called meta-analysis
(“meta” refers to something happening at a higher level, meta-analysis is an “analysis of analyses”). A
review of meta-analysis in GWAS by Evangelou & Ioannidis 2013.

In practice, all large GWAS are nowadays meta-analyses carried out by international consortia and a con-
sortium may contain even over hundred individual studies. Often each study runs a GWAS and shares
the summary statistics with a centralized analysis group that carries out the meta-analysis. While this
approach avoids sharing sensitive individual-level genotype-phenotype data and also operates only with the
light-weight summary data, it also restricts the set of possible downstream analyses, since only the marginal
additive effect estimates are available. It has become clear that in order to maximize the scientific output
from the consortia efforts, future meta-analyses should be designed so that all raw data will be collected
in a single place. Unfortunately, this is not always easy because of legal issues related to the sharing of
genotype-phenotype data.

Let’s get back to the question how do we combine K sets of GWAS association statistics on same (or at
least similar) phenotype: Akl =

(
β̂kl, SEkl, Pkl

)
. The answer depends on what we assume about the possible

variation between the true underlying effects βkl across the studies k = 1, . . . , K.

9.1.1 Fixed effect model The most common assumption is that all studies are measuring the same
underlying quantity, i.e., β1l = . . . = βKl and there are no (noticeable) differences in phenotype definitions
and no distinct biases between the studies. This is called the fixed-effect model because the effect size is
assumed to be the same across the studies. In this case, the statistically the most efficient unbiased linear
estimator of the common effect size β is the inverse-variance weighted (IVW) estimator, here denoted
by F, the Fixed-effect estimator:

β̂l,F = w1lβ̂1l + . . . + wKlβ̂Kl

w1l + . . . + wKl
(1)

SEl,F = (w1l + . . . + wKl)− 1
2 , where the weight (2)

wkl = 1
SE2

kl

is the inverse of the variance of study k. (3)

In statistics, the inverse of the variance is called precision. With that in mind, the above formulas are easy
to remember:

• The weight given to each study in the IVW estimator is proportional to the precision of the study and
the weights sum to 1.

• The precision of the IVW estimator is the sum of the precisions of the individual studies.
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Efficiency of IVW. It sounds intuitively reasonable to weight each estimate by its precision but what is
the mathematical argument behind this? Let’s consider the case of two studies and assume that both yield
unbiased estimates of the common effect size β, with precisions wi = 1/SE2

i for i = 1, 2. This means that

E
(

β̂i | β
)

= β and Var
(

β̂i

)
= SE2

i = 1
wi

, for i = 1, 2.

Consider all possible linear estimators t(u) = uβ̂1 + (1 − u)β̂2 determined by a value of u ∈ [0, 1]. The
estimator t(u) is unbiased for all u as

E(t(u) | β) = uE
(

β̂1 | β
)

+ (1 − u)E
(

β̂2 | β
)

= uβ + (1 − u)β = β.

Thus, on average, any weighting scheme gives the correct answer, and the question is, which one of these
weightings gives the most precise combined estimate, that is, has the smallest variance.

Var(t(u)) = Var
(

uβ̂1

)
+ Var

(
(1 − u)β̂2

)
= u2 1

w1
+ (1 − u)2 1

w2
= u2

(
1

w1
+ 1

w2

)
− 2

w2
u + 1

w2
.

This is a second order polynomial with respect to u and has its minimum where the derivative is 0, i.e.,
at u0 = 2/w2

2(1/w1+1/w2) = w1
w1+w2

, which is the IVW. We conclude that IVW is the minimum variance
unbiased linear estimator of the fixed effect model.

Example 9.2. Suppose that we do a fixed-effect meta-analysis using IVW of two studies on LDL-cholesterol
where the sample sizes of the studies are n1 = 5, 000 and n2 = 10, 000. If both studies have applied similar
covariates and hence have similar error variance σ2

ε , then the precisions of the studies are wi = 2nifi(1−fi)/σ2
ε

for i = 1, 2. At a SNP that has same MAF f in both studies, the precisions are proportional to ni and
hence the weights of the IVW are w1

w1+w2
= 0.333 and w2

w1+w2
= 0.666 and the precision of the IVW is

wF = w1 + w2 = 2(n1 + n2)f(1 − f)/σ2
ε , which is the same as precision from a study with n1 + n2 = 15, 000

samples. Indeed, with linear model, the precision from splitting the data into any subsets and then combining
them with IVW is (approximately) the same as doing a joint analysis of all the data with separate intercept
terms for each subset (Exercise). (If subsets are small and there are covariates involved, then random noise
causes some numerical differences between the approaches.)

Example 9.3. Suppose that we do IVW meta-analysis of two studies on Parkinson’s disease where n1 =
10, 000 of which 3, 000 are cases (ϕ1 = 0.3) and n2 = 6, 000 of which 3, 000 are cases (ϕ2 = 0.5). Thus the
effective sample sizes are ne1 = 10000 · 0.3 · 0.7 = 2100 and ne2 = 6000 · 0.5 · 0.5 = 1500. If we assume that
the MAF of the SNP is the same in both studies, then the precisions of the studies are wi = 2neif(1 − f)
for i = 1, 2 and the weights of the IVW are w1

w1+w2
= 2100

3600 = 0.583 and w2
w1+w2

= 1500
3600 = 0.417 and the

precision of the IVW estimator is wF = w1 + w2 = 2(ne1 + ne2)f(1 − f), which is the same as precision from
a study with effective sample size of ne1 + ne2. It can be shown that by splitting the case-control data into
subsets, the sum of the effective sample sizes over the subsets is always ≤ the effective sample size of the
whole data (and the equality holds when the case proportion is constant across the subsets). This gives a
technical explanation why, in logistic regression, an inclusion of a binary covariate, such as sex or population
label, causes a decrease in precision, and hence increase in SE compared to a single joint analysis of all
data without the covariate. This follows because a use of a binary covariate is approximately equivalent to
splitting the data by the covariate value, analyzing subsets separately and combining the results using IVW
(Exercise).

Example 9.4. Consider the association statistics at SNP rs11984041 on the large vessel subtype of Ischemic
Stroke in Bellenguez et al. (2012). They reported a discovery OR 1.50 (1.25-1.79) and replication1 OR 1.38
(1.17-1.63) and replication2 OR 1.39 (1.15-1.68), all for the same allele. What is the combined estimate, SE
and P-value using the fixed effect meta-analysis? (They report 1.42 (1.28-1.57), P=1.87e-11.)

Answer. Let’s make a function meta.F() that does the IVW meta-analysis for given estimates and SEs.
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meta.F <- function(b.est, se){
#returns inverse-variance weighted meta-analysis estimate, SE and P-value.
b.F = sum(b.est / seˆ2) / sum(1 / seˆ2)
se.F = 1 / sqrt(sum(1 / seˆ2))
p.F = pchisq( (b.F / se.F)ˆ2, df = 1, lower = FALSE)
return(list(b.F = b.F, se.F = se.F, p.F = p.F))

}

With these data, we need to compute the SEs from the 95%CIs and then use IVW.

b.est = log(c(1.50, 1.38, 1.39)) #beta is logOR for case-control data
ci = log(matrix(c(1.25, 1.79,

1.17, 1.63,
1.15, 1.68), byrow = TRUE, ncol = 2))

se = (ci[,2] - ci[,1])/(2*1.96) #length of 95%CI is 2*1.96*SE
meta.res = meta.F(b.est, se)
meta.res

## $b.F
## [1] 0.3513526
##
## $se.F
## [1] 0.05227737
##
## $p.F
## [1] 1.805663e-11

c(OR = exp(meta.res$b.F), low95 = exp(meta.res$b.F - 1.96*meta.res$se.F),
up95 = exp(meta.res$b.F + 1.96*meta.res$se.F), pval = meta.res$p.F)

## OR low95 up95 pval
## 1.420988e+00 1.282600e+00 1.574309e+00 1.805663e-11

The results match well given the accuracy of two decimals in CIs to compute the SE. Let’s visualize them
by a forest plot.

forest.plot <- function(x, intervals, labels = NULL, main = NULL, xlab = "Effect size",
pchs = rep(19,length(x)), cols = rep("black", length(x)),
cexs = rep(1,length(x))){

K = length(x)
stopifnot(nrow(intervals) == K)
plot(0, col="white", xlim = c( min(c(intervals[,1],0) - 0.05), max(c(intervals[,2],0) + 0.05)),

ylim = c(0, K+1), xlab = xlab, ylab = "", yaxt = "n",main = main)
axis(2, at = K:1, labels = labels, cex.axis = 0.8)
arrows(intervals[,1], K:1, intervals[,2], K:1,

code = 3, angle = 90, length = 0.02, col = cols)
points(x, K:1, pch = pchs, cex = cexs, col = cols)
abline(v = 0,lty = 2)

}
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b.est = c(b.est, meta.res$b.F)
ci = rbind(ci, c(meta.res$b.F + c(-1,1)*1.96*meta.res$se.F))
labs = c("Discv", "Rep1", "Rep2", "Meta")
main.txt = "rs11984041 Stroke/LVD"
forest.plot(b.est, ci, labels = labs, main = main.txt, xlab = "logOR",

pchs = c(19, 19, 19, 18), cexs = c(.8, .8, .8, 1.3), cols = c(1, 1, 1, 4))
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The plot shows that the estimates are very consistent with each other. We also see how the uncertainty
has decreased in the combined estimate compared to the individual studies. (In practice, visualizations are
recommended to be done with existing R-packages such as meta that have many more options.)

9.1.2 Heterogeneity When we talk about heterogeneity in meta-analysis, we mean that the true effect
sizes between studies are different. How can we assess heterogeneity from the observed data? Let’s first list
heterogeneity measures that are typically reported in meta-analyses.

Cochran’s Q. Assume as the null hypothesis that all K studies are measuring the same effect β and that
the errors are Normally distributed: β̂k ∼ N (β, SE2

k), for study k. Then, each zk = (β̂k − β)/SEk ∼ N (0, 1),
and, assuming that the studies are independent, the sum of the squares of these K independent Normally
distributed variables has a chi-square distribution with K degrees of freedom:

∑K
k=1 z2

k ∼ χ2
K . When we

replace the true β with the fixed effect estimate β̂F from the IVW method, then we have a heterogeneity
measure called Cochran’s Q:

Q =
K∑

k=1

(
β̂k − β̂F

SEk

)2

=
K∑

k=1
wk

(
β̂k − β̂F

)2
,

that under the null hypothesis of the same underlying effect size has a distribution χ2
K−1 (where one degree

of freedom is lost as we have used the data to estimate the common mean β̂F to replace the true β). This
distribution can be used to derive a P-value for heterogeneity. However, when K is small (say < 5), there
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is little power to detect any heterogeneity with this test, and when K is large (say > 100), then even small
levels of heterogeneity become statistically significant.

I2. To change the focus from the P-value to the amount of heterogeneity, a heterogeneity index I2 has been
proposed:

I2 = Q − (K − 1)
Q

= 1 − K − 1
Q

.

This value is between 0 and 1 and often reported as percentage (with negative values rounded up to 0). The
idea is that if Q shows only the amount of variation expected under the null hypothesis (namely K −1, which
is the expected value of the χ2

K−1 distribution), then I2 = 0% indicating no heterogeneity, whereas values >
50% are interpreted as a moderate amount of heterogeneity and > 75% as high heterogeneity. With a small
number of studies, the uncertainty around the estimate of I2 is large and little can be inferred statistically.

Between study variance T 2. A possible model for heterogeneity between the true effects is a two-stage
hierarchical model where the heterogeneity is defined by a variance parameter T 2. We assume that first each
true effect is sampled from (βk|β, T 2) ∼ N (β, T 2) and then our estimates are sampled by adding some noise
around these values as (β̂k|βk) ∼ N (βk, SE2

k). From this model, a commonly-used estimate for T 2 is

T̂ 2 = Q − (K − 1)∑K
k=1 wk −

∑K

k=1
w2

k∑K

k=1
wk

.

This is on the same scale as the (squared) effect sizes, which makes it different from Q and I2 that are
independent of the scale of the effect size.

When T 2 > 0 in the model formulation above, we have defined the random effects meta-analysis model,
where the effect sizes across the studies are not assumed to be exactly the same but still they are possibly
quite similar (if T is small compared to the common mean β of all effects). In statistics literature, it is
common to derive a P-value assuming β = 0 from such a model and call that the random-effects model’s
P-value. Such a test is not suitable for GWAS, where the relevant null hypothesis is that all effects are 0,
rather than that only their mean is 0. This issue is discussed by Han & Eskin 2011 and they also propose a
modification that tests the null hypothesis of exactly zero effect in every study.

As a conclusion, the three quantities listed above to measure heterogeneity are often reported in meta-
analyses but they are often not that informative in situations, where there are only a handful of studies.

9.1.3 Bayesian meta-analysis The question of heterogeneity between studies can be more flexibly defined
in the Bayesian framework, where a set of models with different assumptions about heterogeneity can be
directly compared against each other and the interpretation of the results of the model comparison does not
depend on the sample size.

Let’s remind ourselves how, in the section 4, we compared the model with a non-zero effect to the null model
using the approximate Bayes factor, ABF.

We assumed that under the alternative hypothesis H1, there was a non-zero effect β ∼ N (0, τ2) whereas
under the null hypothesis β = 0. Then we derived the marginal likelihoods that these models give for the
observed data, and these marginal likelihoods were proportional to Normal densities:

P (Data | H1) = c · N (β̂; 0, SE2 + τ2) (4)

P (Data | H0) = c · N (β̂; 0, SE2) (5)

From this we got an approximate Bayes factor in favor of H1 vs. H0 as

ABF1:0 = P (Data | H1)
P (Data | H0) = N (β̂; 0, SE2 + τ2)

N (β̂; 0, SE2)
.
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Finally, we derived the posterior probability of H1 under the assumption that one of H0 and H1 is true and
that the prior probability of it being H1 was p1 = 1 − p0:

P (H1 | Data) = p1 · ABF1:0

p0 + p1 · ABF1:0
.

Thus, in order to get to a probabilistic model comparison, we needed to set values for two parameters: τ
that determines how large effects we expect to see under H1, and p1 that determines how probable we think
that the alternative hypothesis is a priori, before we have seen the data.

Let’s see how we generalize this to multiple studies. We use a multivariate Normal distribution as the prior
distribution of the effect size vector βββ = (β1, . . . , βK)T ∼ NK(0,ΘΘΘ), where the prior matrix ΘΘΘ is assumed to
take the form

ΘΘΘ = τ2


1 θ12 . . . θ1K

θ12 1 . . . θ2K

...
...

. . .
...

θ1K θ2K . . . 1

 .

Thus, the parameter τ2 still defines the prior variance of any one effect size parameter, but now effect sizes
from two studies may be correlated as defined by prior correlation θij . For example,

• the fixed effect model HF results if we set all θij = 1,

• the independent effect model HI results if we set θij = 0,

• the standard random effect model HR(ρ) results if we set θij = ρ for some value of ρ > 0, where values
close to 1 assume only little heterogeneity and values close to 0 assume almost independent effects; our
default is ρ = 0.9,

• the null model H0 is defined by setting τ2 = 0 (and then the values of θij do not matter).

The likelihood function defined by the observed data is also proportional to a multivariate Normal density
NK(β̂ββ;βββ,ΣΣΣ). If we assume that the studies are independent (no overlapping samples), then ΣΣΣ is simply a
diagonal matrix where the diagonal is (SE2

1, . . . , SE2
K).

The marginal likelihood for data given the model m (defined by prior variance matrix ΘΘΘm) is

P (Data | Hm) = c · NK(β̂ββ; 000,ΣΣΣ + ΘΘΘm).

Approximate Bayes factor between any two models m and ℓ is

ABFm:ℓ = P (Data | Hm)
P (Data | Hℓ)

= NK(β̂ββ; 000,ΣΣΣ + ΘΘΘm)
NK(β̂ββ; 000,ΣΣΣ + ΘΘΘℓ)

.

If model m is given a prior probability pm (and p0 + . . . + pK = 1), then we can compute the posterior
probability for model m as

P (Hm | Data) = pm · ABFm:0∑K
ℓ=0 pℓ · ABFℓ:0

,

where we have computed ABFs between all models and the null model (and ABF0:0 = 1). Thus, the posterior
probability of a model is proportional to the product of the prior probability of the model and ABF of the
model.

Let’s write a function abf.mv() that computes ABFs and posterior probabilities for any given set of prior
matrices and prior probabilities. First, we need a density for the multivariate normal. (There is also a
package mvtnorm for that.)
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log.dmvnorm <- function(x, mu = rep(0, length(x)), S = diag(1, length(x)) ){
#returns log of density of MV-Normal(mean = mu, var = S) at x
K = length(mu)
stopifnot(all(dim(S) == K))
stopifnot(length(x) == K)
chol.S = chol(S) #Cholesky decomposition
log.det = 2*sum(log(diag(chol.S))) #log of det(S)
inv.chol.S = solve(t(chol.S)) #inverse of choleskyˆT
return(-K/2*log(2*pi) - 0.5*(log.det + crossprod(inv.chol.S %*% (x-mu))))

}

abf.mv <- function(b.est, Sigmas, prior = rep(1,length(Sigmas))){
#Returns posterior probabilities of the models listed in Sigmas by their
# total variance matrix (= sum of prior + likelihood variance matrices)
#Returns also ABFs w.r.t the first model in Sigmas.

M = length(Sigmas) #number of models
K = length(b.est) #number of studies
prior = prior/sum(prior)
log.abf = sapply(Sigmas, function(x){log.dmvnorm(b.est, S = x)})
abf = exp(log.abf - log.abf[1]) #abf w.r.t the first model
posterior = prior*abf
posterior = posterior/sum(posterior)
return(list(posterior = posterior, abf = abf))

}

Example 9.5. Let’s generate 4 data sets for 10 case-control studies where the effective sample size varies
between 250 and 2500 and MAF varies between 0.4 and 0.5.

• 1st data set: all studies estimate the same effect β = 0.1.
• 2nd data set: there is heterogeneity and the true effects come from N (0.1, 0.042).
• 3rd data set: there is heterogeneity but no correlation in effects as they come from N (0, 0.12).
• 4th data set has a null SNP in all studies.

K = 10
n.eff = runif(K, 250, 2500)
f = runif(K, 0.4, 0.5)
se = 1/sqrt(2*n.eff*f*(1-f)) #SEs
w = 1/seˆ2 #precisions
b = 0.1 #true mean of effects in 1 and 2
B.est = cbind(rnorm(K, b, se), #fixed effects

rnorm(K, b, sqrt(seˆ2 + 0.04ˆ2)), #correlated random effects
rnorm(K, rep(0,K), sqrt(seˆ2 + 0.1ˆ2)), #independent effects
rnorm(K, rep(0,K), se)) #null model

Let’s then compare 4 models in these data sets: (1) fixed effects, (2) correlated effects, (3) independent
effects and (4) the null.

We specify these models by their matrices (ΣΣΣ + ΘΘΘm), run abf.mv() and print the forest plot of the data as
well as a barplot of the posterior probability across the 4 competing models, assuming the prior probability
of each model is the same (= 0.25).

Let’s also print the standard heterogeneity measures: value of I2 and the P-value from Cochran’s Q-statistic.
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Sigma = diag(seˆ2) #this is the variance of likelihood function -- same for all models
tau2 = 0.2ˆ2 #prior variance of effect size -- same for all non-null models
S.fix = tau2 * matrix(1, K, K) #fixed-effect model has 1s in the correlation matrix
S.cor = tau2 * matrix(0.9, K, K) #correlated effects has corr of 0.9 as off-diagonal
diag(S.cor) = tau2 #... and corr of 1 on the diagonal
S.ind = tau2 * diag(K) #diagonal matrix for independent effects model, off-diagonals = 0
S.null = matrix(0, K, K) #null model has 0 effects
Var.matrices = list(Sigma + S.null, Sigma + S.fix, Sigma + S.cor, Sigma + S.ind)

par(mfrow = c(4,2))
for(ii in 1:ncol(B.est)){

#Standard heterogeneity measures:
b.F = sum(w*B.est[,ii]) / sum(w) #IVW estimate under fixed-effect model
Q = sum( w * (B.est[,ii] - b.F)ˆ2 ) #Cochran's Q
pval.Q = pchisq(Q, df = K-1, lower = F)
I2 = 1 - (K-1)/Q #Iˆ2 from Q

#Bayesian model comparison:
abf.out = abf.mv(B.est[,ii], Sigmas = Var.matrices) #by default, prior is uniform
ci = cbind(B.est[,ii] - 1.96*se, B.est[,ii] + 1.96*se) #95%CIs
forest.plot(B.est[,ii], ci, main = paste("Data set",ii), xlab = "logOR")
barplot(abf.out$posterior, ylim = c(0,1), cex.sub = 1.3,

sub = paste0("I2=",max(c(0,round(I2*100))),"% het P=",signif(pval.Q,2)),
names.arg = c("NULL", "FIX", "COR", "IND"),
col = c("gray","limegreen","orange","dodgerblue"))

}
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The Bayesian approach gives a way to assess whether there is heterogeneity in the effect sizes by comparing
a correlated effects model and/or independent effects model to the fixed effect model. Above it indicates
heterogeneity in data sets 2 and 3, as expected. Similarly, the I2 value together with the P-value from
Q-statistic indicate heterogeneity in sets 2 and 3.

Extensions of the Bayesian approach to overlapping samples between studies, e.g., due to shared controls,
and to the subset models, where the effect is non-zero only in particular studies, are discussed by Trochet et
al. 2019.

As the final comment about heterogeneity: Whenever you have an interesting variant in a GWAS meta-
analysis, make a forest plot over all the cohorts to see how the effects look like and don’t rely only on some
quantitative heterogeneity measures, especially if there are only a couple of studies included.

9.1.4 Publication bias A crucial part of all meta-analyses is to include in the analysis all the data
available on the particular research question. In particular, one should never use the results of the studies
to decide which studies to include or leave out since that will obviously bias the results of the meta-analysis.
Studies can be left out because of quality issues or differences in phenotypes, for example, but these must be
objective criteria that are not based on the results of the study in any one SNP. In general, meta-analyses
in epidemiology and social science etc. are hampered by publication bias which means that only studies
reporting statistically significant results are published whereas null studies never find their way to public.
Consequently, a meta-analysis may report a significant effect based on published studies even though there
could be another set of unpublished studies that could show that, when all information is combined, there
is no effect. The pubication bias is less of a problem in GWAS, because GWAS results are published
simultaneously genome-wide, not separately for the “significant” SNPs.

9.2. Multiple regression with summary statistics

Meta-analysis yields a set of association statistics (β̂, SE, P-value). Let’s look at how we can do some of the
downstream analyses with these pieces of information without an access to the full raw genotype-phenotype
data.

Let’s consider the joint linear model with p SNPs with the mean centered phenotype y and standardized
genotypes (and then we can drop the intercept term from the model):

yyy = X∗X∗X∗λλλ∗ + εεε.

The least squares estimator and its variance are

λ̂λλ
∗

=
(
X∗X∗X∗TX∗X∗X∗)−1

X∗X∗X∗Tyyy, (6)

Var
(
λ̂λλ

∗)
= σ2

J

(
X∗X∗X∗TX∗X∗X∗)−1

, (7)

where

• σ2
J = Var(ε) = Var(y) − (λ̂λλ

∗
)TRRRλ̂λλ

∗
is the error variance from the Joint model and RRR is the LD matrix

of the SNPs in XXX.

It turns out that these quantities can be written using summary data from the marginal models yyy = xxx∗
l βl +εεεl,

since (
X∗X∗X∗TX∗X∗X∗) = nRRR (8)

X∗X∗X∗Tyyy = nβ̂ββ
∗

(9)

Var(y) = (β̂∗
l )2 + σ̂2

l = (β̂∗
l )2 + 2nfl(1 − fl) · SE2

l , (10)

11

https://doi.org/10.1002/gepi.22202
https://doi.org/10.1002/gepi.22202


where fl is the MAF of SNP l and SEl is the standard error of the allelic marginal effect β̂l, as reported by
GWAS.

With these formulas we have that

λ̂λλ
∗

= RRR−1β̂ββ
∗
, (11)

Var
(
λ̂λλ

∗)
= σ̂2

J

n
RRR−1, (12)

σ̂2
J = medianp

l=1

{
(β̂∗

l )2 + 2nfl(1 − fl) · SE2
l

}
− (β̂ββ

∗
)TRRR−1β̂ββ

∗
, (13)

where the median is taken over all the available SNPs in XXX and its function is to reduce noise compared to
the corresponding variance estimate taken from any one l. In particular, we do not need an access to raw
XXX and yyy in order to do a stepwise forward selection or probabilistic fine-mapping as long as we have the
marginal GWAS association statistics and the LD matrix available.

If association statistics come from an IVW fixed effect meta-analysis, then the LD-matrix is a weighted sum
of the LD-matrices of individual studies, where the weights are proportional to the sample sizes of the studies
Before the meta-analysis, one must make sure that all the studies have measured the effects on the same
scale in order that the fixed effect meta-analysis of the effect sizes makes sense. Typically, this is ensured by
normalizing the trait to have a variance of 1 in each study before running the GWAS.

If the association statistics come from a logistic regression model applied to case-control data, we
modify the above formulas by setting σ2

J = 1 and replacing the sample size n with the effective sample size
ne. If summary data come from one study, then ne = nϕ(1−ϕ), where ϕ is the proportion of cases in data. If
summary data are from a meta-analysis over several studies, then ne is the sum of the effective sample sizes
n

(i)
e = n(i)ϕi(1 − ϕi) over individuals studies, where n(i) is the total sample size (cases + controls) of study

i and ϕi is the proportion of cases in study i. In this meta-analysis case, the LD-matrix is a weighted sum
of the LD-matrices of individual studies, where the weights are proportional to the effective sample sizes of
the studies. This approximation works well when the effect sizes are not very large, MAF is not very small
and ϕ is quite balanced, say, within (0.2,0.8).

The idea of computing the joint model from the summary statistics was introduced by Yang et al. 2012 and
has been widely used through the conditional and joint analysis (COJO) module of the software package
GCTA. The same idea is used in many fine-mapping software packages such as FINEMAP.

Let’s try it with two SNPs and a quantitative trait. (Uses geno.2loci() from Section 7 to generate
genotypes.)

n = 2000
maf = c(0.3, 0.4)
lambda = c(0.2, -0.05) #true causal effects
r = 0.5 #LD btw SNPs 1 & 2
X = geno.2loci(n, r, mafs = maf, return.geno = TRUE)
R = cor(X) #LD in data
f = colSums(X)/2/n #MAFs in data
sc = sqrt(2*f*(1-f)) #scaling constants
y = scale(X %*% lambda + rnorm(n, 0, sqrt(1 - var(X %*% lambda))))
b.est = rbind(summary(lm(y ~ X[,1]))$coeff[2,1:2],

summary(lm(y ~ X[,2]))$coeff[2,1:2]) #col1 estimate, col2 SE
b.s = b.est[,1]*sc #scaled betas
l.s.sumstat = solve(R, b.s) #computes scaled lambdas as Rˆ-1 * b.s
sigma2.J.sumstat = median(b.sˆ2 + n*scˆ2*b.est[,2]ˆ2) - as.vector(t(b.s) %*% solve(R, b.s))
l.s.se.sumstat = sqrt(sigma2.J.sumstat/n * diag(solve(R))) #SEs of scaled lambdas
cbind(lambda = l.s.sumstat/sc, se = l.s.se.sumstat/sc) #show on allelic scale

## lambda se
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## [1,] 0.21911598 0.03996448
## [2,] -0.05144214 0.03695407

#Compare to the joint model on raw data
summary(lm(y ~ X))$coeff[2:3,1:2]

## Estimate Std. Error
## X1 0.21883814 0.04014083
## X2 -0.05050388 0.03681416

Same results up to the 3rd decimal. (Binary trait case left as an exercise.)

Given that the association summary statistics from large meta-analyses are publicly available, it would be
very nice if we could do joint models and fine-mapping by combining those statistics with LD-information
from some reference database without needing to access the original genotypes. Indeed, this is how the
GCTA-COJO analyses are done. Unfortunately, with large datasets, such as the UK Biobank, it has become
clear that the accuracy of the LD-estimates must increase together with the GWAS sample size. Otherwise,
the summary statistic methods start reporting false positives because of the inconsistency between the
highly precise effect estimates and the LD information from the reference data (Benner et al. 2017). Hence,
in general, we will need LD-information from the same data from which the GWAS summary statistics were
calculated in order to do reliable fine-mapping and joint analysis of several variants. This is one reason why
future meta-analyses should be planned in such a way that all data are collected in one place, and why we
will need new ways to seamlessly distribute LD-information as another type of GWAS summary statistics.

9.3 Polygenic scores

Our goal so far has been to identify causal variants that tell about the biology of the phenotype and
propose ways for targeted treatments.

Another way to utilize GWAS results is to predict phenotypes. There is a difference between understanding
the causes of a phenomenon and an ability to predict the phenomenon: While understanding typically implies
a good prediction, a good prediction does not necessarily require understanding. For example, we do not
need to know which of the two variants in high LD with each other is a causal one in order to do a good
prediction: Either of the variants will do almost equally well when used in a prediction model, because, due
to high LD, they carry almost the same information about the genetic differences between individuals.

Let’s consider the standard additive model for the phenotype across the whole genome:

yi = ηi + εi =
p∑

k=1
xikλk + εi.

If we knew the true causal effects λk, then we could do the perfect prediction of the genetic component
ηi =

∑
k xikλk for individual i given her/his genotypes. In the population, this perfect genetic prediction

would explain the proportion h2 (=additive heritability) of the total phenotypic variance and this would be
as good as an additive genetic prediction ever gets.

By a polygenic score (PGS) we mean an instance of the additive genetic predictor defined by a set of
weights ααα = (αk)p

k=1 that predicts the genetic component of individual i as

PGSi(ααα) =
p∑

k=1
xikαk.

Typically, the weights αk are obtained from the GWAS summary statistics β̂k, possibly with some variable
selection and/or shrinkage of the effect sizes and/or LD-adjustments to approximate the causal effects λk

rather than the marginal effects βk.
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Such PGS can then be tested against the known phenotype values in a test cohort to see how much phenotypic
variation it explains.

A guide for making PGS by Choi et al. 2020 and the corresponding online tutorial. These articles talk about
developing and evaluating polygenic risk prediction models (Chatterjee et al. 2016) and personal and clinical
utility of PS (Torkamani et al. 2018).

The methods to derive the best possible PGS weights αk are currently one of the hot topics in the GWAS
field since the recent results have shown that the current GWAS summary statistics can already provide
useful predictive discrimination for risk of several diseases (slides 30-33). Hope is that by more advanced
modeling, the accuracy can be further improved.

New methods are typically compared to the two reference methods: P-value clumping and LDpred. Both
of these take in the GWAS association statistics and produce PGS-weights by accounting for LD. P-value
clumping prunes away variants that are in high LD with each other whereas LDpred is a Bayesian method
that outputs estimates for the causal effect sizes for each variant by accounting for the LD-structure around
the variant.

P-value clumping (r2,d,Pthr). The simplest PGS uses the marginal GWAS effect estimates β̂k as weights.
Suppose that we have two variants in high LD. Their marginal effects are almost the same and including
them both in the PGS is likely to overestimate the joint contribution from these two SNPs and, hence, reduce
the accuracy of PGS. To avoid this, we do some LD-pruning meaning that we will only include non-zero
weights for SNPs that are not in high LD with each other. For example, we may require that r2 < 0.1
between all pairs of variants that have non-zero weights in the PGS. In practice, such LD-pruning is applied
only within certain window size (e.g., d = 1Mb) for computational reasons and because LD decays quickly
with distance in homogeneous populations. P-value clumping means LD-pruning that prefers to leave in
the data the variant with the lowest GWAS P-value and prune away its LD-friends that have higher GWAS
P-values. This way our final LD-pruned data set contains as many of the top GWAS variants (in terms of
the lowest P-values) as possible given the pruning parameter r2. Typically, there is also a P-value threshold
(between 0.05 and 5e-8) to ensure that all variants included in the PGS with non-zero weights will have a
GWAS P-value < Pthr.

Training, validation and testing. Let’s put the generation of the PGS-weights using the P-value clumping
method to the context of typical prediction model building having three independent data sets for each of
training, validation and testing part.

• Training data is an existing large GWAS on the phenotype of interest whose marginal association
statistics we can access. Ideally, we would also have access to the LD information of the training
data, but when this is not possible, we use external reference data from the GWAS population as an
approximation to the LD in the training data.

• Validation data are genotype-phenotype data that we use to tune the parameters of the PGS model,
namely r2 and Pthr (while d is often assumed fixed). This means that we will make a set of PGS for a
grid of values of r2 and Pthr, and test in the validation set how each of them performs. We choose the
best performing version of the PGS as our final PGS.

• Testing data are individual level genotype-phenotype data that are independent from the training and
validation data. The testing data are used only to test the final PGS that was chosen at the validation
step. The performance of the PGS in the testing data is expected to generalize to other data sets that
have similar properties: same population, same phenotype etc. Note that the performance in validation
data may overestimate the performance of the PGS in some new data since the validation data were
used for optimizing the PGS parameters. The performance in the testing data does not suffer from
this problem and it is therefore the final result to report about the performance of the PGS created.

PRSice2 is software to generate and validate PGS given the summary statistics and validation data. Also
PLINK2 does P-value clumping and computes PGS.
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