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We have seen Manhattan plots for BMI, migraine, schizophrenia etc. where the number of association regions
rises to hundreds. How much these regions explain of the population variation in a trait or disease liability?
How many other genomic regions, or additional variants in the current regions, might also contribute to
these phenotypes? Is there something special about the genomic regions that harbor causal variants for a
particular phenotype? How well can we predict these phenotypes from genetic data and how much even
larger GWAS are likely to improve these predictions?

These are questions about genetic architecture of the phenotypes. A primary parameter of genetic
architecture is heritability.

8.1 Heritability

Heritability measures, in a particular population, the proportion of variance of the phenotype that is due to
genetic differences between individuals. A review by Visscher et al. is an excellent overview of the concept
and its interpretation.

An important point is that heritability is always a property of a particular population, and its value can
vary between different environmental conditions as the relative roles of genes and environment change. For
example, when the level of nutrition is fairly equal between individuals, then the heritability of adult height
is likely high because the observed variation is largely caused by genetics. If, instead, the population is
strongly divided with respect to the level of nutrition, then the heritability may be lower because now the
variation in the level of nutrition causes large variation in height.

Heritabilities have been estimated for a long time using phenotypic correlations between relatives of dif-
ferent degrees. (Slides 3-4) For example, the traditional twin estimates compare phenotypic similarity in
monozygotic twin pairs (who share whole genome IBD = 2) to similarity in dizygotic twin pairs (who are
genetically like any other pairs of full-siblings: IBD0 = 25%, IBD1 = 50%, IBD2 = 25%). Under some
(strong!) assumptions, such as that the environmental contribution to the phenotypic similarity would be
the same for a monozygotic as for a dizygotic twin pair, and that the genetic effects act additively over loci,
it follows that the difference between the correlation estimates of these two types of twin pairs leads to an
estimate of heritability.

More generally, any pedigree records can been used for estimating how the observed phenotypic correlations
can be explained by the estimated genetic sharing, which, under (strong!) assumptions about covariance of
the environmental effects between different relative types, again leads to estimates of heritability. However,
since the close relatives also tend to share environment to some degree, it may be difficult to accurately
separate the effects of the shared genetics from that of the shared environment using data on only close
relatives.

Here our interest is in how much heritability we can explain with the already discovered GWAS regions, and
whether we could use GWAS data, that typically have only few close relative pairs, to estimate heritability of
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a trait. In particular, such estimates should be immune to the confounding factors of the shared environment
that occurs between close relatives.

8.2 Heritability of GWAS loci

We consider the measure of heritability in the narrow sense, h2, which is the heritability due to the
additive genetic effects. Thus, dominance effects within one locus (i.e. the amount by which the het-
erozygotes’ phenotype mean deviates from the average of the two groups of homozygotes), or interaction
effects (epistasis) between multiple loci, are not included in this estimate. The broad-sense heritability H2,
which includes all variance due to genetics, is more difficult to estimate than h2.

If SNP l has MAF fl and allelic causal effect λl, then the phenotypic variance explained (causally) by the
SNP is 2fl(1 − fl)λ2

l = λ∗
l

2. (Here λ∗
l denotes the scaled causal effect introduced in Section 7.) If the trait

variance in population is σ2
Y , then the (additive) heritability contributed by the SNP is

h2
l = λ∗

l
2

σ2
Y

= 2fl(1 − fl)λ2
l

σ2
Y

.

In practice, the variance explained is often estimated using an estimate of the marginal effect as (β̂∗
l )2 =

2fl(1 − fl)β̂2
l . This is the phenotypic variance that is explained by genetic variation tagged by variant l,

(similar interpretation applies to heritability), but is still often interpeted as “variance explained by variant
l”.

Let’s assume that we have standardized the phenotype (σ2
Y = 1) before the GWAS. According to the simplest

model, assuming no LD or deviation from the additivity between the causal effects of different variants, the
additive heritability over all variants is h2 =

∑p
l=1 λ∗

l
2. More generally, allowing LD, p variants in a region

contribute to the phenotype of one individual by the quantity xxx∗Tλ∗λ∗λ∗, and the variance contributed by this
region is

h2
reg = Var(xxx∗Tλ∗λ∗λ∗) = λ∗λ∗λ∗T Var(xxx∗)λ∗λ∗λ∗ = λ∗λ∗λ∗TRRRλ∗λ∗λ∗

= (RRR−1β∗β∗β∗)TRRR(RRR−1β∗β∗β∗) = β∗β∗β∗TRRR−1β∗β∗β∗,

where RRR is the LD-matrix (Pearson correlations) of the p variants. The above formula shows how to compute
the regional heritability using either the causal effect sizes or the marginal effect sizes (latter of which are
directly estimated by the standard GWAS). If there is no LD (RRR = III) between the variants, then the
heritability is the sum of the squared scaled effects (either causal or marginal effects as they are the same
in this case). For example, FINEMAP (from Section 7 of course material) gives an estimate of regional
heritability for each causal configuration in its .config file according to the formula above.

Example 8.1. Consider SNPs 1 and 2 whose minor allele correlation is r12, MAFs are 0.24 and the
marginal estimates are β̂1 = β̂2 = 0.08 in a QT GWAS with a phenotypic variance of 1. What is the
estimate of heritability explained by these SNPs jointly, and how much it differs from the case where they
were independent, when r12 is 0.99 (almost the same variant twice), 0.3 (positively correlated effect alleles),
0 (independece) or -0.2 (effect alleles are masking each other)?

b.est = c(0.08, 0.08)
f = c(0.24, 0.24)
b.s = b.est * sqrt(2*f*(1-f)) #scaled marginal effects
res = c()
for(r.12 in c(0.99, 0.3, 0, -0.2)){

R = matrix(c(1, r.12, r.12, 1),2,2)
#regional heritability b.sˆT Rˆ-1 b.s
h2.reg = t(b.s) %*% solve(R) %*% b.s #solve(R) is the inverse of R
h2.ind = sum(b.sˆ2)
res = rbind(res,c(r.12, h2.reg, h2.ind))
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}
colnames(res) = c("r.12","h2.reg","h2.ind")
res

## r.12 h2.reg h2.ind
## [1,] 0.99 0.002346452 0.00466944
## [2,] 0.30 0.003591877 0.00466944
## [3,] 0.00 0.004669440 0.00466944
## [4,] -0.20 0.005836800 0.00466944

When the effect alleles are 0.99 correlated, then they are explaining the same signal and their joint variance
explained is, correctly, only half of the sum of the marginals. With a negative correlation, and a similar
direction and size in the observed effects, the SNPs must been masking each other’s marginal effects and
their total contribution is larger than the sum of their marginal contributions.

For diseases, the heritability is often measured on the liability scale, which requires an estimate of the
disease prevalence (see Box 5 of Visscher et al.).

A few examples of the heritability estimates summed over GWAS loci (defined by a variant having P <
5e-8), in decreasing order of heritability:

• Paraoxonase-1 level has a heritability of 70% at a single locus (unsurprisingly, harboring the gene
PON1 ) Benner et al. 2018.

• Height study by Yengo et al. 2022 found that 12,111 SNPs in 7,209 loci accounted for ~40% of variation
in height. Sample size was 5.4 million! The GWAS loci covered 21% of the genome and it seems that
these loci cover all effects on height from common SNPs.

• LDL-cholesterol study by Graham et al. 2021 explained ~13% of the variance in HDL-C and LDL-C
by up to 1750 variants in 923 loci.

• Schizophrenia study by Tubetskoy et al. 2022 explained about 2.4% of variance in liability using 277
independent GWS variants.

• Crohn’s disease study by Jostins et al. 2015 explained about 14% of variance in liability from 160 loci.

• BMI study by Locke et al. 2015 found that the 97 GWS loci account for 2.7% of BMI variation.

In particular, for many complex diseases, such as schizophrenia, the variance explained by GWS loci is
still very small. On the other hand, traditional ways to estimate heritability suggest a high heritability for
schizophrenia. Where is that heritability, if the top GWAS loci show this little traces of it? Or are the
traditional estimates grossly overestimating heritability? This gap is called the missing heritability problem
(Slides 6-7).

Next, we will look at two approaches that use GWAS data to estimate the genome-wide SNP heritability
h2

SNP that considers the heritability contribution of all SNPs that are included in the study, not just those
that happen to reach the genome-wide significance level. The first method, the linear mixed model, is
based on an efficient way of correlating the variant sharing with the phenotypic similarity in the population
sample. The second method, LD-score regression (LDSC), is based on a link between the amount
of tagging by LD and the amount of GWAS signal seen at a variant, which link is induced by a highly
polygenic genetic architecture. The linear mixed model requires original phenotype-genotype data whereas
LDSC works with the GWAS summary data (i.e. the marginal effect estimates and their SEs).
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8.3. Linear Mixed Model

Let’s write down the full linear model for additive effects across the genome for a quantitative phenotype Y :

yi = µ + zzzT
i ααα + xxx∗

i
Tλλλ∗ + εi = µ + zzzT

i ααα +
p∑

l=1
x∗

ilλ
∗
l + εi,

where zzzi is the vector of covariate values for i and εi ∼ N (0, σ2
E) is the (environmental) error term that is

assumed to be uncorrelated across individuals.

We saw in GWAS 7 that if we try to estimate the parameters λ∗
l using the ordinary least squares estimator,

we run into problems because of high correlations between SNPs and, more generally, overfitting. This is
because the standard linear regression model is too flexible to adapt to the data when p grows large if the
effect sizes are not restricted in any way. To overcome these problems, the linear mixed model treats the
effect sizes λ∗

l as random effects that share a common (prior) distribution, here chosen to be N (0, τ2),
where τ2 will be estimated from the data. Now the parameters λ∗

l are not allowed freely to choose their
values but their magnitude is restricted by a shared variance parameter τ2. The model is able to learn
from the data how the whole set of values of λ∗ look like when considered together, and then apply that
information to keep the magnitude of λ∗s appropriate by adjusting a single variance parameter τ2. Another
way to think about the difference between this random effects model and the least squares estimation is
that our focus changes from estimating each of the p values λ∗

l to estimating their shared distribution, as
determined by the variance parameter τ2. Hence, we reduce the number of parameters estimated from p to
1, and will avoid overfitting.

The name mixed model reflects that the model is a mix of both fixed effects α, whose individual values are
estimated as in the standard linear model, and random effects λ∗

l , whose joint distribution is estimated,
rather than the individual values of λ∗

l s.

How can we link the new parameter τ2 to the observed values of y? The answer is to write down what
the random effect assumption means in terms of the observed similarity (mathematically covariance) of the
phenotypes of individuals i and j. If we follow the random effect formulation, and independently draw each
λ∗

l ∼ N (0, τ2), what is the consequence on the phenotypic covariance between i and j, induced by the terms
ηi =

∑p
l=1 x∗

ilλ
∗
l and ηj =

∑p
l=1 x∗

jlλ
∗
l ?

Cov(ηi, ηj) = Cov
(

p∑
l=1

x∗
ilλ

∗
l ,

p∑
l=1

x∗
jlλ

∗
l

)
=

p∑
l=1

p∑
k=1

x∗
ilx

∗
jk Cov(λ∗

l , λ∗
k) =

p∑
l=1

x∗
ilx

∗
jl Cov(λ∗

l , λ∗
l )

=
p∑

l=1
x∗

ilx
∗
jlτ

2 = pτ2GGGij ,

where GGG is the GRM-cor from chapter 5 of the course material, i.e., GGG = 1
pXXX∗XXX∗T is the n × n empirical

correlation matrix for individuals computed across all SNPs.

This is saying that the additive genetic components ηi of the trait are correlated across the individuals
according to the genetic relatedness of the individuals, as measured by GRM-cor, and are scaled so that
their variance is pτ2, where τ2 is the variance of the causal effect sizes. Note that τ2 is also the expected
phenotypic variance contributed by any one causal effect as E(λ∗

l
2) = Var(λ∗

l ) = τ2. If we ignore LD between
nearby variants, then σ2

G = pτ2 is the expected phenotypic variance contributed by all p variants together,
and we would estimate the heritability as ĥ2 = σ2

G/(σ2
G + σ2

E).

The last step is to write down the joint distribution of the phenotype vector yyy, as defined by the variance
components η and ε, from the relationship yi = µ +zzzT

i ααα + ηi + εi. The phenotype vector is an n-dimensional
multivariate normal vector, whose mean µµµ has components µi = µ + zzzT

i ααα and whose covariance matrix
ΣΣΣ(σ2σ2σ2) = σ2

GGGG + σ2
EIIIn is a function of two unknown variance parameters σ2σ2σ2 = (σ2

G, σ2
E). (Slide 8.)

A naive computation of such n-dimensional multivariate Normal likelihoods is expensive – O(n3) operations
– and in recent years many new ways to speed up the computation have been introduced. Currently, GCTA
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with its fastGWA module remains a widely-used method and BOLT-REML is an efficient implementation
of the mixed model applicable to 100,000s of samples. Recently, REGENIE has implemented an efficient
version of a similar model.

In what follows, we will experiment with the mixed model by using a simple trick that can be done easily in
R, but which would not generalize to multiple variance components, and therefore differs from more complex
methods such as GCTA and BOLT-REML.

8.3.1 A Mixed model estimation method To simplify the setting, let’s assume we first regress out the
covariates from y using linear regression and consider the (quantile normalized) residuals from that regression
as our covariate-adjusted phenotype y′. Our task is to maximize the multivariate Normal likelihood function
of

y′y′y′ ∼ N
(
0,ΣΣΣ(σ2σ2σ2)

)
, with respect to σ2σ2σ2.

The log-likelihood of the multivariate Normal is

L(σ2σ2σ2) = −1
2 log detΣΣΣ(σ2σ2σ2) − 1

2y′y′y′TΣΣΣ(σ2σ2σ2)−1y′y′y′.

If we make an eigendecomposition of the GRM-cor matrix GGG = UUUDDDUUUT , where UUU is an orthonormal matrix of
eigenvectors and DDD is a diagonal matrix of eigenvalues, then the inverse and determinant of the n dimensional
matrix can be transformed to those of diagonal matrices by rotating the phenotype with the eigenvectors
into a new phenotype ỹyy = UUUTyyy′ :

L(σ2σ2σ2) = −1
2

n∑
i=1

log(σ2
GDi + σ2

E) − 1
2

n∑
i=1

ỹ2
i

σ2
GDi + σ2

E

= −1
2

n∑
i=1

(
log(σ2

GDi + σ2
E) + ỹ2

i

σ2
GDi + σ2

E

)
,

where Di is the diagonal element i of DDD. (The derivation of the above transformation in not explained in
detail here but is given by Pirinen et al. 2013.) This version of the log-likelihood is easy to optimize in R
by using optim(), and we can help optim() by giving it also the gradient of the log-likelihood. Here is a
function that returns the log-likelihood which we can then maximize by optim().

lmm.loglik <- function(sigma, y, d)
{

sigma.sum = sigma[1] * d + sigma[2]
res = -0.5 * sum(log(sigma.sum) + y ˆ 2 / sigma.sum)
return(res) #returns log likelihood

}

lmm.gradient <- function(sigma, y, d)
{

sigma.sum = sigma[1] * d + sigma[2]
tmp = y ˆ 2 / sigma.sum - 1
dsigmaG = 0.5 * sum(d / sigma.sum * tmp)
dsigmaE = 0.5 * sum(1 / sigma.sum * tmp)
return(c(dsigmaG, dsigmaE)) #returns gradient

}

Example 8.2. Let’s try the mixed model with n = 2000 samples and p = 10, 000 independent common
variants with MAF 0.5 and simulate trait with h2 = 0.5. We expect that each variant here would explain
only h2/p = 0.00005 of the trait variance! We don’t expect to have any genome-wide significant findings
with n = 2000 samples.
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p = 10000
n = 2000
f = 0.5
h2 = 0.5

X.s = scale(replicate(p, rbinom(n, size = 2, p = f) )) #use scaled genotypes

#tauˆ2 = var(lambda.s) = h2 / p
lambda.s = rnorm(p, 0, sqrt( h2 / p)) #scaled effects

#generate phenotype: SNP effects + random noise with var=1-h2
y = scale( X.s %*% lambda.s + rnorm(n, 0, sqrt(1-h2) )) #scaling makes mean(y)=0 as our LMM ignores intercept!

#test individual SNPs and make a QQ-plot
pval = as.numeric(apply(X.s, 2, function(x){summary(lm( y ~ x))$coefficients[2,4]}))
expect.stats = qchisq(ppoints(p), df = 1, lower = FALSE)
obs.stats = qchisq(pval, df = 1, lower = FALSE)
lambda = median(obs.stats) / median(expect.stats) #GC lambda = ratio at medians
qqplot(expect.stats, obs.stats, xlab = "chisq expected", ylab = "chisq observed",

sub = paste0("lambda=",signif(lambda,3)), cex = 0.8)
abline(0,1)
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sort(pval)[1:5] #show the 5 smallest P-values

## [1] 0.0001326792 0.0001490890 0.0002324405 0.0002470307 0.0006383562

We have no genome-wide significant SNPs and the QQ-plot doesn’t look very inflated. However, the data
were simulated in such a way that we expect that the SNPs explain together half of the phenotypic variance,
even if we can’t see any individual SNP having a clear effect.

What does the mixed model say?
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#G = cor(t(X.s)) #make GRM-cor matrix
G = (X.s %*% t(X.s))/p #make GRM-cor matrix (see Chapter 5.1.2.)
eig = eigen(G) #decompose G = U D t(U)
y.Ut = t(eig$vectors) %*% y #transform y to y.Ut by using Uˆt y
d = eig$values #eigenvalues of G

start.val = c(1, 1) / 2 #starting values for the optimization of the two variance parameters
#1st optim run with robust Nelder-Mead method without gradient
res = optim(start.val, fn = lmm.loglik, y = y.Ut, d = d,

method = 'Nelder-Mead', control = list(fnscale = -1)) #fnscale=-1 to maximize, not minimize
#2nd optim run refining the estimate by BFGS method using gradient
res = optim(res$par, fn = lmm.loglik, gr = lmm.gradient, y = y.Ut, d = d,

method = 'BFGS', hessian = T, control = list(fnscale = -1)) #fnscale=-1 to maximize, not minimize
sigma2 = res$par #estimates of sigma.Gˆ2 and sigma.Eˆ2
sigma2.SE = sqrt(diag(solve(-res$hessian))) #SE of sigma_Gˆ2 and sigma_Eˆ2
res = cbind(sigma2, sigma2.SE) # genetic variance and environmental variance with SEs
rownames(res) = c("sigma.Gˆ2","sigma.Eˆ2")
res

## sigma2 sigma2.SE
## sigma.G^2 0.4919493 0.07748576
## sigma.E^2 0.5094548 0.07062575

h2.est = sigma2[1]/sum(sigma2)
h2.est # heritability is ~sigma.Gˆ2 since var(y)=1. Then we also have SE(h2) = SE(sigma.Gˆ2).

## [1] 0.4912595

Our estimate is close to the true value of 50%. (Note that given the SE of 0.07 we are lucky to get this close
here.) The mixed model can indeed pick up the joint contribution of all those tiny effects! Note that we
haven’t derived SE for ĥ2 but in cases where total variance of phenotype is 1, we can use SE of σ̂2

G as SE of
ĥ2.

Example 8.3. LMM worked nicely above, but what happens when the true genetic architecture is not
100% polygenic, that is, when only a subset of all variants contribute to the phenotype. The mixed model
was derived assuming that all effects are non-zero. What happens if we simulated non-zero effects only for,
say 20% of the SNPs? Let’s recycle our genotype data and G matrix and its decomposition since those take
some time to make. Let’s simply simulate new sets of λ∗s for a scenario where 20% of SNPs have non-zero
effects and together they explain 30% of the trait variance. Let’s repeat this 10 times and plot the estimates.

set.seed(12)
phi = 0.2 # proportion phi of the SNPs are non-zero
h2 = 0.3
n.iter = 10 #how many simulations -- all use the same genotype data
h2.res = matrix(NA, ncol = 2, nrow = n.iter)

for(iter in 1:n.iter){
#choose which SNPs have an effect
c.ind = sort(sample(1:p, size = round(phi*p)))
#var(lambda.s) = h2 / (phi*p)
lambda.s = rnorm(length(c.ind), 0, sqrt( h2 / (phi*p)))
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#generate phenotype: SNP effects + random noise with var = 1 - h2
y = scale( X.s[,c.ind] %*% lambda.s + rnorm(n, 0, sqrt(1-h2) ))#scale: mean(y) = 0, sd(y) = 1
y.Ut = t(eig$vectors) %*% y #transform y to y.Ut = Uˆt y

start.val = c(1, 1) / 2 #starting values for the optimization of the two variance parameters
#1st optim run with robust Nelder-Mead method without gradient
res = optim(start.val, fn = lmm.loglik, y = y.Ut, d = d,

method = 'Nelder-Mead', control = list(fnscale = -1))
#2nd optim run refining the estimate by BFGS method using gradient
res = optim(res$par, fn = lmm.loglik, gr = lmm.gradient, y = y.Ut, d = d,

method = 'BFGS', hessian = T, control = list(fnscale = -1))
sigma2 = res$par #estimates of sigma.Gˆ2 and sigma.Eˆ2
sigma2.SE = sqrt(diag(solve(-res$hessian))) #SE of sigma_Gˆ2 and sigma_Eˆ2
h2.res[iter,] = c(sigma2[1]/sum(sigma2),sigma2.SE[1]) # h2.est with sigma.Gˆ2 SE

}
plot(1:n.iter, h2.res[,1], pch = 19,

main = paste0(" n = ",n," p = ",p," h2 = ",h2," phi = ",phi),
xaxt="n", ylab="h2 estimate", ylim = c(0,1), xlab = "")

arrows(1:n.iter, h2.res[,1]-1.96*h2.res[,2], 1:n.iter, h2.res[,1]+1.96*h2.res[,2],
code = 3, length = 0.05, angle = 90)

abline(h = h2, lty = 2, col = "green")
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It works fine even when only 20% of the SNPs have non-zero effects. It seems that LMM is robust to a
considerable proportion of zero effects among the SNPs, which is great news!

8.3.2 Mixed model heritability estimates LMMs have been used for a long time in animal breeding and
pedigree analyses and this approach became popular in GWAS data in humans by the landmark publication of
Yang et al. (2010) where they showed that 45% of the variation in height could be explained by about 300,000
SNPs on a genotyping chip. This was an important piece of information for the discussion surrounding the
missing heritability problem, because after that publication it became more widely considered plausible that
a large part of the gap between the variance explained by the GWS regions (only ~5% for height at that
time) and the heritability of height as estimated by twin and sibling studies (~70-80%), may well be just
because small genetic effects do not become GW-significant with the given sample sizes.
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The authors have explained in their later publication Visscher et al. 2010 that “During the refereeing process
(the paper was rejected by two other journals before publication in Nature Genetics) and following the
publication of Yang et al. (2010) it became clear to us that the methodology we applied, the interpretation
of the results and the consequences of the findings on the genetic architecture of human height and that for
other traits such as complex disease are not well understood or appreciated.”

Nowadays, the LMM is routinely used for SNP heritability estimation of quantitative traits. More recent
applications suggest that for height and BMI there is not much of a gap anymore between the SNP heritability
from very dense marker sets and the estimates of the total heritability by other means than through GWAS
data Yang et al. 2015, Young 2019, Yengo et al. 2022. At the same time, the analysis has got more complex
compared to the original version that only included one variance component for all the SNPs, as in our
example above. It is now clear that a better model should allow SNPs with different MAFs and different
amounts of LD-tagging to have different variance parameters of the effect size distribution. In practice,
this means that one should compute separate GRM-cor matrices for each group of SNPs that needs to be
modeled separately and then estimate their variance contribution jointly, in a single LMM, that can include
tens of different GRM-cor matrices. This is possible with both GCTA and BOLT-REML.

A typical heritability analysis using LMM filters out close relatives (at least 2nd degree or closer). This is be-
cause closer relatives usually are also positively correlated in some of their environmental factors, which could
create correlation in their phenotypes that LMM would falsely pick up as heritability. When the analysis is
done in a homogeneous population sample of “unrelated” individuals, this concern is greatly reduced. Thus,
LMM with GWAS data does something that has been impossible to imagine before: Estimating heritability
using “unrelated” individuals. A downside of restricting the analysis to unrelateds is that the precision of
the variance components is much smaller than if there were a larger range of possible relationships in the
data. This means that large samples are needed to get useful estimates of SNP heritability from population
data.

What about disease studies? The GCTA approach was also quickly applied to case-control data, but the
results are much more complicated to interpret than for the quantitative phenotypes. First, there is a
transformation from binary phenotype to liability model. Second, there is the case-control ascertainment
which complicates statistical modeling (as we saw with the simple covariate adjustments) and makes LMM
in general behave unfavorably, as reported by Golan et al. 2014. Third, typically cases and controls have
been genotyped/handled/collected differently, and while a careful quality control can make GWS findings
reliable and replicable, it remains a concern that the tiny effects picked up by the mixed model are not only
polygenic effects but can also contain confounding effects. Hence interpreting the variance parameters of a
case-control GWAS data as heritabilities of diseases makes quite a many quite strong assumptions. We will
come back to this important question about whether the inflation in a QQ-plot is confoundig or polygenicity
in section 8.4 below.

A perspective of using LMM to estimate heritability by Yang et al. 2017.

8.3.3 Mixed model in GWAS All the discussion above has been about estimating the variance pa-
rameters using the LMM. But mixed models have also become widely-used for running the primary GWAS
analysis.

Suppose we want to test the effect of SNP s on the phenotype Y . The LMM approach does the linear
regression by including in the model a random effect from other variants except s and its LD-friends:

yi = µ + zzzT
i ααα + xisβs + ηi + εi,

where zzzi is the vector of covariate values for i, ηi =
∑ps

l=1 x∗
ilλ

∗
l is the additive contribution of the rest of

the genome except variant s and its LD-friends and εi ∼ N (0, σ2
E) is the (environmental) error term that is

assumed to be uncorrelated across individuals. The random effect assumption λ∗
l ∼ N (0, τ2) will then lead to

similar computations as above with the heritability estimation except that the GRM-cor matrix G can now
be different for different variants tested, and there is an additional fixed effect in the model corresponding
to the marginal effect βs of SNP s.
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In practice, when testing SNPs on, say, chromosome 1, GRM-cor can be computed for all other chromosomes
and then used as the covariance structure of the random effect for all SNPs on chr 1 (e.g. BOLT-LMM and
GCTA do this). Local updating of the random effect has also been studied (Listgarten et al. 2012).

There are (at least) two benefits for adding the rest of the genome as a random effect in linear regression:

1. The precision of the estimator β̂s will increase as the (often substantial) variation in phenotype from
the rest of the genome is explained away by the model. This also leads to increased statistical power
to detect new associations.

2. The rest of the genome captures confounding effects that are due to relatedness and/or population
structure and hence β̂s from a LMM has been automatically adjusted for these confounders.

Thus, LMM is an alternative for the standard linear regression with leading PCs as covariates, and since
LMM also increases power and also accounts for related individuals, it is a very useful in QT GWAS.

To be on the safe side, when the data have both close relatives and clear population structure, then these
patterns may not be correctly modelled by a single joint random component, and, in general, one should
generate different random effects for each major source of phenotypic covariance in the sample. Typically,
we still remove one from each pair of closely related individuals because there are not many of these pairs
and it is difficult to know whether their environmental correlation has been correctly modelled by LMM.

While LMMs have also been applied to GWAS of binary traits, until recently they have only been applicable
to the cleanest cases of common variants and balanced case-control ratios. Recent research on efficient
mixed model for binary phenotypes have been implemented by Zhou et al. 2018 into SAIGE software and
by Mbatchou et al. 2020 into REGENIE.

Now, let’s return to the important question that puzzled us above. We know that both confounding and
true polygenic effects can cause inflation in QQ-plots and the genomic-control parameter λ. How could we
tell whether the inflation is true signal from thousands of small effects, or whether it is a result of some
confounding bias?

8.4. LD-score regression (LDSC)

LDSC developed by Bulik-Sullivan et al. 2015 can separate confounding from polygenicity by utilizing LD
in a clever way.

Let’s think about consequences of high polygenicity (a lot of non-zero causal effect sizes) on the observed
marginal effect sizes when we take into account the differences in LD patterns between the variants. We
know that for a region with p variants and LD-matrix RRR, βββ∗ = RRRλλλ∗. If we assume a highly polygenic model,
with each λ∗

l ∼ N (0, τ2), we get that

E(β∗
l ) = E

(
p∑

k=1
rlkλ∗

k

)
=

p∑
k=1

rlkE(λ∗
k) = 0,

E(β∗
l

2) = E
(

p∑
k=1

rlkλ∗
k

)2

=
p∑

k=1
r2

lkE(λ∗
k

2) + 2
∑
k<m

rlkrlmE(λ∗
kλ∗

m) =
p∑

k=1
r2

lkτ2 + 2 · 0 = τ2r2
l+,

where r2
l+ =

∑p
k=1 r2

lk is the LD-score of SNP l.

Thus, while the distribution of scaled causal effects was assumed independent of LD, the distribution of the
marginal effects has the highest variance among the SNPs that tag heavily their neighbors, i.e., among the
SNPs whose LD-scores are high. How does this property of true marginal effects translate to the observed
estimates that we will obtain from a finite sample?

For scaled effects, SE of the marginal effects is approximately constant across SNPs with small marginal
effects: it is σε/

√
n for quantitative traits (see below about using LD-score regression with binary traits). If
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we assume that the quantitative trait variance is 1 in the population, then also σε ≈ 1 for small effects and
SE is 1/

√
n. Assuming no bias due to confounders, our observed marginal effect estimate is β̂∗

l = β∗
l + ξl,

where error is distributed as ξl ∼ N (0, SE2) and hence

E
((

β̂∗
l

)2
)

= E
(

β∗
l

2 + ξ2
l + 2β∗

l ξl

)
= E

(
β∗

l
2
)

+ E(ξ2
l ) + 2E (β∗

l ξl) = τ2r2
l+ + SE2 + 2 · 0 = τ2r2

l+ + 1
n

,

It follows that the expected chi-square statistic observed at variant l is

E(χ2
l ) =

E
((

β̂∗
l

)2
)

SE2 =
τ2r2

l+ + 1
n

1
n

= n τ2 r2
l+ + 1,

and also increases with the LD-score of the variant. (Note that this quantity does not depend on the
assumption of the trait variance being 1.)

This derivation suggests a simple and testable hypothesis about GWAS summary data. If the trait is (highly)
polygenic, then we should see a linear relationship between the observed chi-square statistics and LD-score:
Variants that tag more of their neighbors have higher chance of tagging causal variants and hence their
marginal effects will have larger magnitude. If, instead, we see overall inflation in chi-square statistic, but
the values (χ2

l −1) are not proportional to the LD-scores, then the inflation is likely due to some confounding
bias that is affecting the bulk of the test statistics independently of the LD-scores. We denote by such a
constant bias factor in the chi-square test statistic by b.

Since under the polygenic model h2 = pτ2, we can replace τ2 in above formulas with h2/p and write the
LD-score regression equation as

E(χ2
l ) = 1 + b + nh2

p
r2

l+.

If we now take our observed chi-square statistics from a GWAS and regress them on the LD-scores of the
variants, we are expecting that

• the intercept is elevated from 1 if there is a confounding bias in the results (i.e. when b > 0),

• regardless of the possible confounding bias, the slope of the regression gives an estimate of the SNP
heritability when multiplied by p/n.

Binary traits. It is a custom to apply LDSC (and other heritability estimation methods) to binary traits
in two steps. First, pretend that the trait is quantitative and compute heritability h2

obs on the observed
scale, that is, when the binary trait is treated as a quantitative trait with trait values 0 and 1. Second, turn
that estimate on the liability scale by accounting for the population prevalence of the binary trait, and by
also accounting for a possible case-control ascertainment. This is explained by Lee et al. 2011.

LDSC sounds like a simple and useful tool! Let’s see some results (slides 9-11).
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