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5.1 Genetic relatedness

All humans are genetically related to each other but the level of relatedness varies between pairs of individuals.
In GWAS, we need to account for these differences in the levels of relatedness because otherwise they could
bias the statistical association between genotypes and phenotypes. Here, we define what relatedness is and
how it can be estimated. Later on the course we will discuss more why and how we can use estimates of
relatedness and population structure in GWAS.

See slides (3-6) that summarize the inheritance process across generations that generates variation in the
relatedness among humans or other diploid species.

A review of the relatedness estimates: Speed & Balding 2015, Relatedness in the post-genomic era: is it still
useful?.

5.1.1 Defining relatedness

Consider two genomes G1 and G2. Suppose that we could determine, for each genomic position x, the number
of generations t(x; G1, G2) that have passed since the most recent common ancestor (MRCA) genome of both
G1 and G2 at site x was alive. From such information, we could define a relatedness value between G1 and
G2 as the average time to MRCAs over some selected set of L loci. (Slide 5)

The relatedness measures used in practice try to capture a part of this perfect relatedness information,
although not in terms of the number of generations since MRCA, but rather as a relative measure compared
to the other pairs of genomes in the study population. This shortcut is made because estimating time to
MRCA would require multiple assumptions about population genetic history, which are difficult to verify,
and would involve demanding computation. Instead, some simple relatedness statistics used in GWAS can
be easily computed for millions of pairs of individuals, and we will study these next.

Terms

• Identical-by-state (IBS). Two genomes are IBS at locus x if the DNA sequences of the genomes are
identical at locus x. Here locus can be one or more nucleotides long. The observed IBS distribution
for a pair of individuals is described by three values, (IBS0, IBS1, IBS2), that tell which proportion of
the genome between these individuals is of IBS 0,1 or 2, respectively. (Slide 7)

• Identical-by-descent (IBD). Two genomes are IBD(t) at locus x, if they have inherited identical
DNA sequence at locus x from a common ancestor who has lived at most t generations ago. This is
a well-defined concept, if pedigree information for a few generations is available. Typically, in GWAS
data, no such information is available, and the concept of IBD is used without explicitly defining what
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is the reference timeframe t. Then it is expected that a reasonable definition of the reference level is
implicitly determined by the method that is used for estimating whether two genomes are IBD. Most
often, IBD is defined by assuming that population allele frequencies are known and that there is IBD
sharing between a pair of individuals, if the pair shares more allele IBS than would be expected for a
random pair from the population. IBD implies IBS but not vice versa. (Slide 7.) The IBD distribution
for a pair of individuals is described by three values, (IBD0, IBD1, IBD2), that tell which proportion of
the genome is estimated to be of IBD 0,1 or 2, respectively. The known pedigree relationships, such as
full-sibs, determine only the expected value of IBD sharing; the realized IBD sharing has variation
within any other relationship category except the parent-offspring pairs. (Slides 8-10).

• Kinship coefficient ϕij is the probability that one allele sampled from individual i and one allele
sampled from the same locus from individual j are IBD.

• Inbreeding coefficient fi = ϕMF = 2ϕii − 1, where M and F are the mother and father of i. It
describes how closely the two genomes of an individual i are related. fi = 0 if the parents of i have
nothing IBD. If fi is large, the individual is said to be inbred. Outbred means not inbred.

• Relatedness coefficient rij = 2ϕij . Assuming no inbreeding, rij can be interpreted as the proportion
of the genome that is shared between i and j.

In practical applications, make always clear whether you are considering kinship or relatedness coefficients
as the values differ by a factor of 2. Here are some values for relatives.

If the purpose is to assign individuals into categories according to close relationships, a commonly-used
inference procedure of the KING software is based on the powers of 1

2 . According to it, a pair is inferred to
be a kth degree relative pair based on the following cut points for the estimated rij or ϕij values:

degree rij within ϕij within
mono twins > 1

20.5 = 0.707 > 1
21.5 = 0.354

1st deg. ( 1
21.5 , 1

20.5 ) = (0.354, 0.707) ( 1
22.5 , 1

21.5 ) = (0.177, 0.354)
2nd deg. ( 1

22.5 , 1
21.5 ) = (0.177, 0.354) ( 1

23.5 , 1
22.5 ) = (0.088, 0.177)

3rd deg. ( 1
23.5 , 1

22.5 ) = (0.088, 0.177) ( 1
24.5 , 1

23.5 ) = (0.044, 0.088)
unrelated < 1

23.5 = 0.088 < 1
24.5 = 0.044

Note that the expected value of relatedness for each category is the lower bound multiplied by
√

2 = 20.5

and is simultaneously also the upper bound divided by
√

2.

5.1.2 Estimating relatedness

Example 5.1. Let’s generate genotype data for 5 pairs of full siblings, 5 pairs of half siblings and 10
unrelated individuals from one population using p = 10, 000 SNPs whose MAF range from 0.2 to 0.5. We
will then demonstrate different relatedness estimates on these data by showing the 30x30 relatedness matrix
of the individuals.

Let’s put the within family data generation into its own function that allows generating pairs of offspring
that share 2 parents (full sibs), 1 parent (half sibs) or 0 parent (unrelated).

offspring.geno <- function(n.families, n.snps, fs = rep(0.5, n.snps), n.shared.parents = 2){
#INPUT:
# n.families, number of families where each family produces two offspring (>0)
# n.snps, number of independent SNPs used in simulation (>0)
# fs, vector of allele 1 freqs for SNPs, length == n.snps, values in (0,1)
# n.shared.parents, 0,1 or 2 shared parents for the two offspring in each family
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#OUTPUT:
# X, the genotypes of (2*n.families) offspring,
# is matrix of dimension (2*n.families) x n.snps and with values in {0,1,2}

stopifnot(n.families > 0)
stopifnot(n.snps > 0)
stopifnot(all(fs > 0 & fs < 1) & length(fs) == n.snps)
stopifnot(n.shared.parents %in% 0:2)

if(n.shared.parents == 2) parents = list(c(1,2), c(1,2)) #parents[[1]] are the parents of offspring 1
if(n.shared.parents == 1) parents = list(c(1,2), c(3,2))
if(n.shared.parents == 0) parents = list(c(1,2), c(3,4))
n.parents = 4 - n.shared.parents #4, 3 or 2 for values of n.shared.parent of 0, 1 or 2

X = matrix(0, nrow = 2*n.families, ncol = n.snps)
for(ii in 1:n.families){ #each "family" means a pair of offspring that share 'n.shared.parents'

x.parents = t(replicate(2*n.parents, rbinom(n.snps, size = 1, prob = fs) )) #2*n.parents parental genomes
for(offs in 1:2){ #for two offspring within "family"

#phase is the indicator of whether offs inherits each parents' 1st allele or not
phase = t(replicate(2, rbinom(n.snps, size = 1, prob = 0.5))) #phase has one row for each parent

for(i.parent in 1:2){
for(ph in 0:1){

loci = (phase[i.parent,] == ph) #which loci from i.parent have phase ph?
#add to current offs' genotype i.parent's allele from the correct phase
X[2*(ii-1) + offs, loci] =

X[2*(ii-1) + offs, loci] + x.parents[2*parents[[offs]][i.parent] - ph, loci]
}

}
}

}
return (X)

}

And now the simulation of the genotype matrix X for 30 individuals and 10,000 SNPs.

p = 10000 #SNPs
fs = runif(p, 0.2, 0.5) #MAF at each SNP is from Uniform(0.2, 0.5)

X = rbind(offspring.geno(n.families = 5, n.snps = p, fs = fs, n.shared.parents = 0),
offspring.geno(n.families = 5, n.snps = p, fs = fs, n.shared.parents = 1),
offspring.geno(n.families = 5, n.snps = p, fs = fs, n.shared.parents = 2))

X = X[, apply(X,2,var) > 0] #remove SNPs that have no variation (if any such exist)

IBS estimator It is straightforward to count the proportion of loci where a pair of individuals share 0,1
or 2 alleles IBS. These IBS values already make a distinction between different levels of relatedness and a
plot of, say, IBS0 against IBS2 shows often a clear structure. However, the absolute amount of IBS sharing
depends heavily on the allele frequencies in the population and methods that estimate kinship or relatedness
coefficients typically aim for estimating IBD.
We generate each IBSz-matrix by multiplication over possible sharing patterns: There are three possible
ways to have IBS2: either sharing genotype 2 or genotype 1 or genotype 0. And there are two ways to be
IBS1: one individual must be heterozygous while the other must be one of the homozygotes. Finally, the
overall IBS estimate is IBS2 + 0.5 * IBS1.
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n.cols = 50 #number of colors
IBS.2 = ( (X==2) %*% t(X==2) + (X==1) %*% t(X==1) + (X==0) %*% t(X==0) )/p #prop. of loci with same genotypes
IBS.1 = ( (X==1) %*% t(X==0 | X==2) + (X==0 | X==2) %*% t(X==1) )/p #prop. of loci with one allele shared
IBS = IBS.2 + 0.5*IBS.1 #prop. of genome IBS
layout(matrix(c(1,2), nrow = 1), width = c(9,1)) #plotting area divided into 9/10 and 1/10 wide parts
par(mar = c(2,2,3,1)) #plot IBS matrix using image
image(IBS, col = topo.colors(n.cols), breaks = seq(min(IBS), max(IBS), length = n.cols + 1),

asp = 1, xaxt = "n", yaxt = "n", bty = "n",
main = paste("Avg. IBS from", ncol(X), "SNPs"))

par(mar = c(2,1,3,1)) #plot scale for colors
plot.window(xlim = c(0,1), ylim = c(0,n.cols))
points(x = rep(1, n.cols + 1), y = (0:n.cols), col = topo.colors(n.cols + 1), pch = 15, cex = 2)
axis(4, at = c(0, n.cols / 2, n.cols),

labels = c(round(min(IBS),2), round((min(IBS) + max(IBS))/2,2), round(max(IBS),2)) )

Avg. IBS from 10000 SNPs

0.
65

0.
82

1

The numerical values of this IBS plot depend on the population allele frequencies and are not as easily
mapped to the known relationship categories as the IBD based measures for which, for example, r ∼ 50% for
full sibs and r ∼ 25% for half sibs. Additionally, it seems that separation of the half sibs from the unrelated
in the IBS matrix is not very clear.

Correlation estimator (GCTA’s genetic relationship matrix) Let’s look at how a standard measure
of correlation applied to a large number p of variants can be interpreted as an estimate of IBD.

Consider a locus l where frequency of allele 1 is fl and denote by Ahl ∈ {0, 1} the random variable describing
the allele of genome h at locus l. Under the assumption that all genomes in the sample come from the same
homogeneous population, we have that E(Ahl) = fl and Var(Ahl) = fl(1 − fl) for all h. Denote by rhk the
(unknown) probability that genomes h and k are IBD at a locus. We have

Pr(Ahl = 1 = Akl | fl, rhk) = rhk fl + (1 − rhk) f2
l ,
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where the first term describes the case where h and k are IBD at l (with probability rhk) and happen to
share the same copy of allele 1 (with probability fl), and the second term describes the case where h and
k are not IBD at l (prob. 1 − rhk) and happen to carry independent copies of allele 1 (prob. f2

l ). We can
solve for

rhk = Pr(Ahl = 1 = Akl) − f2
l

fl(1 − fl)
= E(AhlAkl) − E(Ahl)E(Akl)√

Var(Ahl)Var(Akl)
= cor(Ahl, Akl).

Thus, for genomes, their IBD proportion can be estimated by the correlation of their allele states.

Let Gil = Ai1l + Ai2l ∈ {0, 1, 2} be the genotype of individual i at locus l and assume HWE: Var(Gil) =
2fl(1 − fl).

cor(Gil, Gjl) = Cov(Ai1l + Ai2l, Aj1l + Aj2l)
2fl(1 − fl)

= (ri1j1 + ri1j2 + ri2j1 + ri2j2)fl(1 − fl)
2fl(1 − fl)

= 4ϕij

2 = 2ϕij = rij .

Thus, also at the level of the genotypes, correlation can be used as an estimate of the IBD sharing between
the individuals.

We use all available SNPs (after some pruning that we’ll talk about later) to estimate the pairwise correlations
using the formula

r̂ij = 1
p

p∑
l=1

ĉor(Gil, Gjl) = 1
p

p∑
l=1

(
gil − 2 f̂l

) (
gjl − 2 f̂l

)
2 f̂l

(
1 − f̂l

) ,

where gil ∈ {0, 1, 2} is the observed genotype of i and f̂l is the allele 1 frequency estimate from the sample,
both at locus l.

For n individuals, these pairwise relatedness coefficients form an n×n genetic relationship matrix (GRM)
for which we use notation GRM-cor to emphasise that it is the correlation based GRM. This GRM-cor
has been widely used through the popular linear mixed models software GCTA. Also PLINK has an efficent
implementation of computing GRM-cor.

The interpretation of negative values of r̂ij is that those pairs are less related than an expected pair of
unrelated (no-IBD sharing) individuals. This is possible, for example, if there is population structure in
the data because then the individuals from different populations can look less related than the theoretical
construction of a pair of “unrelated individuals” based on the allele frequency data from the combined sample.
A related, and possibly more severe, problem is that when the sample is not from a single homogeneous
population, then individuals from the same population seem more related than they actually are (for example
3rd degree relatives can look like 2nd degree relatives). Thus, the correlation estimator, or any other estimator
that defines the reference level of IBD based on the sample’s allele frequencies, is not robust to population
structure.

Note also a possible numerical instability of the estimator at SNPs where MAF is close to 0. Then the
denominator f̂l(1 − f̂l) ≈ 0, and therefore a pair of carriers of the rare allele will get a huge positive
contribution to their relatedness estimate from the rare allele. For example, if f̂l = 0.001, then a pair of
individuals who share the minor allele will get a huge contribution of (1−0.002)2/(2 ·0.001 ·0.999) = +498.5
to their relatedness estimate, whereas individuals who share the common genotype 0, will get only a tiny
contribution of +0.002 and a pair who have different genotypes 0 and 1 will get contribution of only −1.00.
Intuitively, it feels correct to assume that individuals who share a rare allele indeed are likely to have
recent IBD sharing at that locus but the unboundedness of the estimator with rare alleles seems a technical
problem that leads to a huge variance of the estimator. Therefore, we typically restrict the use of the
GRM-cor estimator to common variants (say MAF>5%).

Let’s make GRM-cor for our current data set.

X.scaled = scale(X) #standardize each SNP at columns of X
GRM = (X.scaled %*% t(X.scaled))/p #correlation matrix of individuals based on standardized SNPs
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layout(matrix(c(1,2), nrow = 1), width = c(9,1))
par(mar = c(2,2,3,1)) #margins for matrix
image(GRM, col = topo.colors(n.cols), breaks = seq(min(GRM),max(GRM), length = n.cols + 1),

asp = 1, xaxt = "n", yaxt = "n", bty = "n",
main = paste("GRM from",ncol(X),"SNPs"))

par(mar = c(2,1,3,1)) #margins for scale
plot.window(xlim = c(0,1), ylim = c(0,n.cols))
points(x = rep(1, n.cols +1 ), y = (0:n.cols), col = topo.colors(n.cols + 1), pch = 15, cex = 2)
axis(4, at = c(0, n.cols/2, n.cols),

labels = c(round(min(GRM),2), round((min(GRM) + max(GRM))/2,2), round(max(GRM),2)) )

GRM from 10000 SNPs

−
0.

08
0.

46
1.

01

Let’s print out which pairs seem to be full sibs, 0.4 < rij < 0.6 or half sibs, 0.15 < rij < 0.35.

full.sibs = which( GRM > 0.4 & GRM < 0.6, arr.ind = TRUE) #each pair is twice here since R is symmetric
full.sibs = full.sibs[full.sibs[,1] < full.sibs[,2], ] #pick only pairs where 1st index < 2nd index
rbind(full = as.vector(t(full.sibs)))

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## full 21 22 23 24 25 26 27 28 29 30

half.sibs = which( GRM > 0.15 & GRM < 0.35, arr.ind = TRUE)
half.sibs = half.sibs[half.sibs[,1] < half.sibs[,2], ]
rbind(half = as.vector(t(half.sibs)))

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## half 11 12 13 14 15 16 17 18 19 20

Seems correct.
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PLINK’s π̂ (“pi-hat”) A widely used IBD estimate is π̂ of the PLINK software. It was developed by
Purcell et al. (2007) (p.565-566).

PLINK uses a method-of-moments approach to estimate the probability of sharing 0, 1, or 2 alleles IBD for
any two individuals from the same homogeneous, random-mating population. It is based on the fact that at
any one locus, by the law of total probability, for k =, 0, 1, 2,

Pr(IBS = k) = Pr(IBS = k | IBD = 0)P (IBD = 0)+Pr(IBS = k | IBD = 1)P (IBD = 1)+Pr(IBS = k | IBD = 2)P (IBD = 2).

This is a system of three equations (k = 0, 1, 2), and if we substitute the left hand side with the observed
IBS status and if we can estimate the conditional probabilities Pr(IBS = k | IBD = z) for all k, z ∈ {0, 1, 2},
then we can solve for the three unknowns IBDz = P (IBD = z), z = 0, 1, 2.

Assuming a homogeneous population with known population allele frequencies, it is straightforward to derive
the IBS probabilities given the IBD state using the same logic as with the correlation estimate above (i.e.,
the alleles can be IBS either because they are IBD or because they are not IBD but they are sampled from
the population frequencies and happen to be IBS). Thus, the conditional probabilities can be computed for
each locus given the allele frequency estimates at that locus.

Finally, PLINK averages the equations across the loci resulting in three equations where IBSk on the left
hand side is the proportion of IBS= k across the genome, and the conditional probabilities of (IBDk | IBSz)
are also averages across the genome. Then IBDz can be solved from these three equations for z = 0, 1, 2.

PLINK uses these IBD estimates to compute, for each pair i and j,

π̂ij = 1
2IBD1ij + IBD2ij .

It is an estimate of rij , that is, the proportion of genome shared IBD.

Since π̂ij is based on the allele frequencies from the sample, its interpretation as a measure of IBD sharing
has the same problems as the correlation estimate. In particular, if the population is not homogeneous, the
values are biased compared to the expectations under the known relationship categories.

KING The IBD relatedness estimators explained above assume that the individuals come from a homoge-
neous population. KING by Manichaikul et al. 2010 is a relatedness estimation method that is more robust
to population structure and is very efficiently implemented. It derives a kinship estimate for a pair of in-
dividuals without reference to the population allele frequencies. Instead, it gets the relatedness information
from the difference between the counts of loci where both individuals are heterozygotes (N1,1) and counts
of loci where they are different homozygotes (N2,0), normalized by the sum of the heterozygous loci of the
individuals:

ϕ̂ij = N1,1 − 2N2,0

N
(i)
1 + N

(j)
1

.

Let’s apply the KING estimator to the current dataset with the full sibs, half sibs and unrelated, and let’s
multiply the KING’s kinship estimate by 2 to get from the kinship scale to the scale of the relatedness
coefficient r.

denominator = matrix(rep(rowSums(X==1), nrow(X)), nrow = nrow(X), byrow = T) +
matrix(rep(rowSums(X==1), nrow(X)), nrow = nrow(X), byrow = F)

king.r = 2*((X==1) %*% t(X==1) - 2*((X==0) %*% t(X==2) + (X==2) %*% t(X==0)) ) / denominator
#(suppressing commands of matrix printing from output)
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KING (r) from 10000 SNPs

−
0.

06
0.

47
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Looks correct. We’ll later come back to the difference between KING and GRM-cor when there is some
population structure in the data.

KING was recently used to estimate relatedness for all 1.2e+11 pairs from the UK Biobank data (~500,000
samples)(Slide 12).

IBD segments Genome is inherited in chunks and therefore individuals sharing an allele IBD at a locus
are also likely to share a larger region IBD around that locus. Most accurate relatedness estimates come from
methods that can model this spatial structure of IBD segments. Those methods are usually computationally
intensive and not applicable to GWAS data sets with 104 or 105 individuals and we don’t study them on
this course. A study by Ramstetter et al. 2017 lists and compare many of those methods.

5.1.3 Use of IBD estimates in quality control

(From Purcell et al. 2007.)

IBD sharing estimates can be used for quality control (QC) and to indicate and diagnose errors in records
or genotype data, including sample swaps, sample duplications, and sample contamination events, as well
as misspecified or undetected familial relationships. For example, values of IBD2 near 1 indicate either
duplicated samples or monozygotic twins.

If DNA from some individual(s) contaminates other samples, this can lead to a distinctive pattern of con-
taminated samples showing high IBD with all other individuals. This is because contamination induces false
heterozygote calls (e.g., AA pooled with CC may well be genotyped as AC), and heterozygotes cannot ever
be IBS=0 with any other SNP genotype, which artificially inflates the IBD estimates. Furthermore, the
contaminated samples will show strong, negative inbreeding coefficients, indicating more heterozygote loci
than expected. This is why excessive heterozygocity is a QC criterion in GWAS data.

See also slides 16-17 for an application of relatedness estimates in QC.
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5.1.4 Uses of relatedness estimates outside GWAS

Several companies offer direct-to-customer service to analyze customer’s DNA and over 30 million people
have already subscribed to such services globally. One of the uses is to reveal genetic relatives based on the
estimated IBD sharing among the customers. The purpose of uniting distant relatives is nice, but the power
of genetics can also cause complicated situations related to unexpected family trees as also described in this
article “With genetic testing, I gave my parents the gift of divorce”.

The rapid growth of the public databases, where voluntary individuals have uploaded their genetic data
and other information (such as age and location), have already been used to identify from a database a
relative of an external DNA sample (e.g. from a crime scene), which has led to a complete identification of
the external DNA sample. A famous example is the case of the Golden State Killer in CA, US, where in
April 2018 a suspect was arrested for murders and rapes commited in 1970s and 1980s. The police got the
lead by uploading the DNA found from a crime scene to a GEDmatch database and identified 10-20 3rd
degree cousins whose additional information helped to identify the suspect. How lucky were the police? by
Edge and Coop. A Science paper by Erlich et al. 2018 summarizes this approach and its profound future
prospects (Slides 13-15):

"Consumer genomics databases have reached the scale of millions of individuals. Recently, law enforcement
authorities have exploited some of these databases to identify suspects via distant familial relatives.
Using genomic data of 1.28 million individuals tested with consumer genomics, we investigated the power
of this technique. We project that about 60% of the searches for individuals of European-descent will
result in a third cousin or closer match, which can allow their identification using demographic identifiers.
Moreover, the technique could implicate nearly any US-individual of European-descent in the near future.
We demonstrate that the technique can also identify research participants of a public sequencing project.
Based on these results, we propose a potential mitigation strategy and policy implications to human
subject research."

5.2 Population structure

Several relatedness estimation methods considered above were base on the assumption of a homogeneous
population, i.e., a population without genetic structure. Genetic population structure is present in the
sample, if the sample can be divided into groups in such a way that individuals from one group are, on
average, more genetically similar among themselves than with the individuals from the other groups.

5.2.1 Sources of population structure

Most common variants among the humans are shared across the world in the sense that those common alleles
are present all around the world. Still, even the common variants carry information about the geographic
location of their carrier since their allele frequencies differ across the world. (Slides 19-20.)

Example 5.2. Genetic drift Suppose that a population with 100 individuals is living in a particular
area. Suppose that half of the population migrates to a new area and the two subpopulations do not have
any contact with each other anymore, and in particular, do not have any genetic exhange in the following
generations. Let’s visualize how the allele frequency of a particular variant evolves in the two populations as
a function of generations they have been separated. The assumption is that at time 0 the allele frequency is
the same in both populations, and, in each of the following generations, the offspring alleles are randomly
sampled from the existing alleles with replacement (one individual can have none, one or multiple offspring).
This sampling means that Hardy-Weinberg equilibrium holds in each subpopulation. There are 50 individuals
in each population, so 100 alleles in each population. The population size is assumed constant.
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n = 100 #alleles in each generation of each subpopulation
f0 = 0.5 #starting allele frequency
K = 100 #number of generations in simulation
npop = 10 #Let's make 10 rather than just 2 pops to illustrate more general behavior
f = matrix(NA, ncol = K+1, nrow = npop) #results of allele freqs across pops and generations
for(pop in 1:npop){

a = rbinom(n,1,f0) #starting configuration of alleles
f[pop, 1] = mean(a) #allele frequency at generation 0
for(ii in 1:K){

a = sample(a, size = n, replace = TRUE) #resample generation ii
f[pop, 1 + ii] = mean(a) #allele frequency at generation ii (index ii+1 since generation 0 is at index 1)

}
}
plot(NULL, xlab = "generation", ylab = "allele frequency",

main = paste("n =",n), xlim = c(0, K), ylim = c(0, 1))
for(pop in 1:npop){lines(0:K, f[pop,], lwd = 1.4, col = topo.colors(npop)[pop])}
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The figure shows ten possible evolutions for our subpopulations. We see that each population starts near the
common allele frequency value (here 0.5) but, as time goes by, some populations differ strongly in their allele
frequency. If we were to genotype individuals from generation 80 at this variant, we could tell, for example,
that heterozygotes are definitely from one of the 5 populations not yet fixed to either allele and we could tell
which are the possibilities for each homozygote individual. Thus, pure random variation in allele frequencies
between generations generates marked allele frequency differences between populations over time. This is
called genetic drift.

The amount of genetic drift is strongly dependent on the population size. Statistician might think that
each new generation tries to “estimate” its parents’ generation allele frequency by sampling alleles from the
parents’ generation and by computing their frequencies, and the precision of this estimate decreases as the
sample size decreases.
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Let’s repeat similar analysis but with 10 times larger population size. (And let’s not repeat the code in the
output, just the updated Figure.)
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Within the same time span, the larger populations were much less affected by genetic drift. This phenomenon
also explains why some human populations are more strongly diverged genetically from their neighbours
than some other, geographically equally distant populations. The Finnish genetic ancestry is an example of a
population with a relatively strong genetic isolation among the European populations, to a large part due to a
relatively small historical “founder population” size in Finland. Consequently, the overall genetic background
among individuals with Finnish genetic ancestry is less heterogeneous than in many other European countries
(which make some genetic analyses simpler in Finland), and due to a strong historical genetic drift effect in
Finland, some functional alleles have survived in Finland
with much higher frequency than elsewhere (say, e.g., 1% in Finland and 0.01% elsewhere) even though
selection effect might be against them. We already know what a huge difference such a frequency difference
has in terms of statistical power to discover the phenotype associations! These are reasons why international
research community has put much focus on Finland when it comes to doing genetics research.
Above we saw that already a single variant shows informative genetic population structure between popu-
lation groups that have been separated for a while. And when we combine information across 100,000s of
variants across the genome, we can expect to see quite a clear structure, if we just can find suitable tools to
pick it up.

5.2.2 Principal component analysis (PCA)

Suppose we have an n × p matrix X of genotypes of n individuals measured on p SNPs. We would like to
summarize the main structure of these data with respect to the individuals by using only much less than p
dimensions. Such dimension reduction task is most intuitive, if it results in only one or two dimensions
since then we can easily visualize the results by simply plotting the individuals in their new coordinates on
a line or a plane.
Imagine each individual being originally as a point in the p-dimensional space where each dimension corre-
sponds to one SNP and the individual’s coordinate on the axis is the genotype at that SNP. If we draw one
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line through the p-dimensional space and project each individual on that line, then we can represent each
individual by using only one value, the individual’s coordinate on the chosen line. Now each individual is
represented by one value instead of the original p values so we have completed a dimension reduction from
p dimensions to 1 dimension. Is this useful? Only if we can choose that one line in such a way that it
will capture a useful amount of the information in the data. In principal component analysis (PCA), first
defined in 1901 by Karl Pearson, our criterion to choose the line is that the individuals’ projections on the
line should have the largest variance possible among all possible lines that we could draw through the
p-dimensional space.

Let’s make an example data of 2 SNPs where we have 50 individuals from two populations. In the blue
population, the allele 1 frequencies are 5% and 95% at the two SNPs, and in the red population they are
the opposite: 95% and 5%. We don’t expect that either SNP alone would completely separate the two
populations but maybe PCA is able to combine the information into one dimension in a way that shows the
population structure from the data better than either of the SNPs alone. Let’s draw a picture.

set.seed(20)
npop = 2
cols = c("blue","red")
f = matrix(c(0.05, 0.95, 0.95, 0.05), byrow = TRUE, ncol = npop)
p = nrow(f) #number of SNPs
n = rep(50, npop) #number of samples from each population
pop = rep(1:npop, n) #from which population each individual comes
X = c() #empty genotype data matrix
for(ii in 1:p){

x = c() #empty genotype vector for SNP ii
for(jj in 1:npop){

x = c(x, rbinom(n[jj], size = 2, f[ii,jj]) ) #add genotypes of pop jj to x
}
X = cbind(X,x) #add SNP x as a new column to genotype matrix X

}
jitt.1 = runif(n[1], -0.03, 0.03) #add some noise to coordinates in plot to avoid overlap
jitt.2 = runif(n[2], -0.03, 0.03)
plot(X[,1] + jitt.1, X[,2] + jitt.2,

col = cols[pop], xlab = "SNP1", ylab = "SNP2")
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We have clear patterns in the original two dimensional SNP space where the individuals from the red
population are mainly at the lower right corner and from the blue at the upper left corner. But neither SNP
alone can separate the two populations, and if we colored all dots black we would not see a clear separation
of the points in to two populations on this plot. Let’s see which is the line on which the projections of these
points have the largest variance. We get than from PCA computed by prcomp().

X = scale(X) #always standardize each variant before PCA
pca = prcomp(X) #do PCA; we look later what this function returns
plot(X[,1] + jitt.1, X[,2] + jitt.2, asp = 1, #Plot the points, now after scaling

col = cols[pop], xlab = "SNP1 (stnd'd)",
ylab = "SNP2 (stnd'd)")

abline(a = 0, b = pca$rotation[2,1]/pca$rotation[1,1]) #add the PC1 line
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If we now project all points on the line determine by PC1, as has been done in vector pca$x[,1], and use
just random y-coordinates for visualization, we have:

plot(pca$x[, 1], runif(sum(n), -1, 1), col = cols[pop],
yaxt = "n", xlab = "PC1", ylab = "")
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The direction picked by the PC1 also happens to separate the two populations. So even with only two SNPs,
neither of which alone separates the populations, PCA can combine their information to capture the main
structure of the data, which here matches the existence of the two populations.

Although the 2-SNP-example above is just a toy demonstration, it gives us a good reason to expect that
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when we use 100,000s of SNPs, the PCs, i.e., the directions of the largest genetic variation in the data, will
capture population structure, if such exists.
Terms:

• Principal components of the genetic data are the linear one dimensional subspaces of the original
genotype space that have the following properties: The first PC explains the maximum variance possible
by any linear one dimensional subspace. For any k > 1, the kth PC explains the maximum variance
possible by any linear one dimensional subspace conditional on being orthogonal to all preceding PCs.
The number of PCs is min{n, p}.

• Scores or principal component scores are the coordinates of the individuals when they have been
projected on the PC. They are computed using the PC loadings and the individuals’ (standardized)
genotypes. In the object returned by prcomp(), the scores are in matrix x, so, e.g., the scores on PC
6 are in vector pca$x[,6].

• Loadings are the coefficients that determine how the scores are computed from the (standardized)
genotypes. Each PC k has a loading vector lk = (lk1, . . . , lkp)⊺ and the score of individual i on PC k is

scoreik = l⊺kxi =
p∑

m=1
lkmxim,

where xim is the standardized SNP genotype of i at SNP m. Note that when we have the loadings at
hand, we can project also any external individual on the existing PCs generated by our reference data
set. Loadings from prcomp() object pca are in matrix pca$rotation.

Example 5.3. Let’s generate data from three poulations P1,P2,P3 of which P1 and P2 are more closely
related with each other and more distant from P3. A standard measure of differentiation is the Fst value
that describes how large a proportion of genetic variation is present between populations compared to within
populations. For example, we have Fst ~ 0.003 between the ancestries of Eastern and Western Finland and
~ 0.10 between genetic ancestries of different continents. The Balding-Nichols model to generate allele
frequencies for two populations with Fst value of F first picks a background allele frequency f , for example,
from a Uniform distribution, and then samples the subpopulation allele frequencies as independent draws
from the distribution

Beta
(

1 − F

F
f,

1 − F

F
(1 − f)

)
.

Let’s generate data so that Fst between P1 and P2 is 0.003 and Fst between P3 and the shared ancestral
population of P1 and P2 is 0.05. (This is a level of differentiation that we might observe between Eastern
(P1) and Western Finnish ancestries (P2) and Northern African ancestry (P3).) Let’s sample n = 100
individuals from each population using p = 3000 SNPs and show PCs 1-2.

n = 100 #per population
p = 3000 #SNPs
fst.12 = 0.003
fst.12.3 = 0.05
f = runif(p, 0.1, 0.5) #common SNPs in background population
f.3 = rbeta(p, (1-fst.12.3)/fst.12.3*f, (1-fst.12.3)/fst.12.3*(1-f))
f.12 = rbeta(p, (1-fst.12.3)/fst.12.3*f, (1-fst.12.3)/fst.12.3*(1-f)) #P1&P2's shared ancestral population
f.1 = rbeta(p, (1-fst.12)/fst.12*f.12, (1-fst.12)/fst.12*(1-f.12))
f.2 = rbeta(p, (1-fst.12)/fst.12*f.12, (1-fst.12)/fst.12*(1-f.12))
#Let's check that f.1 and f.2 looks similar compared to f.1 and f.3 or f.2 and f.3
par(mfrow = c(1,3))
plot(f.1,f.2, main = paste("Fst", fst.12), xlim = c(0,1), ylim = c(0,1), pch = 3)
plot(f.1,f.3, main = paste("Fst >", fst.12.3), xlim = c(0,1), ylim = c(0,1), pch = 3)
plot(f.2,f.3, main = paste("Fst >", fst.12.3), xlim = c(0,1), ylim = c(0,1), pch = 3)
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Let’s then generate the genotype data and do PCA.

x = cbind(
replicate(n, rbinom(p, size = 2, p = f.1)), #generate n inds from P1
replicate(n, rbinom(p, size = 2, p = f.2)), # from P2
replicate(n, rbinom(p, size = 2, p = f.3))) # from P3

x = t(x) #each replicate (=ind) is now in a column, but we want inds to rows and SNPs to cols
pca = prcomp(x, scale = TRUE) #do PCA
cols = rep( c("cyan","skyblue","magenta"), each = n) #color for each ind according to pop
plot(pca$x[,1], pca$x[,2], col = cols, xlab = "PC1", ylab = "PC2")
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We see that the first PC picks P3 apart from P1 & P2 but does not separate P1 and P2. The second PC
starts to separate P1 and P2. The separation between P1 and P2 would become more clear if we added a
few thousand more SNPs or if we increased the Fst valeu between P1 and P2 (left as an exercise).
Example 5.4. Let’s do PCA with real allele frequency data from the 1000 Genomes project. Let’s read in
a frequency file (that is based on the files from IMPUTE2 webpage) and see what’s in it.

af = read.table("http://www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/afreq_1000G_phase1_chr15-22.txt",
as.is = TRUE, header = TRUE)

dim(af)
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## [1] 5266 19

af[1,]

## chr id position a0 a1 ASW CEU CHB CHS CLM FIN GBR
## 1 15 rs11248847 20101049 G A 0.2377 0.1882 0.4278 0.335 0.1917 0.1613 0.1461
## IBS JPT LWK MXL PUR TSI YRI
## 1 0.2143 0.3876 0.2165 0.25 0.2091 0.1888 0.09659

We have allele 1 frequency info for 5,266 SNPs in 14 populations. The SNPs have been chosen from chro-
mosomes 15-22 and are at least 100,000 bps apart to avoid highly correlated SNPs. Additionally, the global
MAFs of all these SNPs are > 5% but some of them may very rare in some of the populations.

• ASW [AFR] (61) - African Ancestry in Southwest US
• CEU [EUR] (85) - Utah residents (CEPH) with Northern and Western European ancestry
• CHB [ASN] (97) - Han Chinese in Beijing, China
• CHS [ASN] (100) - Southern Han Chinese
• CLM [AMR] (60) - Colombian in Medellin, Colombia
• FIN [EUR] (93) - Finnish from Finland
• GBR [EUR] (89) - British from England and Scotland
• IBS [EUR] (14) - Iberian population in Spain
• JPT [ASN] (89) - Japanese in Toyko, Japan
• LWK [AFR] (97) - Luhya in Webuye, Kenya
• MXL [AMR] (66) - Mexican Ancestry in Los Angeles, CA
• PUR [AMR] (55) - Puerto Rican in Puerto Rico
• TSI [EUR] (98) - Toscani in Italia
• YRI [AFR] (88) - Yoruba in Ibadan, Nigeria

Note that sample sizes for some populations (IBS in particular) is small so we won’t use them. Let’s demon-
strate a European PCA using GBR, TSI, CEU and FIN. We simply simulate some number of individuals
(n = 50) from each population and do PCA. (We could use the original individual level 1000 Genomes data
as well, but since that requires large files, here we just work with the allele frequencies and simulate our
individuals from them.)

p = nrow(af) #number of SNPs
n = 50 #samples per population
pop.labs = c("GBR","TSI","CEU","FIN")
pop = rep(1:length(pop.labs), each = n)
x = c()
for(ii in 1:length(pop.labs)){

x = rbind(x, t(replicate(n, rbinom(p, size = 2, prob = af[,pop.labs[ii]]) ) ) )
}
x = x[, apply(x, 2, var) > 0 ] #keep only SNPs that have variation in data
pca = prcomp(x, scale = TRUE)
plot(pca$x[,1], pca$x[,2], col = pop, pch = 19, xlab = "PC1", ylab= "PC2",

main = "Simulation from 1000 Genomes Phase 1")
legend("topright", leg = pop.labs, col = 1:length(pop.labs), pch = 19, cex = 1)
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It looks like the PC1 is determined by the North-South direction and the PC2 separates Central European
and British ancestry from the Finnish and Italian ancestries.

plot(pca$x[,1], pca$x[,3], col = pop, pch = 19, xlab = "PC1", ylab= "PC3",
main = "Simulation from 1000 Genomes Phase 1")
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And the PC3 then separates GBR and CEU.

Let’s see some colorful pictures that PCA has produced with real data (slides 21-25).

How does PCA work? Technically, PCA is the eigenvalue decomposition of the correlation based genetic
relatedness matrix (GRM-cor) that we discussed earlier: the eigenvectors of the GRM-cor are the scores on
the PCs (first eigenvector corresponds to first PC etc.) This means that the GRM-cor can be seen as being
built up from the PCs, one by one, as shown on slide 27.

Visualization of PCA.

Tutorial on PCA by Jon Shlens is an excellent tutorial, but unfortunately it uses the rows and columns of
data matrix the other way as we are using so the data matrix is given as p × n matrix, and p (the number
of variables) is called m.

How to carry out PCA? Most GWAS software packages can do PCA. Typically, the steps are as were
done by Kerminen 2015:

• Identify a suitable set of individuals by excluding one individual from each pair of closely related
individuals. (Close relatives can drive some leading PCs and hence mix up the analysis when the
purpose is to find population structure, see an example below.)

• Identify a suitable set of SNPs, typically MAF>5% and strict LD-pruning is applied (we’ll talk about
pruning in the next section). Remove also the known regions of high-LD (Price et al. 2008).

• Make sure that the method is using mean-centered genotypes; often the SNPs are further satandardized
to have variance 1 in the sample. Note: Also the GRM-cor uses the standardized genotypes as it is
based on the genotype correlation.

• Plot the loadings along the genome to observe if there are some genomic regions with much larger
contributions than the genome average. Spikes somewhere in the genome indicate that those regions
are driving the PC, and that is most likely because of inadequate pruning of the SNPs from that region
(See Figure 9 in Kerminen 2015).

• Visualize the PCs, for example by plotting two PCs against each other. Observe if there are outliers
that seem to drive some of the leading (say first 20) PCs, and possibly remove those outliers, and redo
PCA. Such individuals could have some quality problems or they may have genetic ancestry that is
different from the rest of the sample, which can be a problem in a GWAS as we’ll discuss soon. If you
have geographic location info about your samples, color each PC-plot with the expected geographic
populations of the samples. If the PC plot seems to separate the expected populations, it is likely to
be correctly done, otherwise there is need to recheck the steps.

• Project the excluded relatives on the PCs. Some relatives may have been excluded while generating the
PCs, but they will have valid scores on the PCs when projected using the loadings that were computed
when those relatives were excluded.

Example 5.5. Why to exclude relatives from PCA? Let’s make a data set that has 10 individuals
from each of populations 1 and 2. The Fst between populations is 0.01 and the data includes one pair of full
sibs from population 1, while the other individuals are unrelated within each population. Let’s see how the
first and the second PC behave.

set.seed(20)
p = 10000 #SNPs
fst.12 = 0.01
cols = c("black","limegreen")
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f = runif(p, 0.2,0.5) #common SNPs in background population
f.1 = rbeta(p, (1 - fst.12)/fst.12*f, (1 - fst.12)/fst.12*(1 - f))
f.2 = rbeta(p, (1 - fst.12)/fst.12*f, (1 - fst.12)/fst.12*(1 - f))

X = rbind(offspring.geno(n.families = 1, n.snps = p, fs = f.1, n.shared.parents = 2), #full-sibs from 1
offspring.geno(n.families = 4, n.snps = p, fs = f.1, n.shared.parents = 0), #unrel from 1
offspring.geno(n.families = 5, n.snps = p, fs = f.2, n.shared.parents = 0)) #unrel from 2

pop = c(rep(1,2*5), rep(2,2*5)) #population labels: 10x Pop1 and 10x Pop2.

X = X[, apply(X, 2, var) > 0] #remove SNPs without variation before scaling
pca = prcomp(X, scale = T) #do PCA
plot(pca$x[,1], pca$x[,2], asp = 1, col = cols[pop], xlab = "PC1", ylab = "PC2", pch = 19)
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Thus, the first PC picks the relative pair and not the population structure. Only the second PC picks the
population structure. This is not what we want in GWAS, where we want to adjust for relatedness in other
ways and use PCA to get an idea of the population structure. Let’s do the PCA by first removing one of
the sibs, and then projecting him/her back among the others in the PC plot.

X.unrel = X[-1,] #remove row 1
pca = prcomp(X.unrel, scale = TRUE)
plot(pca$x[,1], pca$x[,2], asp = 1, col = cols[pop[-1]], xlab = "PC1", ylab = "PC2",

main = "Unrelated PCA", pch = 19)
#project back individual 1 to the PCs spanned by the 19 other individuals
pca.1 = predict(pca, newdata = matrix(X[1,], nrow = 1)) #projects newdata to PCs defined in 'pca'
points(pca.1[1], pca.1[2], col = "violet", pch = 19, cex = 1.2) #ind 1 on PCs
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We see that the excluded sibling (in violet) is projected among his/her population, and now the PCs are not
affected by any close relationships.

Note that when projecting samples using predict() on an object from prcomp(), the new data must be in
the same units as the original data that was used to create the PCA with prcomp(). If the original data
for prcomp() were as unscaled genotypes, then the new data must also be given as unscaled genotypes with
the same allele coding. And if the input data were scaled outside the prcomp() function call, then the new
data must also be scaled by using the same mean and SD values before the projection using the predict()
function.

5.2.3 Relatedness estimates with population structure Let’s see what happens when we have both
population structure and cryptic relatedness, i.e., close relationships among the study participants that
are unknown to us prior to accessing the genetic data.

Suppose we have two populations separated by an Fst of 0.1. We collect 4 pairs of half siblings from
population 1 and 1 pair of half siblings from population 2. Let’s use p = 10000 SNPs similar to our earlier
sibship simulations.

p = 10000 #SNPs
fst.12 = 0.1
f = runif(p, 0.2,0.5) #common SNPs in background population
f.1 = rbeta(p, (1 - fst.12)/fst.12*f, (1 - fst.12)/fst.12*(1-f))
f.2 = rbeta(p, (1 - fst.12)/fst.12*f, (1 - fst.12)/fst.12*(1-f))

X = rbind(offspring.geno(n.families = 4, n.snps = p, fs = f.1, n.shared.parents = 1),
offspring.geno(n.families = 1, n.snps = p, fs = f.2, n.shared.parents = 1))

X = X[, apply(X, 2, var) > 0] #keep only SNPs that have variation in the data

#make GRM-cor
X.scaled = scale(X) #standardize each SNP at columns of X
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GRM = (X.scaled %*% t(X.scaled))/p #correlation matrix of individuals based on standardized SNPs

#make KING-robust estimate for r:
denominator = matrix(rep(rowSums(X==1), nrow(X)), nrow=nrow(X), byrow = T) +

matrix(rep(rowSums(X==1), nrow(X)), nrow=nrow(X), byrow = F)
king.r = 2*((X==1) %*% t(X==1) - 2*((X==0) %*% t(X==2) + (X==2) %*% t(X==0)) ) / denominator

Let’s plot the results by dividing the relatedness coefficients into categories of monozygotic twins, 1st, 2nd,
3rd degree relatives and unrelated. Let’s also print the relatedness values for five pairs of half sibs, who
should belong to the category of the second degree relatives.

n.cols = 5 #make 5 categories of relatives
brk = c(-1, 0.088, 0.177, 0.354, 0.707, 1.5) #KING's breakpoints for unrelated, 3rd, 2nd, 1st, monozygotes
labs = c("unrel","3rd","2nd","1st","same")

layout(matrix(c(1,2), nrow = 1), width = c(9,1)) #plotting area has matrix and color scale
par(mar = c(2,2,3,1))
image(GRM, col = topo.colors(n.cols), breaks = brk,

asp = 1, xaxt = "n", yaxt = "n", bty = "n",
main = paste("GRM from",ncol(X),"SNPs")) #plot matrix using image

par(mar = c(2,1,5,1))
plot.window(xlim = c(0,1), ylim = c(0,n.cols))
points( x = rep(1,n.cols), y = (1:n.cols), col = topo.colors(n.cols), pch = 15, cex = 2)
axis(4, at = 1:n.cols, labels = labs)
c(GRM[1,2], GRM[3,4], GRM[5,6], GRM[7,8], GRM[9,10]) #plot the relatedness values of half sibs

## [1] 0.10459466 0.09525122 0.09165326 0.09614190 0.29005345

GRM from 9832 SNPs
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We see that only the pair from Pop2 has its rij estimate corresponding to a value expected for the second
deggree relatives. The other pairs have less GRM-cor relatedness in this sample because the strong population
difference make them look like they were sharing more IBD than they actually do within their own population.

What about KING? (Suppressing code.)

## [1] 0.2458297 0.2454545 0.2482046 0.2511605 0.2443132

KING (r) from 9832 SNPs
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KING gets the half-sibs correct and rij values are around 25% as expected. It indeed seems robust to this
kind of a population structure.

5.2.4 Fine-scale genetic structure Those interested in level of fine-scale genetic structure that can be
extracted from genetic data can see results for

• Bantu-speaking African populations (Fortes-Lima et al. 2023)

• Central Asia (Mezzavilla et al. 2014)

• Estonia (Pankratov et al. 2020).

• Finland (Kerminen et al. 2017).

• France (Saint Pierre et al. 2020).

• Ireland (Gilbert et al. 2017).

• Japan (Sakaue et al. 2020)

• Netherlands (Byrne et al. 2020).

• Scotland (Gilbert et al. 2019)
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• South and Southeast Asia (Tagore et al. 2021)

• Spain (Bycroft et al. 2019).

• UK (Leslie et al. Nature 2015).
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