
GWAS 7: Linkage disequilibrium (LD) and fine-mapping

Matti Pirinen, University of Helsinki

Latest update: March 31, 2025

This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The slide set referred to in this document is “GWAS 7”.

7.1 Haplotypes

Terms

• ploidy, the number of copies of the genome in the cell nucleus.
• haploid, one copy of the genome; gametes (sperm and egg cells) are haploid cell types.
• diploid, two copies of the genome; other human cell types with nucleus than gametes are diploid.
• haplotype, haploid genotype, in diploid cell/individual, a genome inherited from one parent.
• diploid genotype, a complete set of two genomes of a diploid cell/individual without haplotype

information.
• diplotype, diploid genotype with haplotype information; a pair of haplotypes for a diploid genotype.

We know that chromosomes are inherited from the parents as recombined segments of grandparents’ chro-
mosomes (slide 2). From a genotyping array we observed (diploid) genotypes at each locus, and we can’t
always be certain which are the two underlying haplotypes (slide 3).

Consider two SNPs 1 and 2 on the same chromosome, with alleles A and C at SNP1 and G and T at
SNP2. If we observe an individual whose genotype is SNP1 = A/A, SNP2 = G/T, then her haplotypes
are definitely {A-G, A-T}. That is, the two chromosomes that she has inherited from her two parents read
A-G and A-T. But if we instead observe genotype SNP1 = A/C, SNP2 = G/T, then the haplotypes are
not determined without external information: they can be either {A-G, C-T} or {A-T, C-G}. The process
of figuring out the haplotypes at multiple loci from the (unordered) genotypes is called haplotype phasing.
Historically, the phase was determined from pedigree data where parents’ genotypes inform about possible
offspring haplotypes. Also experimental methods for phasing exist but are costly. More often, nowadays,
phasing is done in large population samples by using computational methods and the result is probabilistic.
A review on phasing by Browning & Browning (2011).

How can we phase genotypes into haplotypes? When we consider genotypes at p SNPs where the individual
is heterozygous, then he/she has 2p possible haplotypes and 2p−1 possible phasings (as one haplotype already
determines the other haplotype given the genotypes). These numbers become huge already for tens of SNPs.
However, empirical data from the early 2000s started to show that when many individuals were genotyped
at SNPs residing near each other in the genome, the observed genotypes suggested that only a few (≪ 2p)
different haplotypes were present in the population in any one region of the genome.

Example 7.1. (Slide 4) Go to LDlink that gives access to the haplotype data from the 1000 Genomes
project. Choose LDhap tab and input the following list of 9 SNPs that come from a 2500 bps long region
on chr 1:

rs115037027 rs12409788 rs1576517 rs151240271 rs12752436 rs76864380 rs6586443 rs35213023 rs34910942

1

https://creativecommons.org/licenses/by-sa/4.0/
https://www.nature.com/articles/nrg3054
https://ldlink.nci.nih.gov/?tab=home

• Choose first CHS (Southern Han Chinese) population and press Calculate. It shows that only two of
these SNPs have MAF>5% and four are monomorphic in the Table shown, i.e., show only one allele in
these data. There are only 4 haplotypes present in the population out of theoretically possible 25 = 32.

• Change population to FIN. There are 5 haplotypes present and one SNP is monomorphic. Compare
SNPs 1 and 6. They have the same pattern of variation across the haplotypes: Whenever one has T
also the other has T. They are completely associated
with each other and, consequently, in a GWAS they would give exactly the same results. Also the
triple 5, 8 and 9 is similarly fully correlated.

• Change population to LWK (Kenya). Now we see 8 haplotypes, no monomorphic SNPs and only the
SNPs 5 and 8 are perfectly correlated with each other.

This example shows how some variants in a narrow region of 2500 bps are highly correlated with their
neighbors when it comes to the haplotype patterns that exist in any one population. Typically, African
populations show more diversity than Asian and European populations due to more recent genetic bottlenecks
that have reduced variation in the history of the latter two. But also in the African populations, the haplotype
patterns are very much restricted compared to what they would be if the alleles at nearby loci would be
distributed nearly independently at the population level.

The human genome has a haplotype block structure (slide 5), which suggests that the recombination
process shuffles the chromosomes mainly at only a relatively small number of sites on the genome, so called
recombination hotspots. Between these hotspots, there are larger regions of genome with low recombination
rates (slide 6). Consequently,

• Phasing, especially in the low recombination areas, can be done accurately by collecting a large number
of genotyped individuals and using a probability model to estimate which are the most likely haplotypes
in this population. Since only a few haplotypes exist in the population, we can get a fairly reliable
phasing for individuals by sharing haplotype information among them, and we simultaneously also get
accurate estimates for the population frequencies of the haplotypes. Existing high quality reference
haplotype data from the target population also improves phasing. Phasing software: Beagle5, Eagle2,
SHAPEIT5.

• SNPs in the same haplotype block tag each other well because each allele of a particular SNP sits on only
a limited number of haplotypes in that block. In particular, by typing the set of the most informative
tag-SNPs, we can already cover also a lot of neighboring genetic variation that we don’t directly
genotype. This was a property that boosted the first GWAS: in order to see statistical associations
between genomic regions and phenotypes, it is enough that we manage to genotype tag-SNPs of causal
variants.

• The exact causal variants are difficult to pinpoint based on the statistical information alone since so
many variants are so highly correlated with each other. This is the fine-mapping problem.

7.2 Linkage disequilibrium (LD)

We know from empirical data that the human genome has a haplotype block structure. This correlation
structure arises because when a new variant (assumed here to be an SNV) is introduced into the population as
a mutation, it emerges on one of the existing haplotypes of the population. Because haplotypes are inherited
as large segments of grandparental haplotypes, with often just 1 or 2 recombination events per chromosome,
the new mutation will be, for many subsequent generations, passed on to the next generation together with
the same alleles that were close by to it on its original haplotype background. However, as more generations
pass, recombinations cut down the original haplotype background to smaller and smaller shared segments
between the descendants of the original haplotype, and hence the correlation at the population level between
the variant and its neighbors tends to decrease over time (slides 8-9).

2

http://faculty.washington.edu/browning/beagle/beagle.html
https://data.broadinstitute.org/alkesgroup/Eagle/
https://odelaneau.github.io/shapeit5/

Consider any two SNPs at distinct sites of the genome. Suppose that we had perfect haplotype information.
Then we could observe how often their alleles 1 are on the same haplotype in the population and compare
that to the expected proportion if the two variants were independently distributed. If allele 1 frequencies in
population are fk and fl at SNPs k and l, and if the frequency of the haplotype 1-1 is fkl, then we define

• disequilibrium coefficient Dkl = fkl − fk · fl,

which, theoretically, is 0 if the two loci are independent, also said to be in linkage equilibrium, LE. If
the loci are not independent (Dkl ̸= 0), then we say that the loci are in linkage disequilibrium (LD).
Naturally, we never know the frequencies exactly in population and we use sample estimates to compute
Dkl. Hence, we will always observe some non-zero value for Dkl in our sample and the interest is in the
magnitude of Dkl.

We can measure the amount of LD also by using the Pearson’s correlation coefficient rkl = cor(ak, al), where
ak and al are the indicators of the alleles at SNPs k and l on the same haplotype. It can be shown that r
and D are related through

• rkl = Dkl√
fk(1−fk)fl(1−fl)

.

Note that, theoretically, both r and D are 0 if and only if the loci are in linkage equilibrium. In what follows,
we are interested in r, because it determines the statistical consequences of LD on GWAS analyses.

A statistical way to think about LD is that if SNPs k and l are in LD, then by observing for a particular
haplotype its allele at SNP k, we also gain more information about its allele at SNP l than what we had
solely based on the population allele frequencies at SNP l.

7.2.1 Generating two-locus haplotype data Let’s follow Vukcevic et al. (2011) who derived formulas
for the 4 haplotype frequencies in the population, given the MAFs at the two SNPs (1 and 2), and LD
as measured by r = r12 between the SNPs. (More comprehensive treatment of the subject is available in
Damjan Vukcevic’s D.Phil thesis, Oxford, 2009.)

Suppose that SNP1 has alleles a (minor) and A (major) and SNP2 has alleles b (minor) and B (major)
and that fa ≤ fb. First, in order that the allele frequencies and the given level of LD, as measured by r,
correspond to a haplotype distribution, the following inequalities must hold:

−

√(
fa

1 − fa

) (
fb

1 − fb

)
≤ r ≤

√(
fa

1 − fa

) / (
fb

1 − fb

)
.

For example, the correlation between the two SNPs can be really high (r ≈ 1) only if both have very similar
MAFs, and in order for the correlation to be highly negative (r ≈ −1), both MAFs must be close to 0.5. This
is because if we were to assign the minor allele at both SNPs to haplotypes, then the only way that we can
make the correlation ≈ 1 is that a and b are almost always on the same haplotype and A and B are almost
always on the same haplotype. This is possible only if fa ≈ fb because otherwise there are either some extra
as that don’t find any bs to pair with and therefore must pair with Bs, or there are some extra bs that
don’t find as to pair with and therefore must pair with As, both of which will lead to a reduced correlation
compared to the maximum value of 1. To get a high negative correlation for the minor alleles, each minor
allele must be paired up with the major allele at the other locus, and this is possible only if MAF is close
to 0.5 at both loci. Note that if we change the allele coding at one locus from allele 1 being the minor allele
to allele 1 being the major allele, that simply changes the sign, but not the magnitude, of the corresponding
value of the correlation r.

The haplotype frequencies, and samples from them, can be computed using the R-function geno.2loci()
given below.

3

https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.20576
https://ora.ox.ac.uk/objects/uuid:8f89593e-a4ab-4df0-b297-74194be7891c

geno.2loci <- function(n, r, mafs, return.geno = TRUE){
#INPUT:
n, individuals
r, correlation coefficient between the alleles on the same haplotype of the two loci
mafs, MAFs of the two loci
#OUTPUT:
if return.geno == TRUE: n x 2 matrix of GENOTYPES of n individuals at 2 loci
if return.geno == FALSE: (2n) x 2 matrix of HAPLOTYPES of n individuals (2n haplotypes) at 2 loci
stopifnot(r >= (-1) & r <= 1)
stopifnot(length(mafs) == 2)
stopifnot(all(mafs > 0) & all(mafs <= 0.5))
stopifnot(n > 0)

#Label SNPs and alleles so that a and b are minor alleles and freq a <= freq b.
#At the end, possibly switch the order of SNPs back to the one given by the user.
f.a = min(mafs) # maf at SNP1
f.b = max(mafs) # maf at SNP2

#With these parameters, the admissible value of correlation 'r' are in the interval:
r.min = max(-1, -sqrt(f.a/(1-f.a)*f.b/(1-f.b)))
r.max = min(1, sqrt(f.a/(1-f.a)/f.b*(1-f.b)))
#c(r.min,r.max)
#Check that the given 'r' is from this interval
if(r < r.min | r > r.max) stop(paste0("with these mafs, r should be in (",r.min,",",r.max,")"))

Alleles SNP1: A (major) and a (minor); SNP2: B (major) and b (minor).
Compute conditional probabilities for allele 'a' given allele at locus 2:
q0 = f.a - r*sqrt(f.a*(1-f.a)*f.b/(1-f.b)) #Pr(a|B)
q1 = f.a + (1-f.b)*r*sqrt(f.a*(1-f.a)/f.b/(1-f.b)) #Pr(a|b)

#Compute the four haplotype frequencies:
f.ab = f.b*q1
f.aB = (1 - f.b)*q0
f.Ab = f.b*(1 - q1)
f.AB = (1 - f.b)*(1 - q0)
f = c(f.ab, f.aB, f.Ab, f.AB)
f #These are the haplotype frequencies in the population.

#4 haplotypes in the population.
haps = matrix(c(1,1,1,0,0,1,0,0), nrow = 4, ncol = 2, byrow = TRUE)

#Generate data for n individuals where each individual is measured at these two SNPs.
#There are 2*n haplotypes, 2 for each individual.
hap.ind = sample(1:4, size = 2*n, replace = TRUE, prob = f)

if(mafs[1] > mafs[2]) haps = haps[,2:1] #Whether to change the order of the loci?
#Either make a genotype matrix by summing the two haplotypes for each individual...
if(return.geno) X = haps[hap.ind[1:n],] + haps[hap.ind[(n+1):(2*n)],]
if(!return.geno) X = haps[hap.ind,] #...or return the haplotypes as such.
return(X)

}

Let’s check that this works and gives a correlation ≈ r.

4

params = matrix(c(0.3, 0.3, 0.5, #each row has: r, MAF at SNP1, MAF at SNP2
0.8, 0.4, 0.3,
-0.5, 0.34, 0.4), byrow = TRUE, ncol = 3)

n = 10000
for(ii in 1:nrow(params)){

X = geno.2loci(n, r = params[ii,1], mafs = params[ii,2:3], return.geno = FALSE) #haplotype level data
print(c(cor(X[,1],X[,2]), colSums(X)/nrow(X)))

} #and compare to params above

[1] 0.2964545 0.2983500 0.4993500
[1] 0.8038991 0.3997500 0.3024000
[1] -0.5016151 0.3387000 0.4026500

It works, so let’s use it to demonstrate how haplotypes look like under different amounts of LD. We start
from high LD (r = 0.9), then intermediate LD (r = 0.66) and finally no LD (r = 0). MAFs at the two SNPs
must be similar for the high LD case. (Here we use 0.4.)

n = 50
rs = c(0.9, 0.666, 0.0) #correlation values
mafs = matrix(c(0.4,0.4, 0.4,0.5, 0.4,0.4), byrow = TRUE, ncol = 2)
cbind(r = rs, mafs) #check that we put correct values in matrix

r
[1,] 0.900 0.4 0.4
[2,] 0.666 0.4 0.5
[3,] 0.000 0.4 0.4

par(mfrow = c(3,1))
par(mar = c(2,4,4,1))
for(ii in 1:nrow(mafs)){

X = geno.2loci(n, r = rs[ii], mafs = mafs[ii,], return.geno = FALSE) #return haplotypes
X = X[order(X[,1]),] #order so that haps with major allele at SNP1 come first
image(X, yaxt = "n", xaxt = "n", xlab = "", ylab = "",

col = c("floralwhite","dodgerblue"), cex.main = 1.3,
main = paste0(2*n," haplotypes, observed r=",signif(cor(X[,1],X[,2]), 3)))

abline(h = 0.5, lwd = 1.5, lty = 2, col = "black")
axis(2, at = c(0,1), labels = c("SNP1","SNP2"), cex.lab = 1.3)

}

5

100 haplotypes, observed r=0.937
S

N
P

1

100 haplotypes, observed r=0.76

S
N

P
1

100 haplotypes, observed r=0.0754

S
N

P
1

In the first case, we see that allele A (white) at SNP1 almost always indicates allele B (white) at SNP2,
and ALSO allele a (blue) indicates allele b (blue) at the other SNP. Thus, knowing the allele at either of
the SNPs predicts the allele at the other SNP with very high accuracy. These two SNPs are in high LD:
population parameter was r = 0.9, the observed value from the sample is shown in the title.

In the second case, MAF at SNP1 is lower than at SNP2 and even though blue at SNP1 predicts well that
SNP2 also has blue allele, also many white alleles at SNP1 go together with a blue allele at SNP2. Hence
LD, as measured by r, is less than in the first case. This case demonstrates that SNPs with very different
MAFs cannot have very high correlation because there is no way to make all blue match blue AND all white
match white when there are different numbers of blue alleles at the two SNPs. These SNPs are clearly in
LD with each other, although not in as strong LD as the SNPs in the first case.

In the third case, the SNPs are independent in the population (r = 0 in simulation), and also in the observed
data, there is little correlation between the loci. Thus, by knowing the allele at SNP1 does not help predicting
what is the allele at SNP2 on the same haplotype. The best predicton we can do statistically is to guess
the allele at SNP2 based on the population allele frequencies, and ignore which allele was observed at SNP1,
since it does not give additional information over the allele frequencies in population. These SNPs are not
in LD with each other.

Let’s also check what happens to the estimate of r if we estimate it at the genotype level, not at the haplotype
level, as we have done so far. Thus, we’ll generate haplotypes as previously, but before computing r, we
collapse the haplotypes into genotypes (by return.geno = TRUE) and then compute the correlation between
the genotypes at the two loci.

params = matrix(c(0.3, 0.3, 0.5, #each row has: r, MAF at SNP1, MAF at SNP2
0.8, 0.4, 0.35,
-0.5, 0.34, 0.4), byrow = TRUE, ncol = 3)

n = 10000
for(ii in 1:nrow(params)){

X = geno.2loci(n, r = params[ii,1], mafs = params[ii,2:3], return.geno = TRUE)
print(c(cor(X[,1],X[,2]), colSums(X)/2/nrow(X)))

} #and compare to params above

[1] 0.2793206 0.3005500 0.4936000
[1] 0.7971017 0.4030500 0.3517000
[1] -0.4914978 0.3377500 0.4011000

6

This seems to estimate the haplotype level correlations even though the input data are genotypes. This is
good to know as the data we observe in practice are at the level of genotypes and phasing it to haplotypes
is not always straightforward.

Example 7.2. We can also get LD estimates for human populations from LDlink.

• Choose LDhap and consider two SNPs rs7837688, rs4242382 in the CEU population. You’ll see the
haplotype distribution in 1000G CEU data. There are 3 haplotypes (out of all 4 possible) and one is
quite rare (1%). So these are almost in perfect LD where allele at one SNP tells the allele at the other.

• While you could compute r from the info given by LDhap, you can also query it directly from LDpair
tab, which gives r2 = 0.8791, i.e., r = 0.938. (Slide 10.)

• Look at the same SNPs in LWK population. All 4 haplotypes are present and there is no LD in terms
of r2. Often the populations of African ancestry have less LD than those of non-African ancestry since
the latter have gone through more recent bottlenecks. Such bottlenecks increase LD because when
there is a relatively few haplotypes that founded the subsequent generations, then those haplotypes
will determine the LD patterns. (Slide 11.)

• Go to LDproxy tab and look for rs7837688 in the Chinese CHB population. You’ll see the Figure
and list of the variants that are in the highest LD with rs7837688. Note also how the high LD is
concentrated within a haplotype block that is between recombination hotspots (region between the
high peaks of the recombination rate cM/Mb). (Slide 12.)

• LDmatrix (slide 13) can be made for a given set of SNPs.

Example 7.3. Let’s plot an LD matrix for 74 variants around the APOE gene on chr 19 using the 1000
Genomes Finnish samples (genomic coordinates are in GRCh37).

path = "https://www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/APOE_1000G_FIN_74SNPS."
haps = read.table(paste0(path,"txt"))
info = read.table(paste0(path,"legend.txt"),header = TRUE, as.is = TRUE)
dim(haps) #rows haplotypes, cols SNPs

[1] 186 74

info[1:3,] #info for first three SNPs

id position a0 a1 af1
1 rs387976 45379060 A C 0.3065
2 rs3852859 45379309 T C 0.1720
3 rs73050293 45379746 A G 0.2312

haps[1:3,] #data for first three haplotypes

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1
2 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1
3 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0
V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40
1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0
2 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7

https://ldlink.nci.nih.gov/?tab=home

V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57 V58 V59
1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0
2 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74
1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1
3 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1

R = cor(haps) #LD matrix is the pxp correlation matrix
n.cols = 100
layout(matrix(c(1,2), nrow = 1), widths = c(9,1))
par(mar = c(2,2,3,1)) #plot LD matrix using image
image(abs(R), col = heat.colors(n.cols),

breaks = seq(0, 1, length = n.cols + 1),
asp = 1, xaxt = "n", yaxt = "n", bty = "n",
main = paste("|r| of ", dim(R)[1],"SNPs around APOE"))

par(mar = c(2,1,3,1)) #plot scale for colors
plot.window(xlim = c(0,1), ylim = c(0,n.cols))
points(x = rep(1,n.cols + 1),y=(0:n.cols), col = heat.colors(n.cols + 1), pch = 15, cex = 2)
axis(4, at = c(0, n.cols / 2, n.cols),

labels = c(0, 0.5, 1))

|r| of 74 SNPs around APOE

0
0.

5
1

LD matrices from two Finnish study samples show a highly consistent LD structure on slide 14.

7.3 Effect of LD on GWAS results

Let’s then experiment with a GWAS setting where SNP1 is a causal variant with the causal effect size of
λ1 = 0.2 and MAF = 0.2 whereas SNP2 does not have a causal effect (λ2 = 0) and has MAF = 0.4, on a

8

quantitative phenotype whose variance is 1 in the population. LD between the SNPs is r12 = 0.6. So far on
this course, we have used β to denote the effect size of allele 1. The reason why we now use λ rather than
β is because we want to separate the causal effect (λ) from the marginal effect (β), as will become clear
soon.

Let’s make 1000 simulations of such a setting, using n = 1000 individuals in each simulation, and let’s do
the typical single-SNP GWAS on each variant and collect the effect estimate β̂l, its SE and P-value for both
variants l = 1, 2.

n.iter = 1000
n = 1000
r = 0.6
mafs = c(0.2, 0.4)
lambda = c(0.2, 0) #causal effects of each SNP
res = matrix(NA, ncol = 6, nrow = n.iter) #6 cols: beta1, SE1, P1; beta2, SE2, P2
colnames(res) = c("beta1", "SE1", "pval1", "beta2", "SE2", "pval2")
for(iter in 1:n.iter){

X = geno.2loci(n, r, mafs, return.geno = TRUE) #generate 2-locus genotypes
y = X %*% lambda + rnorm(n,0, sqrt(1-var(X %*% lambda))) #var(y) = 1,
res[iter, 1:3] = summary(lm(y ~ X[,1]))$coeff[2, c(1,2,4)] #collect beta, SE, P-val of SNP1
res[iter, 4:6] = summary(lm(y ~ X[,2]))$coeff[2, c(1,2,4)] #collect beta, SE, P-val of SNP2

}

Let’s plot the effect estimates β̂1 and β̂2 against each other and also as separate distributions. Let’s add
vertical lines at the expected mean values: λ1 for SNP1 and r12 λ1

√
f1(1−f1)
f2(1−f2) for SNP2 (the derivation of

this will be explained later).

par(mfrow = c(1,2))
plot(res[,"beta1"], res[,"beta2"], xlab = expression(beta[1]), ylab = expression(beta[2]),

main = paste("r =",signif(cor(res[,"beta1"], res[,"beta2"]), 3)))
abline(0,1)
plot(density(res[,"beta1"]), xlab = expression(beta), col = "black", main = "",

xlim = c(0,0.4), ylim = c(0,9))
lines(density(res[,"beta2"]), col = "red")
abline(v = lambda[1], lty = 2)
abline(v = lambda[1]*r*sqrt(mafs[1]*(1-mafs[1])/mafs[2]/(1-mafs[2])), lty = 2)
legend("topright", col = c("black","red"), lwd = 1, legend = c(1,2))

9

0.05 0.15 0.25 0.35

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

r = 0.621

β1

β 2

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

β

D
en

si
ty

1
2

We see that there is a clear correlation in the GWAS effect estimates between SNPs 1 and 2, and that the
correlation seems to match well with the LD correlation between the SNPs (r12 = 0.6). The distributions
of the effect estimates show that β̂1 is centered at the true causal effect λ1 and β̂2 is centered at the value
r12 λ1

√
f1(1−f1)
f2(1−f2) (and not at 0, which would be the true causal effect of SNP2; derivation on slide 17).

Let’s look at the P-values:

par(mfrow = c(1,2))
plot(-log10(res[,"pval1"]), -log10(res[,"pval2"]), xlab = "-log10P1", ylab = "-log10P2")
abline(0,1)
plot(density(-log10(res[,"pval1"])), xlab = "-log10", col = "black", main = "", ylim = c(0,0.4))
lines(density(-log10(res[,"pval2"])), col = "red")
legend("topright", col = c("black","red"), lwd = 1, legend = c(1,2))

0 2 4 6 8 10

0
1

2
3

4
5

6

−log10P1

−
lo

g1
0P

2

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

−log10

D
en

si
ty

1
2

10

Also the P-values are correlated and SNP2 has P-values that are clearly much smaller than under the null
even though SNP2 does not have a causal effect on the phenotype. We also see that there are a few cases
where SNP2 actually has lower P-value (higher -log10 P-value) than SNP1 even though SNP1 is the causal
variant that is driving the genotype-phenotype association here. Consequently,

• When SNPs 1 and 2 are LD-friends (in LD with each other), and only SNP1 is causal, then the causal
effect of SNP1 will leak to the marginal effect of SNP2 in the sense that the standard one-SNP-at-a-time
analysis at SNP2 is estimating the marginal effect

β2 = r12λ1

√
f1(1 − f1)
f2(1 − f2) ,

rather than the true causal effect of SNP2 (which would be 0).

• This means that if we had not genotyped SNP1 but only genotyped SNP2, we would still see the
association signal in this region, but its effect size would be reduced by a factor of r12

√
f1(1−f1)
f2(1−f2) , and

its NCP would by reduced by a factor of r2
12, compared to those values that we would estimate at the

true causal variant.

• Hence, when we see peaks on Manhattan plots, we cannot be sure whether we have the causal variation
itself included in our analysis, or whether we are just tagging it by our SNPs. In principle, the possible
hidden causal variation does not need to be a single SNV, it can be a structural variant, or a haplotype-
level effect, for example.

• The top variant in terms of P-value does not need to be the causal variant because of tagging and
statistical sampling effects. In particular, when there are many variants in high LD with the causal(s)
then the association region looks messy (slide 15) and we can’t know for sure which are the causal
variants by looking at the marginal effect sizes and P-values.

7.3.1 Relation between causal effect λ and marginal effect β Consider a region with p SNPs with
their causal effects in vector λλλ = (λ1, . . . , λp)T . This means that the region contributes to the phenotype of
individual i by the amount xxxT

i λλλ =
∑p

l=1 xilλl.

When we do a standard GWAS, that includes one variant at a time in the regression model, we estimate the
marginal effects βl rather than the causal effects λl. Above we saw how the non-causal variant (λ2 = 0) had
non-zero marginal effect size (β2 ̸= 0), whose value was determined by the causal effect λ1, r12 and the allele
frequencies at the two SNPs. This relationship generalizes to an arbitrary number p of SNPs in a region and
the marginal effect at SNP l is

βl =
p∑

k=1
rklλk

√
fk(1 − fk)
fl(1 − fl)

= λl +
∑
k ̸=l

rklλk

√
fk(1 − fk)
fl(1 − fl)

,

where the first sum is over all variants in the region, and, in the second formulation, we have separated the
variant’s own causal effect from the sum (as r = 1 between the variant and itself) (Slide 18). Thus, if l is not
in LD with any other (causal) variant, then the marginal effect βl equals to the causal effect λl. Otherwise,
the marginal effect at SNP l combines the causal effect of l with the causal effects from all other variants,
weighted by their LD with the SNP l. In particular, when a non-causal SNP l is in high LD with one or
more causal variants, then we estimate its marginal effect as non-zero even when the SNP has no biologically
causal effect on the phenotype. This phenomenon explains why Manhattan plots show piles of nearby SNPs
that together reach highly significant P-values: a few of them may be truly causal, but most of them are
only in LD with those few causals, and most of the non-zero marginal effects simply reflect the causal effects
of their LD-friends.

We want the formulas to be compact and easy to remember, and we are not happy with the above formula
with this respect, so we introduce some scaling to help us here.

11

Scaled genotypes and scaled effects. Suppose that the MAF at SNP l is fl and individual i has
genotype xil. We define the scaled genotype of individual i as

x∗
il = xil − 2fl√

2fl(1 − fl)
.

Thus, while xil had three possible values 0, 1 or 2 independent of MAF, also x∗
il has three possible values,

but these values are chosen so that the average scaled genotype in the population is 0, its standard deviation
and variance is 1, and, consequently, the numerical difference between two genotype classes grows as the
MAF decreases. This is shown in the Table below, where the columns present the numerical values of the
scaled genotypes corresponding to the genotypes 0,1 and 2, for four values of MAF f .

genotype f = 0.50 f = 0.10 f = 0.01 f = 0.001
0 -1.41 -0.47 -0.14 -0.045
1 0 1.89 6.96 22.33
2 1.41 4.24 14.07 44.70

We further define the scaled effects β∗
l by running the (linear or logistic) regression model using the scaled

genotypes:
Y ∼ µ∗ + X∗β∗.

This model yields exactly the same P-value for β∗
l as the regression using the original genotypes gives

for βl, but the effect size that is being estimated is now β∗
l = βl

√
2fl(1 − fl) and its standard error is

SE∗
l = SEl

√
2fl(1 − fl). (Note that the z-score βl/SEl = β∗

l /SE∗
l doesn’t change under this scaling.) The

allelic effect βl describes the change in the phenotype per each copy of allele 1, whereas the scaled effect
β∗

l describes the change in the phenotype per each standard deviation unit of the genotype variable in the
population. This linear transformation does not change the statistical model fit (R2 or P-value) at all.
In particular, we need not run any new GWAS in order to estimate the scaled effects, but we can simply
transform the existing allelic effect estimates β̂l to the scaled effect estimates β̂∗

l by multiplication with√
2fl(1 − fl). Note also that, for the quantitative traits, the square of the scaled effect β∗

l
2 = 2fl(1 − fl)β2

is directly the phenotypic variance explained by the SNP.

We do the same scaling with the causal effects where the scaled causal effect λ∗
l = λl

√
2fl(1 − fl).

With the scaled effects, the relationship between the marginal and causal effects is simply

β∗
l =

p∑
k=1

rklλ
∗
k = λ∗

l +
∑
k ̸=l

rklλ
∗
k,

where rkl is the correlation between SNPs k and l, and that correlation is exactly the same whether we
consider original genotypes or the scaled genotypes. Thus, we have simplified our earlier formula by replacing
the complicated allele-frequency-ratio-square-root by a few * marks.

It is clear that when we are interested in the biology behind the phenotype, then we are only interested in
the causal variants and their causal effects. How can we estimate these causal effects (λ)? So far our GWAS
results have only been about the marginal effects (β).

7.3.2 Joint model Let’s write the phenotype as an additive combination of the (causal) effects of all p
variants in the genome:

yi = µ + xxxT
i λλλ + εi = µ +

p∑
l=1

xilλl + εi,

where xxxi is the row i of the full genotype matrix XXX that contains the p genotypes of individual i, and λλλ is
the vector of the (unknown) causal effects of the p variants. For binary phenotype, yi is to be interpreted as
the log-odds of the disease for individual i (like in logistic regression).

12

The difference between this joint model of all variants and the marginal model of a single variant (yi =
µ + xilβl + εi) is that the joint model accounts for the effects of all variants on the phenotype simultaneously
whereas the marginal model only considers one variant at a time. Consequently, an estimator of an effect
from the marginal model will estimate the marginal effect βl whereas an estimator of the joint model is
estimating the causal effects λλλ simultaneously. A standard GWAS applies p separate marginal regression
models, one for each variant, and if we collect the marginal effects into a single vector βββ = (β1, . . . , βp)T ,
then by the formulas above, we have a linear relationship between the marginal and causal effects:

β∗β∗β∗ = RRRλ∗λ∗λ∗ or equivalently λ∗λ∗λ∗ = RRR−1β∗β∗β∗,

where RRR is the p × p LD-matrix whose element (l, k) is the pairwise correlation rlk of variants l and k.
We give this formula only for the scaled effects rather than the allelic effects because the same formula for
the allelic effects involves ratios of allele frequencies for each pair of variants, which would complicate the
notation compared to this version where the differences in allele frequencies have been scaled away. But
remember that we can always get from the scaled effect of variant l to the allelic effect of l by dividing by√

2fl(1 − fl).

These considerations suggest two ways to estimate the causal effects λλλ.

1. Use a multiple regression model where the phenotype is regressed on multiple genotypes simultaneously.
In R, this is done by simply using a matrix X of all genotypes in the formula, e.g., lm(y ~ X) or glm(y
~ X, family = "binomial").

2. Take the estimates of the (scaled) marginal GWAS effects and transform them by the inverse of the
LD matrix: λ∗λ∗λ∗ = RRR−1β∗β∗β∗.

Let’s try the first one with the settings of our previous example, where we had MAFs 0.2 and 0.4, the causal
effects λλλ = (0.2, 0) and r12 = 0.6 in the population. Let’s fit both the marginal models and the joint model
and plot the estimates of βs and λs.

n.iter = 500
n = 1000
r = 0.6
mafs = c(0.2, 0.4)
lambda = c(0.2, 0) #causal effects of each SNP
res = matrix(NA, ncol = 12, nrow = n.iter)
colnames(res) = c("beta1","SE.b1","pval.b1","beta2","SE.b2","pval.b2",

"lambda1","SE.l1","pval.l1", "lambda2","SE.l2","pval.l2")
for(iter in 1:n.iter){

X = geno.2loci(n, r, mafs, return.geno = TRUE) #generate 2-locus genotypes
y = X %*% lambda + rnorm(n, 0, sqrt(1 - var(X %*% lambda))) #var(y) = 1,
res[iter, 1:3] = summary(lm(y ~ X[,1]))$coeff[2, c(1,2,4)] #collect beta, SE.b1, P.b1 of SNP1
res[iter, 4:6] = summary(lm(y ~ X[,2]))$coeff[2, c(1,2,4)] #collect beta, SE.b1, P.b1 of SNP2
joint.coeff = summary(lm(y ~ X))$coeff
res[iter, 7:9] = joint.coeff[2, c(1,2,4)] #collect lambda1, SE.l1, P.l1 of SNP1 from joint model
res[iter, 10:12] = joint.coeff[3, c(1,2,4)] #collect lambda2, SE.l2, P.l2 of SNP2 from joint model

}

par(mfrow = c(1,2))
#1st row (2 panels):
#Plot marginal effects as separate distributions
#Add blue lines to the true causal effects lambda
#Add black line to the expected marginal effects of beta2:
#r*sqrt(maf1*(1-maf1)/maf2/(1-maf2))*lambda1
for(ii in 1:2){

13

eff = c("beta","lambda")[ii]
title.txt = c("marginal model", "joint model")
plot(density(res[,paste0(eff,"1")]), xlab = eff, col = "black",

main = title.txt[ii], ylim = c(0,9), xlim = c(-0.2,0.5))
lines(density(res[,paste0(eff,"2")]), col="red")
abline(v = lambda[1], lty = 2, col = "blue")
abline(v = lambda[2], lty = 2, col = "blue")
abline(v = lambda[1]*r*sqrt(mafs[1]*(1-mafs[1])/mafs[2]/(1-mafs[2])), lty = 2, col = "black")
legend("topright", col = c("black","red"), lwd = 1, legend = c(1,2))

}

−0.2 0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

marginal model

beta

D
en

si
ty

1
2

−0.2 0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

joint model

lambda

D
en

si
ty

1
2

We see that the estimates from the joint model are centered on the true causal effects (blue lines, right
panel), whereas the marginal effect of the non-causal SNP2 is estimating the value r12 λ1

√
f1(1−f1)
f2(1−f2) (black

line, left panel).

It also seems that the distributions of estimates are wider for λs than for βs. This is because when the
two variables are correlated, the regression model tries to figure out how to divide the total effect between
the two correlated variables, which increases uncertainty about how large the effect should be for any one
of them separately. This uncertainty becomes larger the higher the magnitude of the correlation. At the
extreme, for two perfectly correlated variables, there is no way to separate their effects statistically; the
standard regression model breaks down if you try to include perfectly correlated variables in the model.

The price to pay for an unbiased estimate of the causal effect by the joint model is an increased uncertainty
of the effect estimate compared to the marginal model. It can be shown that

SE
(

λ̂1

)
= σε√

2n (1 − r2
12) f1(1 − f1)

≈
SE

(
β̂1

)
√

(1 − r2
12)

.

Thus, when the SNPs are independent (r12 = 0), the precision of λ̂s is the same as for β̂s and when the
correlation approaches ±1, then the joint model becomes more and more unsure how the joint effect should
be split between the two candidates and the SE of λ̂s grows larger and larger. In practice, it is not useful
to include very highly correlated variables in a regression model simultaneously because their effects cannot
be separated from each other (except with extremely large amounts of data).

14

It follows that if we look at the P-value from the Wald statistic of SNP1, then we would expect to see lower
P-values for β1 than for λ1 because while both estimate the correct causal effect of 0.2, the SE of β̂1 is lower
than the SE of λ̂1, which leads to lower P-values for β1 than for λ1 on average.

This is not a problem in a standard GWAS, where we first identify the regions where variants show high
association based on the marginal models, (β̂s and their P-values), and then we turn to a more detailed
analysis of those regions using some versions of a joint model.

A joint (linear or logistic) regression model of several SNPs gives unbiased estimates of the causal effects
of the SNPs assuming that ALL causal variants of the region are included in the model. This is a nice
property, but in the same time these standard regression models are not suitable for large scale variable
selection among thousands of candidate variables and they do not handle well highly correlated variables.
Therefore, we can only use them for joint models of a handful of variants at a time. Next, we will look how
this is typically done for a GWAS region by stepwise forward selection. Later, we will see how more recent
fine-mapping models combine sparse causal models with efficient computation.

7.4 Stepwise forward selection

Let’s aim to reduce the set of p SNPs in the region into a (much) smaller subset S of SNPs that can already
statistically explain the association pattern that we see in the region. Technically, this means that we want
to find as small a subset S as possible for which the joint regression model

Y ∼ XXXS

explains the data Y already so well that any extended model

Y ∼ XXXS + Xa,

with one (or more) additional SNP(s) a /∈ S included, would not lead to a statistically better fit to the
observed data. (Here XXXS is a matrix whose columns contain the genotypes of the SNPs included in set S.)

There could be many versions of such a set S, and here we start by trying to find one of them.

We will demonstrate this with two data sets generated using the APOE region data on 186 Finnish haplotypes
from the 1000 Genomes project, and we call these data sets as APOE.1 and APOE.2.

Example 7.4: APOE.1 data. Let’s generate 1000 individuals by sampling their haplotype pairs from the
reference pool with replacement and adding them up to get individual level genotypes. This reflects what
we would observe from genotyping.

path = "https://www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/APOE_1000G_FIN_74SNPS."
haps = as.matrix(read.table(paste0(path,"txt")))
dim(haps) #rows haplotypes, cols SNPs

[1] 186 74

n = 1000
X = haps[sample(1:nrow(haps), size = n, repl = TRUE),] +

haps[sample(1:nrow(haps), size = n, repl = TRUE),] #n individ.

Let’s then choose three causal variants: 7, 37 and 51, and give them all a causal effect of λ = 0.3. Let’s plot
the causal and marginal effects for the region.

15

c.ind.1 = c(7, 37, 51) # causal SNP indexes for APOE.1 data
p = ncol(X)
lambda = rep(0, p)
lambda[c.ind.1] = 0.3
f = colSums(X)/2/nrow(X) # allele 1 freqs
f.sc = sqrt(2*f*(1 - f)) #scaling factor for genotypes
R = cor(X) # R is computed from genotypes
beta = (R %*% (lambda * f.sc)) / f.sc # from lambdas to betas
par(mfrow = c(1,2))
par(mar = c(4.5, 4.5, 2, 0.5))
plot(lambda, xlab = "SNP", ylab = expression(lambda), col = "dodgerblue",

pch = 19, ylim = c(-0.5, 0.5), main = "causal effects")
plot(beta, xlab = "SNP", ylab = expression(beta), col = "red",

pch = 1, ylim = c(-0.5, 0.5), main = "marginal effects")

0 20 40 60

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

causal effects

SNP

λ

0 20 40 60

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

marginal effects

SNP

β

We see that many marginal effects are larger than any causal effects because some SNPs are in high LD with
several causal variants and therefore their marginal effects are a weighted sum of the causals. In particular,
some non-causal SNPs have larger marginal effects than some causals, and therefore it could happen that
the top SNP in this region is not a causal variant. Let’s generate a trait with variance 1, do a standard
marginal GWAS model, and highlight the causal variants in the Manhattan plot of this region.

set.seed(18)
y.1 = X %*% lambda + rnorm(n, 0, sqrt(1 - var(X %*% lambda))) #trait for APOE.1 data
res.1 = apply(X, 2, function(x){summary(lm(y.1 ~ x))$coeff[2,c(1,2,4)]}) #3 rows: beta,SE,pval
par(mar = c(4.5, 4.5, 2, 1))
plot(-log10(res.1[3,]), xlab = "SNP", ylab = "-log10 P", main="APOE.1 marginal analysis")
points(c.ind.1, -log10(res.1[3,c.ind.1]), cex = 2, lwd = 1.4, col = "dodgerblue") #highlight causals

16

0 20 40 60

0
2

4
6

8
10

12

APOE.1 marginal analysis

SNP

−
lo

g1
0

P

The top variant is one of the causals (37) but some non-causal variants are also nearby with similar P-values.
Could we fit a joint model for all the variants in the region and get a clearer picture of the causal ones?

joint.coeff = summary(lm(y.1 ~ X))$coeff[-1, c(1,2,4)]
#joint model isn't able to return results for all SNPs
nrow(joint.coeff) # how many coefficients did we get out of 74?

[1] 58

par(mar = c(4.5, 4.5, 2, 1))
plot(-log10(joint.coeff[,3]), xlab = "SNP", ylab = "-log10 P",

main = "APOE.1 joint analysis")
ring.i = which(row.names(joint.coeff) %in% paste0("XV",c.ind.1)) # indexes of the causals present
points(ring.i, -log10(joint.coeff[ring.i,3]), cex = 2, lwd = 1.4, col = "dodgerblue")

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

APOE.1 joint analysis

SNP

−
lo

g1
0

P

Unfortunately, the standard linear regression is unable to compute statistics for 16 out of 74 variants because
of high correlations – we miss also one of the causals – and the joint model gives nearly useless results for
the remaining SNPs as the effects are split between all correlated SNPs simultaneously, whereas in reality

17

there are only three causal variants here. Technically, the joint model would work, if we had a large enough
sample size, but for many SNPs with high correlations, those sample sizes would need to be unrealistically
large.

A more robust way is to use stepwise forward selection (also called iterative conditioning, or condi-
tional analysis) to build iteratively a joint model for a small subset S of SNPs by choosing one SNP at a
time to be included in S. This approach was made popular by GCTA’s Conditional & joint (COJO) analysis
of GWAS results. The algorithm works as follows

initially S is empty
repeat until all P-values outside S are > threshold

add SNP with the lowest P-value to S
update P-values of all SNPs ’l’ outside S using joint model Y ~ X.S + X.l

end repeat

After the algorithm finishes, S contains a set of SNPs whose P-values in the joint model with their pre-
decessors in S are below the given threshold, and there are no additional SNPs with this property outside
S.

Idea is that S will contain only one of the SNPs that are tagging similarly the causals because when two such
SNPs are simultaneously in the model, then they don’t have low P-values anymore, which is saying that the
second one is not needed after the first one is already in the model. This conditioning on the current contents
of S gives the procedure the name of iterative conditioning / conditional analysis. The name we use here,
stepwise forward selection, means that we proceed forwards from the empty model, step-by-step, where at
each step one SNP can be selected to be included in S. (Backward selection would start with all variables in
the model and would proceed by eliminating them one-by-one. This would not be a feasible strategy when
there are a lot of candidate variables available.)

On the other hand, if there are two causal variants in the region, then the P-value of a SNP tagging primarily
the second causal variant will remain low after we condition on the top-SNP that tags primarily the first
causal signal. Hence, both SNPs may be included in S. Sometimes the P-value of the second SNP may even
get much lower after the first SNP is included in the model, if the two SNPs were masking each other in
their marginal effects. Slide 19 has an example of such a case from a Parkinson’s disease locus 4q22/SNCA.

Thus, when stepwise selection includes several variants in S, it suggests that either there are multiple causal
variants in the region, or that at least we need more than one variant to tag well a single causal variant in
the region, e.g., because the actual causal variant is not genotyped.

Let’s write a function that does the stepwise selection and produces a plot of P-values after each step

• showing the newly chosen SNP in red,

• showing the preceding SNPs in S in gray,

• highlighting the true causals with blue.

stepwise.fwd <- function(y, X, p.thresh = 1e-4, plot.path = TRUE, ring.i = NULL){
#Stepwise forward selection where at most one variant is included in S at each iteration
INPUT
y, quantitative trait for n individuals
X, genotypes for n individuals x p SNPs
p.thresh, P-value threshold that is used for deciding whether to include variant in S
plot.path, TRUE / FALSE, whether produces a plot of every step of the algorithm
ring.i, set of indexes of SNPs that should always be highlighted in plots by a ring
OUTPUT
chosen.i, indexes of chosen variants in S,

18

https://cnsgenomics.com/software/gcta/#Overview
http://hmg.oxfordjournals.org/content/20/2/345.long

chosen.p, the P-values at the iteration when each chosen variant was chosen,
next.p, the smallest P-value left outside S when finished.

p = ncol(X) #number of SNPs
col.new = "red"
col.old = "gray"
col.ring = "dodgerblue"
pval = apply(X, 2, function(x){summary(lm(y ~ x))$coeff[2,4]}) #start from marginal P-values
cols = rep("black", p)
pchs = rep(1, p)
chosen.i = c() #collect here the chosen SNPs
chosen.p = c() #collect here the P-values from the iteration where the choice was made
if(plot.path) {

par(mfrow = c(1, 3))
par(mar = c(1, 2, 4, 0.1))
txt = "Initial state"
plot(-log10(pval), xaxt = "n", xlab = "", ylab = "-log10P",

main = txt, col = cols)
if(!is.null(ring.i)) points(ring.i, -log10(pval[ring.i]), cex = 2, lwd = 1.4, col = col.ring) # highlight
abline(h = -log10(p.thresh), lty = 2, col = "red")

}
ii = 0 #iteration index
while(min(pval) < p.thresh){ #continue as long as something is below the threshold

ii = ii + 1
chosen.i[ii] = which.min(pval)[1] # add 1 SNP with min P-val to the chosen ones...
chosen.p[ii] = pval[chosen.i[ii]] #... and store its P-value at this iteration.
#test other SNPs except the already chosen ones -- and include the chosen ones as covariates
tmp = apply(X[,-chosen.i], 2, function(x){summary(lm(y ~ x + X[,chosen.i]))$coeff[2,4]})
pval[-chosen.i] = tmp # we have P-values for other SNPs except already chosen ones in 'tmp'
if(plot.path) {

pval[chosen.i] = chosen.p # add causals with P-values temporarily for plotting
cols[chosen.i] = col.old # earlier chosen remain gray --
cols[chosen.i[ii]] = col.new # -- the one newly chosen will be red
pchs[chosen.i[ii]] = 19 #solid for chosen ones
txt = paste0(ii,": chose ",chosen.i[ii])
plot(-log10(pval), xaxt = "n", xlab = "", ylab = "-log10P",

main = txt, col = cols, pch = pchs)
if(!is.null(ring.i)) points(ring.i,-log10(pval[ring.i]), cex = 2, lwd = 1.4, col = col.ring)
abline(h = -log10(p.thresh), lty = 2, col = "red")

}
pval[chosen.i] = 1 #mark chose ones by P-value = 1 for the while-loop condition

}
return(list(chosen.i = chosen.i, chosen.p = chosen.p, next.p = min(pval)))

}

We use a fairly liberal threshold of $P=$1e-4 here for two reasons:

1. We want the set S to fully explain the association pattern in the region so that no peaks of P-values
remain.

2. When we know that there is a robust GWS association in the region, then the variants in the region
have a higher prior probability to be associated than random variants in the genome.

There is no consensus value to use at stepwise conditioning. Sometimes it is run with the GWS-level of 5e-8,

19

and sometimes continued until P > 0.05. Luckily, the path of the algorithm doesn’t depend on the threshold
used, so one can also cut the path later to be more stringent as needed for any particular application.

step.1 = stepwise.fwd(y.1, X, p.thresh = 1e-4, plot.path = TRUE, ring.i = c.ind.1)

0
2

4
6

8
10

12

Initial state

−
lo

g1
0P

0
2

4
6

8
10

12
14

1: chose 37

−
lo

g1
0P

0
2

4
6

8
10

12
14

2: chose 7

−
lo

g1
0P

0
2

4
6

8
10

12
14

3: chose 51

−
lo

g1
0P

Here, the stepwise selection worked well in the sense that it managed to pick exactly the three causal variants.
Note also how the P-values of the true causal variants 7 and 51 get smaller in steps 1 and 2, respectively,
compared to the P-values from the previous iteration. This shows how conditioning on the other causal
variants can reveal the true causal effects more clearly.

Example 7.5: APOE.2 data. Stepwise forward selection doesn’t always work quite so nicely:

set.seed(20)
c.ind.2 = c(23,36,51)
lambda = rep(0, p)
lambda[c.ind.2] = 0.4
y.2 = X %*% lambda + rnorm(n, 0, sqrt(1-var(X %*% lambda)))
res.2 = apply(X, 2, function(x){summary(lm(y.2 ~ x))$coeff[2,c(1,2,4)]})
step.2 = stepwise.fwd(y.2, X, p.thresh = 1e-4, plot.path = TRUE, ring.i = c.ind.2)

20

0
5

10
15

20
25

Initial state

−
lo

g1
0P

0
5

10
15

20
25

1: chose 20

−
lo

g1
0P

0
5

10
15

20
25

2: chose 66

−
lo

g1
0P

Let’s see how the chosen variants 20 and 66 are related to the causal ones 23, 36 and 51:

ind = c(step.2$chosen.i, c.ind.2)
R[ind,ind]

V20 V66 V23 V36 V51
V20 1.0000000 -0.13799708 0.31314083 0.63185564 0.3793202
V66 -0.1379971 1.00000000 -0.03857787 -0.10127858 0.3980259
V23 0.3131408 -0.03857787 1.00000000 -0.05261768 0.2210782
V36 0.6318556 -0.10127858 -0.05261768 1.00000000 -0.1160176
V51 0.3793202 0.39802586 0.22107824 -0.11601760 1.0000000

It seems that none of the causal variants is very highly tagged by either of the chosen ones, but all causal
variants show considerable correlation with the chosen ones. Let’s check whether the chosen set explains the
phenotype similarly to the causal variants.

lm.chosen = lm(y.2 ~ X[,step.2$chosen.i]) #chosen SNPs 20 and 66
summary(lm.chosen)

##
Call:
lm(formula = y.2 ~ X[, step.2$chosen.i])
##
Residuals:
Min 1Q Median 3Q Max
-2.63463 -0.65461 -0.00045 0.64730 2.97895
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.14676 0.07391 -1.986 0.0473 *
X[, step.2$chosen.i]V20 0.51863 0.04461 11.626 < 2e-16 ***
X[, step.2$chosen.i]V66 0.21270 0.04717 4.510 7.27e-06 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.9416 on 997 degrees of freedom
Multiple R-squared: 0.126, Adjusted R-squared: 0.1243
F-statistic: 71.88 on 2 and 997 DF, p-value: < 2.2e-16

21

lm.causal = lm(y.2 ~ X[,c.ind.2]) #causal SNPs 23, 36, 51
summary(lm.causal)

##
Call:
lm(formula = y.2 ~ X[, c.ind.2])
##
Residuals:
Min 1Q Median 3Q Max
-2.66228 -0.62076 0.02548 0.62554 2.79913
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01011 0.05740 0.176 0.86
X[, c.ind.2]V23 0.32885 0.06139 5.357 1.05e-07 ***
X[, c.ind.2]V36 0.40252 0.04238 9.498 < 2e-16 ***
X[, c.ind.2]V51 0.38939 0.05150 7.561 9.05e-14 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.9279 on 996 degrees of freedom
Multiple R-squared: 0.1521, Adjusted R-squared: 0.1495
F-statistic: 59.54 on 3 and 996 DF, p-value: < 2.2e-16

The chosen variants explain about 12.4% (Rˆ2-adj.) of the trait variance whereas the three causals together
explain about 15.0%. Note that we compare the adjusted-Rˆ2 measure which attempts to take into account
the number of parameters in the models whereas the multiple-Rˆ2 tends to always favor model with more
predictors. Another way to compare models with possibly different numbers of parameters is the Bayesian
Information Criterion (BIC) that penalizes models for additional parameters. In short, a lower value of BIC
suggests a better model.

cbind(chosen = BIC(lm.chosen), causal = BIC(lm.causal))

chosen causal
[1,] 2742.155 2718.804

We see that also BIC favors the true causal model over the one chosen by the stepwise selection (23 units in
BIC is a clear difference).

What if we put all 5 variants in the same model?

lm.joint = lm(y.2 ~ X[,ind]) #all 5 SNPs
summary(lm.joint)

##
Call:
lm(formula = y.2 ~ X[, ind])
##
Residuals:
Min 1Q Median 3Q Max
-2.71039 -0.62873 0.02886 0.65192 2.77286
##

22

https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.08465 0.07510 -1.127 0.25992
X[, ind]V20 0.13341 0.08361 1.596 0.11088
X[, ind]V66 0.09648 0.05591 1.726 0.08470 .
X[, ind]V23 0.29795 0.06715 4.437 1.01e-05 ***
X[, ind]V36 0.31853 0.06918 4.604 4.68e-06 ***
X[, ind]V51 0.28384 0.07490 3.790 0.00016 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.927 on 994 degrees of freedom
Multiple R-squared: 0.1554, Adjusted R-squared: 0.1511
F-statistic: 36.57 on 5 and 994 DF, p-value: < 2.2e-16

We see that, in this joint model, the two non-causals (20,66) picked by the conditional analysis are not
needed in the model once we have the true causal variants there. (This model explains 15.1% while the
model with 3 causals already explained 15.0%.)

We conclude that even though the stepwise selection picked a model that had a reasonable explanatory
power, the model comparison shows that the chosen model has a statistically worse fit than the true causal
model.

Let’s next move to fine-mapping methods to see how we can improve the search and quantification of
causal variants.

7.5 Fine-mapping

When we fine-map a GWAS region, our goal is to identify the set of causal variants C. Since high levels of
LD among candidate variants often makes it impossible to give a definite answer based on statistical evidence
alone, our answers will be probabilistic. In particular, we work with

• probability for variant l to be one of the causal variants in the region, pl = Pr(l ∈ C | Data). This is
also called a posterior inclusion probability (PIP), where inclusion refers to the inclusion of the
variant in the causal model.

• probability for a set S of variants to be the causal set / causal configuration of variants in the
region, pS = Pr(S = C | Data).

• credible sets of causal variants which have the property that, with a fixed coverage, such as with
95% probability, the credible set contains one of the causal variants or the credible set contains all of
the causal variants, where the choice between these two definitions of the credible set depends on the
context.

• probability distribution that the region contains 1, 2, . . . K causal variants up to some value of K,
typically ≤ 20.

Note the difference between such quantities and the results from the stepwise selection, which resulted in only
one set of variants but did not estimate how probable each of those variants is to be a causal variant given
the LD patterns and the other candidate variants in the region. Even if a variant has a very low marginal
P-value, if it shares the signal with 10 highly correlated variants, then its PIP will likely be ≤ 0.1 and its
credible set will contain all its 10 LD-friends. Neither of these properties can be read from the output of the
stepwise selection.

A review of fine-mapping methods is given by Schaid et al. A common theme is the use of a Bayesian model
that allows quantifying the probabilities of causality for each set and each variant under the assumptions

23

https://www.nature.com/articles/s41576-018-0016-z

that all causal variants are included in the analysis and that there are no interaction effects between the
variants.

Slides 22-31 have some more details of the model behind a widely-used FINEMAP software, written by
Christian Benner during his PhD work at FIMM, Helsinki. Another popular fine-mapping method is SuSiE.

Let’s see what happens when FINEMAP is run on our two data sets APOE.1 and APOE.2 where we observed
varying success with the stepwise selection.

FINEMAP on APOE.1 FINEMAP gives three output files:

• .snp includes summary data (probabilities and causal effect estimates) for each SNP.

• .config includes a list of the most probable sets of causal variants with their probabilities and variance
explained.

• .cred3 includes the credible sets for 3 causal variants corresponding to the top-configuration in the
.config file.

Let’s read in FINEMAP’s results for individual SNPs and print some columns.

fm.path = "https://www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/FINEMAP/FINEMAP_APOE_"
fm.1.snp = read.table(paste0(fm.path,"1.snp"), as.is = T, header = T)
fm.1.snp[1,]

index rsid chromosome position allele1 allele2 maf beta se z
1 7 7 19 45382034 A G 0.5 0.289445 0.0451505 6.41067
prob log10bf mean sd mean_incl sd_incl
1 0.999999 7.92959 0.324947 0.0703492 0.324947 0.0703488

fm.1.snp[1:10,c(1,11,13:16)]

index prob mean sd mean_incl sd_incl
1 7 0.9999990 0.3249470 0.0703492 0.324947 0.0703488
2 52 0.5009420 0.1634080 0.1706030 0.326202 0.0706945
3 51 0.4941250 0.1599220 0.1691680 0.323647 0.0701917
4 54 0.2531170 0.0816844 0.1440640 0.322714 0.0648974
5 47 0.1368880 0.0442355 0.1136660 0.323150 0.0652116
6 37 0.1122280 0.0359365 0.1032020 0.320211 0.0622381
7 23 0.0940849 0.0339350 0.1075790 0.360685 0.0717884
8 24 0.0430625 0.0149818 0.0716016 0.347909 0.0567978
9 26 0.0385936 0.0123219 0.0620231 0.319272 0.0409315
10 18 0.0326849 0.0116583 0.0643032 0.356689 0.0586465

Here prob is the PIP, i.e., probability that this is one of the causal variants, mean is the estimated causal
effect λ (on the allelic scale), averaged over all possible causal sets and mean_incl is the estimate of λ over
those causal sets in which this SNP is included.

The three causal variants were simulated at positions 7, 37 and 51. The first is labelled as a definite causal
with PIP ~ 100%. The variant 51 cannot be as perfectly singled out from the highly correlated variant 52
but gets PIP of ~ 50%. The variant 37 is sharing its probaility with several other correlated variants and
has a PIP of only 11%. The causal effects in mean_incl seem to be estimating well the true value of 0.3
given their uncertainty as measured by the posterior SD.

Let’s plot the marginal GWAS P-value and the FINEMAP’s PIPs and highlight the true causal variants.

24

http://www.christianbenner.com/
https://stephenslab.github.io/susieR/

par(mfrow = c(1,2))
par(mar = c(4.5,4.5,3,1))
plot(-log10(res.1[3,]), xlab = "SNP", ylab = "-log10 P", main = "MARGINAL GWAS APOE.1")
points(c.ind.1, -log10(res.1[3,c.ind.1]), cex = 2, lwd = 1.4, col = "dodgerblue")
plot(fm.1.snp$index, fm.1.snp$prob, xlab = "SNP",

ylab = "prob of causality",main = "FINEMAP APOE.1")
i = which(fm.1.snp$index %in% c.ind.1)
points(fm.1.snp[i,"index"], fm.1.snp[i,"prob"], cex = 2, lwd = 1.4, col = "dodgerblue")

0 20 40 60

0
2

4
6

8
10

12

MARGINAL GWAS APOE.1

SNP

−
lo

g1
0

P

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FINEMAP APOE.1

SNP

pr
ob

 o
f c

au
sa

lit
y

FINEMAP has refined the associations as there are less variants with interesting PIPs after the fine-mapping
than there are in the marginal P-values. Note how FINEMAP is most certain that the variant 7 is a causal
variant whereas the marginal P-value was smaller for the variant 37 than the variant 7. A likely reason
for this difference is that 37 has more LD-friends with which it is forced to share some probability of being
causal, whereas 7 is less correlated with the other variants and hence more clearly a causal variant itself.
Such information cannot be extracted from the marginal P-values.

The results in the .snp file are SNP-wise summaries over all candidate causal configurations that FINEMAP
has evaluated. By default the .config file reports the top 50,000 of these configs. Let’s show a few top ones,
with the posterior probabilities and the estimated proportion of variance explained by each configuration
(h2, heritability).

fm.1.config = read.table(paste0(fm.path, "1.config"), as.is = TRUE, header = TRUE)
fm.1.config[1:10, c(2:4,8:9)]

config prob log10bf h2 h2_0.95CI
1 7,52 0.1566880 25.6341 0.0945202 0.0655098,0.130518
2 7,51,54 0.0954011 27.2819 0.0960810 0.0635471,0.130148
3 7,51 0.0678818 25.2708 0.0936830 0.0613809,0.12744
4 7,52,54 0.0580591 27.0662 0.0966661 0.0686048,0.133019
5 7,47,51 0.0560398 27.0509 0.1068330 0.0735969,0.14681
6 7,47,52 0.0396423 26.9005 0.1061010 0.0727301,0.140631
7 7,37,51 0.0378142 26.8800 0.1072280 0.0745664,0.148666
8 7,23,51 0.0357141 26.8552 0.1005670 0.0695624,0.1359
9 7,37,52 0.0332142 26.8237 0.1067970 0.0749096,0.14436
10 7,23,52 0.0306849 26.7893 0.1003580 0.0718231,0.135253

Let’s also see the credible sets given by FINEMAP.

25

fm.1.cred = read.table(paste0(fm.path,"1.cred3"), as.is = TRUE, header = TRUE)
fm.1.cred[,-1]

cred1 prob1 cred2 prob2 cred3 prob3
1 7 0.999999 51 0.621653 54 0.31259300
2 NA NA 52 0.378324 47 0.18362100
3 NA NA NA NA 37 0.12390300
4 NA NA NA NA 23 0.11702100
5 NA NA NA NA 26 0.04635470
6 NA NA NA NA 24 0.04327490
7 NA NA NA NA 18 0.03420410
8 NA NA NA NA 19 0.02162160
9 NA NA NA NA 22 0.01868640
10 NA NA NA NA 66 0.01666490
11 NA NA NA NA 25 0.00935408
12 NA NA NA NA 40 0.00696822
13 NA NA NA NA 45 0.00555869
14 NA NA NA NA 3 0.00500067
15 NA NA NA NA 15 0.00482753
16 NA NA NA NA 11 0.00332905

For the credible sets (with 3 causal variants), FINEMAP takes the top 3-SNP causal configuration (here
7,51,54), and then asks, for each variant in the top configuration, which are the other candidate variants
that could possibly replace the top variant in this causal configuration.

For example, the column cred_1 shows that the credible set A1 = {7} includes only SNP 7 as it already
covers 0.99999 of the posterior probability of being in the causal set with 51 and 54. In other words, the sum
of the probabilities of any other variant replacing 7 is < 0.00001 in this causal set that additionally contains
SNPs 51 and 54.

For the second credible set, A2 = {51, 52}, the correct causal variant 51 is the best candidate but there is
also another candidate, 52, that has a slightly smaller probability than 51 to be the second causal variant.

For the third credible set, A3, the picture is less clear and we need 16 variants before we cover 95% of the
probability of including a causal variant in A3. The true causal variant, 37, is the third variant in the list.

A credible set collects the most likely causal variants and is a place to search for known functional variants
that could be responsible of the association signal. If the credible set is small, it can provide a useful list
of candidate variants to be taken further to experimental studies that could then identify the causal variant
among the candidates via its biological function. The size of the credible set depends mainly on the GWAS
sample size and the LD structure in such a way that a large sample size and lower levels of LD decrease the
size of the credible sets.

FINEMAP on APOE.2 On APOE.2 data, the causals were 23, 36 and 51 but due to LD, there were
many other variants that had much lower P-values than the true causals. The conditional analysis chose 20
and 66, which gave a clearly worse fit than the true causal set. Let’s see FINEMAP’s results. (Suppressing
the plotting commands from the document.)

26

0 20 40 60

0
5

10
15

20
25

MARGINAL GWAS APOE.2

SNP

−
lo

g1
0

P

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FINEMAP APOE.2

SNP

pr
ob

 o
f c

au
sa

lit
y

We see that FINEMAP gives PIPs between 20% and 50% to the true causals, and that there are two
non-causals getting even higher PIPs. Even if the true causals are not having the highest PIPs here, the
FINEMAP results still seem more robust for capturing the true causal variants than the marginal P-values.

Let’s check the top 15 configs.

config prob log10bf h2 h2_0.95CI
1 24,42,51 0.0572840 32.2767 0.123297 0.0848914,0.163701
2 24,42,52 0.0491410 32.2101 0.123032 0.0877404,0.165497
3 23,42,51 0.0405076 32.1262 0.123364 0.0892675,0.162275
4 24,42,58 0.0397335 32.1178 0.122725 0.0888049,0.16374
5 22,42,51 0.0369072 32.0858 0.123093 0.0902163,0.160739
6 24,36,51 0.0353639 32.0672 0.122070 0.0865942,0.160689
7 24,36,52 0.0303078 32.0002 0.121804 0.0866079,0.165373
8 24,42,49 0.0275196 31.9583 0.121163 0.086644,0.160704
9 24,36,58 0.0227966 31.8765 0.121409 0.0858296,0.157195
10 23,42,52 0.0215781 31.8527 0.122486 0.0879697,0.161271
11 23,32,51 0.0215098 31.8513 0.121468 0.0890243,0.163025
12 23,36,51 0.0213135 31.8473 0.121976 0.0871476,0.159492
13 22,42,52 0.0187538 31.7917 0.122161 0.0864746,0.160347
14 24,36,49 0.0181203 31.7768 0.119969 0.0858125,0.157738
15 22,36,51 0.0168744 31.7459 0.121530 0.0867643,0.160187

The top FINEMAP config is (24,42,51) whereas the true causal config (23,36,51) has rank 12. Let’s compare
the statistical evidence between the top FINEMAP config, the true causal config and the conditional analysis
config (20,66).

lm.fm = lm(y.2 ~ X[,c(24,42,51)])
lm.causal = lm(y.2 ~ X[,c(23,36,51)])
lm.step = lm(y.2 ~ X[,c(20,66)])
data.frame(finemap = BIC(lm.fm), true_causal = BIC(lm.causal), stepwise = BIC(lm.step))

finemap true_causal stepwise
1 2716.861 2718.804 2742.155

Here the top config from FINEMAP happens to be a slightly better description of the data than the true
causal config, which is a result of statistical sampling effects in a finite data set. We also see that the

27

conditional analysis has failed badly here compared to FINEMAP in terms of explaining the data (26 units
difference in BIC).

We conclude that FINEMAP has made an efficient search through the space of configurations and identified
a config with more statistical evidence than the true causal config. Given the data available, we cannot
expect to get better fine-mapping results based on the statistical evidence alone.

7.5.1 Fine-mapping assuming one causal variant Sometimes we do not have access to the original
GWAS data and therefore we cannot accurately estimate LD that corresponds to the GWAS summary
statistics. This means that we cannot do complete fine-mapping with FINEMAP or other similar methods
that require LD information. In these cases, it is still possible to compute, for each variant in the region,
the posterior probability of causality under the assumption that there is at most one causal variant in
the region and it is included in the study. The approach was introduced by Maller et al. 2012.

Let’s mark by Hl, l = 1, . . . , p the hypothesis that says l is the only causal variant and let H0 be the null
hypothesis that says there is no causal variant in the region. Mark by HC = H1 ∪ . . . ∪ Hp the hypothesis
that says that there is exactly one causal variant in the region. We assume that, a priori, each variant is
equally likely to be the causal variant, i.e., Pr(Hl | HC) = 1

p .

It follows that the regional Bayes factor is

BFreg = Pr(Data | HC)
Pr(Data | H0) =

∑p
l=1 Pr(Data | Hl) Pr(Hl | HC)

Pr(Data | H0) =
∑p

l=1
1
p Pr(Data | Hl)

Pr(Data | H0) = 1
p

p∑
l=1

BFl,

where BFl is the single variant Bayes factor that does not depend on other variants or on the LD structure of
the region. In practice, it can be computed as an Approximate Bayes Factor (ABF) from GWAS summary
statistics as was explained in Section 4 of the course material.

The posterior probability for variant l is then, according to Bayes formula,

Pr(Hl | Data, HC) = Pr(Hl | HC)Pr(Data | Hl)
Pr(Data | HC) = 1

p

Pr(Data | Hl)
Pr(Data | H0)
Pr(Data | HC)
Pr(Data | H0)

= 1
p

BFl

BFreg
= BFl∑p

k=1 BFk
∝ BFl.

Thus, the posterior probability that SNP l is the single causal variant in the region, under the assumption
that there is exactly one causal variant, is proportional to the single-SNP Bayes factor of SNP l.

In practice, we get the posterior probabilities by computing ABF for each variant and then normalizing them
to sum to one. This derivation is independent of LD in the region because, under the assumption of only a
single causal SNP, the marginal effect at the causal SNP is the causal effect itself, independent of the LD
with other variants. With strongly associated but also highly correlated SNPs, we are left with the result
that any one of them could be the causal variant. This will manifest through high single-SNP and regional
BFs, but with the posterior probability distributed fairly evenly across the highly correlated SNPs.

We have assumed that the causal SNP is included in the study. When this is not true, the above approach
is still applicable if there is a good surrogate SNP for the causal effect. In the presence of multiple causal
SNPs, this approach is no longer recommended. It will tend to pick up the SNP with the best marginal
effect, which may or may not be one of the causal SNPs.

Example 7.6: APOE.3 data. Let’s make yet another phenotype data set for the APOE region genotype
data that we currently have in X matrix. Now we include only one causal variant, SNP 42.

set.seed(6)
c.ind = c(42)
lambda = rep(0, p)
lambda[c.ind] = 0.3
y.3 = X %*% lambda + rnorm(n, 0, sqrt(1 - var(X %*% lambda)))
#Data has been generated. Now run a GWAS one variant at a time.

28

https://www.nature.com/articles/ng.2435

res.3 = apply(X, 2, function(x){summary(lm(y.3 ~ x))$coeff[2, c(1,2,4)]})
#Compute single-SNP ABFs using the GWAS summary statistics
tau = 0.2 #prior SD of effect size
b.est = res.3[1,]
se = res.3[2,]
log.abf = dnorm(b.est, 0 , sqrt(tauˆ2 + seˆ2), log = T) - dnorm(b.est, 0, se, log = T)
abf = exp(log.abf)
#Normalize ABFs to get PIPs of the variants assuming that there is exactly one causal variant
posterior = abf/sum(abf)
#Let's see which variants have probability > 1%
ind = which(posterior > 0.01)
ind = ind[order(posterior[ind], decreasing = T)] #Order them from largest to smallest
data.frame(SNP = ind, prob = posterior[ind], Pvalue = res.3[3,ind])

SNP prob Pvalue
V42 42 0.78045144 2.384397e-10
V36 36 0.18488980 1.081044e-09
V30 30 0.01688366 1.308594e-08

#Let's plot the -log10 P-values and posterior probabilities
par(mfrow = c(1,2))
cols = rep("gray", p)
cols[ind] = "indianred2"
plot(-log10(res.3[3,]), xlab = "SNP", ylab = "-log10(P-value)", main = "APOE.3",

cex = 0.7, col = cols, pch = 19)
plot(posterior, xlab = "SNP", ylab = "posterior probability", main = "",

cex = 0.7, col = cols, pch = 19)

0 20 40 60

0
2

4
6

8
10

APOE.3

SNP

−
lo

g1
0(

P
−

va
lu

e)

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

SNP

po
st

er
io

r
pr

ob
ab

ili
ty

We see that the three smallest P-values also have the largest posterior probabilities of being causal. The
SNP 42 (78%) has about 4 times higher probability than SNP 36 (18%) and 50 times higher probability than
SNP 30 (1.6%) of being the causal variant in the region (when we assume that there is exactly one causal
variant).

To determine the 95% credible set, we would include the SNPs with the highest posteriors until their
cumulative sum is > 95%. Here this set would contain only SNPs 42 and 36 as their sum is already 78% +
18% = 96%.

29

If we would have several conditionally independent association signals in the region, as returned, for example,
by the stepwise forward search, then we could fine-map each of them separately. For this, we would compute
the association statistics (beta and SE) by including the SNPs representing the other signals in the region as
covariates, and then carry out the fine-mapping for each signal separately as above by assuming that there
is only one causal variant left after conditioning on the other signals in the region. (In Exercise 5.2 we do
that for one signal conditioned on two other signals.)

30

	7.1 Haplotypes
	7.2 Linkage disequilibrium (LD)
	7.3 Effect of LD on GWAS results
	7.4 Stepwise forward selection
	7.5 Fine-mapping

