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DID THE SUN JUST EXPLODE?
(IT NGHT, 50 WETRE NOT SLRE) BAYES RULE COMBINES

THIS NEUTRINO DETECTOR MERSURES

WHERER THE SUN HAS GONE NOVA PRIOR & OBSERVATION

THEN, TROUS TWO DICE. |F THEY
BOTH COME UP SIX, ITUES TO US.

OMHERWISE, IT TELLS THE TRUH.
LETS TRY.

DETECTOR! HAS THE
SUN GONE Novb?
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FREQUENTIST STATISTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILTY OF THIS RESULT

HAPPENING BY CHANCE 15 3;=0027. BET YOU $50
GNCE p<0.05, T CONCLUDE T HANT.
THAT THE SUN HAS EXPLODED.
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DID THE SUN JUST EXPLODE?

(ITS NIGHT; S0 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

THEN, TROUS TWO DICE. |F THEY
BOTH COME UP SIX, ITUES TO US.
OTHERWISE, IT TELLS THE TRUH.

LET'S TRY.
CETECTOR! HAS THE
SN GONE Novh?

) ROLL,
=0

FREQUENTIST STATISTICIAN: BAYESIAN STATISTIOAN:

BAYES RULE COMBINES
PRIOR & OBSERVATION

THE PROBABILTY OF THIS RESULT

HAPPENING BY CHANCE 15 3;=0027. BET YOU $50
IT HASNT

SNCE p<0.05, T CONCLUDE

HRTTF(ESUNMSD@!DDED )

Taaf

X = Sun exploded
Y = Detector says "Yes”

Pr(v | x) Proo
Pr)

Bayes rule: Pr(X |Y) =

We know Pr(Y | X) = 0.973 and Pr(Y | notX) = 0.027.

Pr(X|Y)  Pr(Y|X) Pr(X) Pr(X)
Pr(notX |Y) Pr(Y | notX) % Pr(notX) < 36 Pr(notX)

posterior-odds  Bayes factor prior-odds

So the observation Y increases odds of X at most 36-fold
compared to prior odds that are likely very very very small.
Thus, the posterior odds of event X remains very very small.



BAYESIAN INFERENCE

Posterior distribution
p(f|Data) Likelihood
function

p(Data|f)

Prior distribution

p(B)
7 N2
»(8 | Data) = PL2RIAILE) o Data | 8) p(8)

p(Data)

We are estimating a parameter such as an effect
size [ in GWAS

We have some prior beliefs about the parameter
value but we don’t know very accurately

We gather data and use the likelihood function
to summarize what the data tells about

Bayes rule tells how to combine the prior
distribution and the likelihood function into a
posterior distribution

If prior is nearly constant across a range of values
relative to the amount of info in the data, then

the posterior will look like the likelihood function

If prior of some region is extremely small, then
we will need an extremely large likelihood value
before posterior will support strongly that region



BAYESIAN MODEL COMPARISON

Posterior probability P(D Hi P Hi
of hypothesis H; P(H; |D) = ( lp(;)( ) ,

fori =0,1.

P(H,|D) P(D|H,) P(H;) To compare the probabilities

= X - of two hypotheses we need to
P(Hy|D) P(D|Hy) LP(EO)J define their prior probabilities
N N

posterior odds  Bayes factor prior odds  and the probability distributions
how they produce data.

Prior probability of association in GWAS might be in
range 104 to 10-® but depends on what is known
about the variant.What about the Bayes factor?




probability density of data
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p(D | Hy)

* For the NULL hypothesis, true effect size = 0 and hence

HO

0.0 0.1 0.2 0.3

estimate of beta

BF for blue and red effect size estimates are shown.

the observed effect size has distribution N(0, SE?) — This
— H1 Normal density evaluated at the observed effect
estimate is the evidence term p(D | Hyp)

* For the alternative hypothesis, true effect size is
assumed to be sampled from N(0, t?) and hence the
observed effect size has distribution N(0, t> + SE?)

o * Then the Bayes factor is

o) N ('B; 0, 72 + SE2)

P(D|Ho) ~ N(ﬁ; 0, SE2)



BF VS P-VALUES

For common variants there is a
) P : linear relationship
RS between P-value and BF.
F a i Differences come for rare

A : variants since the standard prior

distribution does not allow large

S effect sizes.
(T) ; 110 g MAF

—Iog,o(p—value)

Figure 6.7: BF versus p-value for Crohn’s disease. Each point represents a SNP from the

WTCCC data. BFs are calculated under the conservative prior (¢ = 0.2). Points are coloured g q g 3
according to the MAF, as shown in the legend on the right. Damlan VU kCGVlC 2009’ Dph II theSIS’ OXfO I"d




WHICH VARIANTS AFFECT COVID INFECTION
SUSCEPTIBILITY AND WHICH DISEASE SEVERITY?
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Together 23 loci
(P < 5e-8)

Infection
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https://doi.org/10.1038/s41586-023-06355-3



Infection

EXPECTED TRUE EFFECT SIZES FOR TWO HYPOTHESES
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BinF = Bros > 0

bine = 0.2 fyos > 0

Hypothesis INF:

Variant affects infection
susceptibility

(but not disease severity)

Hypothesis SEV:

Variant affects disease
severity (but not infection
susceptibility).

Reason why [,y is not 0 under the SEV hypothesis is that
the data set has been enriched for hospitalized cases,
and coefficient 0.2 is a specific value computed for this data set.



POSTERIOR PROBABILITIES OF HYPOTHESES

Infection 3

0.2

0.1

-0.1

N Pr(SEV |B) _ Pr(B|SEV)

Bayes formula (with equal prior
probabilities of models so prior-odds = |):

~ — — x |
Pr(INF|B)  Pr(B|INF)
| ABO posterior-odds Bayes factor x prior-odds
DPPO - Pr(SEV|ﬁ) Pr(INF | B)
B ABO le-38 |
DPP9 0.99999994 6e-8

-0.1 0.0 0.1 0.2
Hospitalization 3



BINF
02 03 04

CATEGORIES OF COVID-19 RELATED VARIANTS
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Categorizing variants:

5 infection susceptibility (blue)
|2 COVID severity (red)
6 undetermined status (white)

probability

Here we have added an
additional model to represent

variants that have effect on
BOTH the infection and
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https://doi.org/10.1093/bioinformatics/btad115

BAYESIAN MODEL COMPARISON
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Bellenguez et al. 2012 Nat Gen

4 SNPs
Associated with
ischemic stroke.

3 subtypes:

LVD large vessel
SVD small vessel
CE cardioembolic

Two SNPs
particularly in
LVD

and 2 in

CE



