GWAS 4

Matti Pirinen University of Helsinki Week 2

BAYES RULE COMBINES PRIOR & OBSERVATION

BAYES RULE COMBINES PRIOR & OBSERVATION

X = Sun exploded Y = Detector says "Yes"

Bayes rule: $Pr(X | Y) = \frac{Pr(Y | X) Pr(X)}{Pr(Y)}$

We know Pr(Y | X) = 0.973 and Pr(Y | notX) = 0.027.

$$\frac{\Pr(X \mid Y)}{\Pr(\operatorname{not} X \mid Y)} = \frac{\Pr(Y \mid X)}{\Pr(Y \mid \operatorname{not} X)} \times \frac{\Pr(X)}{\Pr(\operatorname{not} X)} < 36 \times \frac{\Pr(X)}{\Pr(\operatorname{not} X)}$$
posterior-odds Bayes factor prior-odds

So the observation Y increases odds of X at most 36-fold compared to prior odds that are likely very very very small. Thus, the posterior odds of event X remains very very small.

BAYESIAN INFERENCE

- We are estimating a parameter such as an effect size β in GWAS
- We have some **prior** beliefs about the parameter value but we don't know very accurately
- We gather data and use the **likelihood function** to summarize what the data tells about β
- Bayes rule tells how to combine the prior distribution and the likelihood function into a posterior distribution
- If prior is nearly constant across a range of values relative to the amount of info in the data, then the posterior will look like the likelihood function
- If prior of some region is extremely small, then we will need an extremely large likelihood value before posterior will support strongly that region

Posterior probability
of hypothesis H_i
$$P(H_i|D) = \frac{P(D|H_i)P(H_i)}{P(D)}, \quad \text{for } i = 0, 1.$$
$$\frac{P(H_1|D)}{P(H_0|D)} = \frac{P(D|H_1)}{P(D|H_0)} \times \underbrace{P(H_1)}_{P(H_0)} \text{To compare the profit wo hypotheses define their prior prior odds}}_{\text{define their prior prior odds}} = \underbrace{P(D|H_1)}_{P(D|H_0)} \times \underbrace{P(H_1)}_{P(H_0)} \text{To compare the probability}}_{\text{define their prior prior odds}}$$

Prior probability of association in GWAS might be in range 10⁻⁴ to 10⁻⁶ but depends on what is known about the variant. What about the Bayes factor?

obabilities we need to probabilities and the probability distributions how they produce data.

$p(D \mid H_1)$

BF for blue and red effect size estimates are shown.

- For the NULL hypothesis, true effect size = 0 and hence the observed effect size has distribution N(0, SE²) – This Normal density evaluated at the observed effect estimate is the evidence term $p(D \mid H_0)$
- For the alternative hypothesis, true effect size is assumed to be sampled from $N(0, t^2)$ and hence the observed effect size has distribution $N(0, t^2 + SE^2)$
- Then the Bayes factor is

$$\frac{P(\mathcal{D}|H_1)}{P(\mathcal{D}|H_0)} \approx \frac{\mathcal{N}\left(\hat{\beta}; 0, \tau_1^2 + \mathrm{SE}^2\right)}{\mathcal{N}\left(\hat{\beta}; 0, \mathrm{SE}^2\right)}$$

BFVS P-VALUES

For common variants there is a linear relationship between *P*-value and BF.

Differences come for rare variants since the standard prior distribution does not allow large effect sizes.

Figure 6.7: **BF versus p-value for Crohn's disease.** Each point represents a SNP from the WTCCC data. BFs are calculated under the conservative prior ($\sigma = 0.2$). Points are coloured according to the MAF, as shown in the legend on the right.

Damjan Vukcevic 2009, Dphil thesis, Oxford

WHICH VARIANTS AFFECT COVID INFECTION SUSCEPTIBILITY AND WHICH DISEASE SEVERITY?

SARS-CoV-2 reported infection

Together 23 loci

https://doi.org/10.1038/s41586-023-06355-3

EXPECTED TRUE EFFECT SIZES FOR TWO HYPOTHESES

POSTERIOR PROBABILITIES OF HYPOTHESES

Pr(INF | $\widehat{\beta}$)

6e-8

posterior-odds Bayes factor x prior-odds

CATEGORIES OF COVID-19 RELATED VARIANTS

Categorizing variants: 5 infection susceptibility (blue) 12 COVID severity (red) 6 undetermined status (white)

Here we have added an additional model to represent variants that have effect on BOTH the infection and severity.

4 SNPs Associated with ischemic stroke.

3 subtypes: LVD large vessel SVD small vessel CE cardioembolic

Two SNPs particularly in LVD and 2 in CE

Bellenguez et al. 2012 Nat Gen