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The slide set referred to in this document is “GWAS 3”.

We saw previously that a stringent significance threshold, such as 5e-8, is needed in GWAS in order to avoid
false positives, that is, such null variants that reach the significance threshold. On the other hand, a stringent
threshold makes it quite difficult to get even the true non-zero effects to reach the threshold. In other words,
we tend to have many false negatives, that is, non-zero variants that do not reach the significance threshold.

Next, we will study the properties of the variants and the study design that determine how likely we are to
catch the true effects. This topic is called statistical power analysis (Slides 1-7). Here is a review article on
statistical power in GWAS by Sham and Purcell 2014.

Statistical power of a statistical significance test is the probability that the test will reject the null hypoth-
esis H0 (in GWAS, H0 says that β = 0) at the given significance threshold when the data follow a specific
alternative hypothesis H1. In the GWAS setting, H1 is specified by fixing the study design (total sample size
or case and controls counts) and the parameters defining the variant (MAF and effect size).

To compute the P-value, we only needed to consider the null hypothesis H0. For a power analysis, we also
need to define explicitly how the true effects look like, i.e., we need to quantify the alternative hypothesis
H1. Of course, not all true effects are the same, and therefore power analysis is often presented as a power
curve over a plausible range of parameter values.

3.1 Test statistic under the alternative By assuming that the sampling distribution of the effect
size estimate β̂ is Normal (which works well for large sample sizes and common variants), we have that
β̂ ∼ N (β, SE2), where β is the true effect size and SE is the standard error of the estimator. As we saw
previously, under the null hypothesis H0, i.e. when β = 0, the Wald test statistic z = β̂/SE is distributed
approximately as z ∼ N (0, 1), which can be used for computing a P-value. Another way to compute the
same P-value is via the chi-square distribution as z2 ∼ χ2

1. With the chi-square distribution, we need to
consider only the upper tail of the distribution to compute the two-sided P-value, whereas with the Normal
distribution we would need to remember to multiply by 2 the tail probability to get the same two-sided
P-value.

What happens when β ̸= 0, that is, when the variant has a non-zero effect? Then z ∼ N (β/SE, 1) and z2 ∼
χ2

1((β/SE)2), which is called a chi-square distribution with 1 degree of freedom and non-centrality parameter
NCP=(β/SE)2. When β = 0 this reduces to the standard central chi-square distribution χ2

1 = χ2
1(0).

Example 3.1. Let’s illustrate these distributions by a simulation of GWAS results under both the alternative
hypothesis and under the null hypothesis. To save time, we don’t do regressions with genotype-phenotype
data but we simulate the effect estimates directly from their known distributions. First, however, we need
to find the standard error, and that we do by fitting one regression model. We will visualize the distri-
butions both for the Wald statistic (having a Normal distribution) and for its square (having a chi-square
distribution).
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n = 500 # individuals
p = 5000 # SNPs for both null and alternative
f = 0.5 # MAF
b.alt = 0.2 # effect size under the alternative hypothesis
x = rbinom(n, 2, f) # genotypes at 1 SNP for n ind
y = scale( rnorm(n) ) # random phenotype normalized to have sample sd=1
se = summary( lm( y ~ x ) )$coeff[2,2] # pick SE, and assume it stays constant and independent of beta
b.hat.null = rnorm(p, 0, se) # estimates under null
b.hat.alt = rnorm(p, b.alt, se) # estimates under alternative

par(mfrow=c(1,2))
# Plot observed densities of z-scores
plot(NULL, xlim = c(-3,6), ylim = c(0,0.5), xlab = "z",

ylab = "density", col = "white") # empty panel for plotting
lines(density( (b.hat.null/se) ), col = "black", lwd = 2) # Wald statistic for null variants
lines(density( (b.hat.alt/se) ), col = "red", lwd = 2) # Wald statistic for alternative variants
# add theoretical densities for z-scores
x.seq = seq(-3, 6, 0.01)
lines(x.seq, dnorm(x.seq, 0, 1), col = "blue", lty = 2) # for null
lines(x.seq, dnorm(x.seq, b.alt/se, 1), col = "orange", lty = 2) # for alternative

# Plot observed densities of zˆ2
plot(NULL, xlim = c(0,35), ylim = c(0,1), xlab = expression(zˆ2),

ylab = "density", col = "white") # empty panel for plotting
lines(density( (b.hat.null/se)ˆ2 ), col = "black", lwd = 2) # chi-square stat for null variants
lines(density( (b.hat.alt/se)ˆ2 ), col = "red", lwd = 2) # chi-square stat for alternative variants
# Let's add theoretical densities of the chi-square distributions
x.seq = seq(0, 35, 0.01)
lines(x.seq, dchisq(x.seq, df = 1, ncp = 0), col = "blue", lty = 2) # ncp=0 for null
lines(x.seq, dchisq(x.seq, df = 1, ncp = (b.alt/se)ˆ2), col = "orange", lty = 2) # ncp = (beta/se)ˆ2 for alternative
legend("topright", leg = c("NULL obs'd","ALT obs'd","NULL theor","ALT theor"),

col = c("black","red","blue","orange"),
lty = c(1,1,2,2), lwd = c(2,2,1,1) )

# Let's add significance thresholds corresponding to 0.05 and 5e-8
# By definition, the thresholds are always computed under the null.
q.thresh = qchisq( c(0.05, 5e-8), df = 1, ncp = 0, lower = FALSE)
abline(v = q.thresh, col = c("darkgreen", "springgreen"), lty = 3)
text( q.thresh+2, c(0.4,0.4), c("P<0.05","P<5e-8") )
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The theoretical distributions match well with the observed ones so we trust that we now understand the
relevant parameters also of the theoretical chi-square distribution. We also see that almost the whole of the
alternative distribution is to the right of the significance threhsold of 0.05 but to the left of threshold 5e-8.
Thus, with these parameters, we would discover almost all variants at a significance level 0.05 but almost
none at the genome-wide significance level of 5e-8.

How to compute the exact proportion of the distribution to the right of a given threshold value? We
first compute the cut points of the test statistics under the null hypothesis using qchisq() function and
then we compute the upper tail probabilities at these cut points for the non-central chi-square distribution
corresponding to the alternative hypothesis.

q.thresh = qchisq(c(0.05,5e-8), df = 1, ncp = 0, lower = FALSE) # signif. thresholds in chi-square units
pchisq(q.thresh, df = 1, ncp = (b.alt/se)ˆ2, lower = FALSE) # corresponding upper tail probabilities

## [1] 0.89821524 0.01321279

So we have a probability of 90% to detect a variant at significance threshold 0.05, when effect size is 0.2 SD
units of a quantitative phenotype, MAF is 50% and the sample size is 500. This probability is also called
statistical power corresponding to the given parameters (significance threshold, β, MAF and n). On the
other hand, with these parameters, we only have a power of 1.3% at the genome-wide significance level 5e-8.
An interpretation is that we are likely to discover 90 out of 100 variants having the parameters considered
at the significance level 0.05 but only about 1 out of 100 at the level 5e-8.

A lower bound for power is the significance threshold α. We use the concept of statistical power
to describe the ability to detect non-zero effects. What about the zero effects? What is the probability of
getting a significant result when the null hypothesis holds? By definition, this probability is the significance
threshold α, and does not depend on n or MAF. Consequently, the power to detect any non-zero effect can
never be less than α and will get close to α for tiny effects (β ≈ 0) which are almost indistinguishable from
0.

Typically, we would like to design studies that have a large power (say ≥ 80%) to detect the types of variants
that we are interested in. How can we do that?

3.2 Ingredients of power

The parameters affecting power are
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1. Sample size n; increasing sample size increases power because it increases accuracy of effect size esti-
mate.

2. Effect size β; increasing the absolute value of effect size increases power because it increases difference
from the null model.

3. Minor allele frequency f ; increasing MAF increases power because it increases accuracy of effect size
estimate.

4. Significance threshold α; increasing the threshold increases power because larger significance thresholds
are easier to achieve.

5. In case-control studies, the proportion of cases ϕ; moving ϕ closer to 0.5 increases power because it
increases accuracy of effect size estimate.

We will soon discuss intuition why each of these parameters affects power. But let’s first write down how
these parameters and power are tied together.

For a given significance level α, power is determined by the non-centrality parameter NCP= (β/SE)2 of the
chi-square distribution. The mean of the distribution is 1+NCP and the whole distribution moves to right
with increasing NCP. Hence, the larger the NCP the larger the power. We see that the NCP increases with
β2 and this explains why increasing |β| increases power. We also see that the NCP increases as SE decreases
and therefore we need to know how SE depends on n, f and ϕ.

3.2.1 Formulas for standard errors For the linear model

y = µ + xβ + ε,

SE of β̂ is
SElin

(
β̂

)
= σ√

nVar(x)
≈ σ√

2nf(1 − f)
,

where the variance of genotype x is, under Hardy-Weinberg equilibrium, approximately 2f(1 − f), and σ is
the standard deviation of the error term ε: σ2 = Var(y)−β2Var(x). This form for SE is a direct consequence
of the variance estimate of the mean-centered linear model: Var(β̂) = σ2/

∑n
i=1 x2

i .

In a typical quantitative trait GWAS, the effects of variants on the total phenotypic variance are small (<
1%) and then we can assume that the error variance σ2 ≈ Var(y), which is approximately equal to 1, if
the phenotype is defined via quantile normalization or via scaling of the residuals after regressing out the
covariate effects.

For binary case-control GWAS analyzed by logistic regression,

SEbin

(
β̂

)
≈ 1√

nVar(x)ϕ(1 − ϕ)
≈ 1√

2nf(1 − f)ϕ(1 − ϕ)
.

Thus, the difference from the linear model SE is that σ is replaced by 1 and n is replaced by an effective
sample size nϕ(1−ϕ). Here n is the total sample size, i.e., cases + controls. For derivation, see Appendix A
of Vukcevic et al. 2012. Note: Often the effective sample size is defined as 4nϕ(1 − ϕ), because that quantity
tells what would be the total sample size (cases + controls) in a hypothetical study that has equal number
of cases and controls and whose power matches the power of our current study.

A smaller SE means a higher precision of the effect size estimate. Both of the formulas show how SE decreases
with increasing sample size n, with increasing MAF f and, for binary data, SE decreases as ϕ gets closer
to 0.5. These formulas work well for typical GWAS settings but may not hold when some parameter (n or
f or ϕ(1 − ϕ)) gets close to zero. In particular, the formula may not be good for the rare variant testing
(f < 0.001). To know exactly when the formulas start to break down, it is best to do simulations.
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Now we can write down the NCPs of the additive GWAS models as

NCPlin = (β/SElin)2 ≈ 2f(1 − f)nβ2/σ2 and NCPbin = (β/SEbin)2 ≈ 2f(1 − f)nϕ(1 − ϕ)β2.

Let’s next discuss how and why each parameter affects the NCPs, and hence the power.

3.2.2 Sample size Out of the parameters affecting power, the sample size is most directly under the
control of study design. Therefore, it is the primary parameter by which we can design studies of sufficient
power.

Increasing n decreases SE in the regression models in proportion to 1/
√

n. In the GWAS context, we can
think that a larger n leads to more accurate estimate of the phenotypic means in each of the genotype
classes. Therefore, as n grows, we also have more accurate estimate of the phenotypic difference between the
genotype classes, which means that we are better able to distinguish a true phenotypic difference between
the genotype groups. In other words, we have a larger power to detect a genotype’s effect on the phenotype.

Example 3.2. Above we saw that with n = 500 (and MAF = 0.5, β = 0.2) we had only 1% power at
significance level α = 5e-8. Let’s determine how large n should be to achieve 90% power.

f = 0.5
b.alt = 0.2
sigma = sqrt(1 - 2*f*(1 - f)*b.altˆ2) # error sd after SNP effect is accounted for (see next part for explanation)
ns = seq(500, 4000, 10) # candidate values for n
ses = sigma/sqrt(ns*2*f*(1 - f)) # SEs corresponding to each candidate n
q.thresh = qchisq(5e-8, df = 1, ncp = 0, lower = FALSE) # chi-sqr threshold corresponding to alpha = 5e-8
pwr = pchisq(q.thresh, df = 1, ncp = (b.alt/ses)ˆ2, lower = FALSE) # power at alpha = 5e-8 for vector of SE values
plot(ns, pwr, col = "darkgreen", xlab = "n", ylab = "power",

main = paste0("QT sd=1; MAF=",f,"; beta=",b.alt), t = "l", lwd = 1.5)
abline(h = 0.9, lty = 2)
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# Let's output the first n that gives power >= 90%
ns[min(which(pwr >= 0.9))]

## [1] 2230

So, we need n = 2230 in order to have power of 90%.

3.2.3 Effect size and variance explained When the effect size is β and the MAF is f , then the variance
explained by the additive effect on the genotype is Var(xβ) = Var(x)β2 ≈ 2f(1 − f)β2. When the total
phenotypic variance of a quantitative trait is 1, then 2f(1 − f)β2 is also the proportion of the variance
explained by the variant. For example, in our ongoing example setting, the variance explained by the variant
is

2*f*(1-f)*b.altˆ2.

## [1] 0.02

That is, the variant explains 2% of the variation of the phenotype. This is a very large variance explained
compared to a typical common variant association with complex traits, such as BMI or height, but is more
realistic for some molecular traits, such as metabolite levels, that are less complex genetically and may be
affected by larger effects from individual variants.

Example 3.3. What if we wanted to find a suitable n that gives 90% power for MAF=50% when the variant
explained only 0.5% of the phenotype?

f = 0.5
y.explained = 0.005
b.alt = sqrt(y.explained / (2*f*(1 - f)) ) # this is beta that explains 0.5%
sigma = sqrt(1 - y.explained) # error sd after SNP effect is accounted for
ns = seq(1000, 12000, 10) # candidate n
ses = sigma / sqrt( ns*2*f*(1 - f) ) # SE corresponding to each n
q.thresh = qchisq(5e-8, df = 1, ncp = 0, lower = FALSE) # threshold corresp. alpha = 5e-8
pwr = pchisq(q.thresh, df = 1, ncp = (b.alt/ses)ˆ2, lower = FALSE) # power at alpha = 5e-8
plot(ns,pwr, col = "darkgreen", xlab = "n", ylab = "power",

main = paste0("QT sd=1; MAF=",f,"; beta=",b.alt), t = "l", lwd = 1.5)
abline( h = 0.9, lty = 2 )
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# Let's output n that is the first that gives power >= 90%
ns[min(which(pwr >= 0.9))]

## [1] 9030

So, we needed to multiply the sample size by a factor of ~4. This really makes a difference in practice. It is
very different to collect 2230 individuals than to collect 9030. Power calculations are important!

Could we maybe had guessed the factor of 4 without doing the actual power calculation? For a fixed α,
power is determined by the NCP. Earlier we determined the parameters that gave 90% power. If we equate
the NCP defined by those parameters with an NCP cooresponding to a new effect size and an unknown
sample size n2, we can solve for n2. Furthermore, as f = 0.5 remains constant, it cancels out, and we get

2f(1 − f)β2
1n1

σ2
1

= 2f(1 − f)β2
2n2

σ2
2

−→ n2 = β2
1n1σ2

2
β2

2σ2
1

= n1
0.22

0.12
1 − 0.005
1 − 0.02 ≈ 4.0612 · n1.

We conclude that when the variance explained by the variant is small (say < 2%), and we drop the variance
explained by a factor of a, (which is the same as dropping the effect size by a factor of

√
a), we must increase

the sample size approximately by a factor of a to maintain constant power. If variance explained by the
variant is larger than a few percents, then it will have a bigger effect on the result, but in GWAS, typically,
the variance explained remains < 1%.

3.2.4 Minor allele frequency When the other parameters than the MAF f remain constant, the NCPs
are proportional to f(1 − f) which is maximized at f = 0.5 and which decreases to zero as f → 0.

Technically, this can be explained by a general property that, in regression models, the increased variance
in the predictor variables makes the effect estimates more precise. Considering more concretely the GWAS
setting, if MAF f is very small, then almost all individuals in the sample have the major homozygote
genotype. Consequently, we will estimate the mean phenotype very accurately for that homozygote genotype,
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but we will have almost no information about the phenotypic mean of the heterozygote group. Therefore, we
have little information whether the two groups are different from each other. The mathematics show that,
from the point of view of power, the best balance between the precision of the phenotypic mean estimates
of different genotype groups is achieved when MAF=0.5.

Example 3.4. Consider a situation where the MAF of a particular variant is 0.5 in population A but only
0.2 in population B. How much larger sample size would we need in B to achieve the same power as in A
assuming all other parameters were the same?

Answer. Let’s equate the NCPs and, since the other parameters than f and n cancel out, we are left with

nBfB(1 − fB) = nAfA(1 − fA) −→ nB = nA
fA(1 − fA)
fB(1 − fB) = nA

0.5 × 0.5
0.2 × 0.8 = 1.5625 · nA.

So we need 56% more samples in B than in A.

We can get a simpler approximation for cases where MAF is low (<5%) in both populations, because then
(1 − fA)/(1 − fB) ≈ 1 and we are left with nB ≈ fA/fB nA.

Example 3.5. In section 1, we encountered PCSK9 gene’s missense variant rs11591147 that had a strong
effect on the LDL-cholesterol levels. GnomAD database shows that it has MAF 4.2% (713/16994) in Finland
whereas MAF is 1.5% (1235/81394) in non-Finnish Europeans (NFE). Hence, we estimate that we would
need to collect about 4.2/1.5 = 2.8 times larger cohort in NFE than in FIN to detect this variant at a given
significance threshold. (The exact factor is 0.042 · (1 − 0.042)/(0.015 · (1 − 0.015)) = 2.723.)

3.2.5 Proportion of cases In a case-control analysis of a binary trait, the proportion of cases in the
sample, ϕ, affects power. Mathematically, the effect is similar to that of MAF, i.e., the NCP is proportional
to ϕ(1−ϕ). Hence, all other things being fixed (including the total sample size), the largest power is achieved
when the number of cases equals the number of controls (ϕ = 0.5), and power approaches zero when ϕ → 0
or ϕ → 1. Here, intuition is that if we had only few cases, then the allele frequency information in cases were
very inaccurate and therefore it would be very difficult to determine whether case and control frequencies
are different from each other, no matter how accurately we could estimate the control allele frequency.

Example 3.6. Consider two GWAS on migraine.

1. The UK Biobank study of 500,000 individuals of whom 15,000 have self-reported migraine.

2. Case-control analysis of 60,000 individuals of whom 30,000 suffer from migraine and 30,000 are controls.
Which of these two studies yields larger power?

Answer. The power is determined by the NCP=2f(1 − f)nϕ(1 − ϕ)β2, and the two studies are assumed
to differ only in their effective sample size nϕ(1 − ϕ). Therefore, the one that has the larger effective sample
size has also larger power.

n = c(500000, 60000)
phi = c(15000, 30000)/n
cbind(n, phi, eff.n = n*phi*(1 - phi))

## n phi eff.n
## [1,] 5e+05 0.03 14550
## [2,] 6e+04 0.50 15000

These studies are very similarly powered but the second study has a slightly higher power. This is true even
though the total sample size of the second study is only 12% of the total sample size of the first study.
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3.2.6 Power calculators Genetic Association Study Power Calculator at University of Michigan specifies
case-control study effect sizes by genotype relative risk (GRR) and disease prevalence in population. For
their multiplicative model, GRR is the relative risk between genotype 1 and 0 as well as between genotype
2 and 1. It can be shown that for low prevalence (<1%) GRR approximately equals to the odds ratio (OR).
Let’s test it.

Example 3.7. Make a study with 10,000 cases and 10,000 controls, with disease allele frequency 40%, GRR
of 1.1 and disease prevalence of 0.001, in which case GRR is approximately OR. The calculator gives power
22.5% at α = 5e-8. Compare it to the way we have done it:

b = log(1.1) #b is log-odds, approximately GRR for a low prevalence disease
n = 20000
f = 0.4
phi = 0.5
pchisq(qchisq(5e-8, df = 1, lower = F), df = 1, ncp = 2*f*(1-f)*n*phi*(1-phi)*bˆ2, lower = FALSE)

## [1] 0.2170825

Methods agree well and estimate power of 22..23%.

3.2.7 Risk allele frequency (RAF) vs minor allele frequency (MAF) Continue with the Power
calculator and set GRR to 1.15 and RAF to 0.2: power is 60%. Change RAF to 0.8; power drops to 51%.
How can that be since in our formula the power depends only on MAF which is the same (0.2) in both cases?

Let’s consider a disease with low prevalence (say < 1%). Then the RAF in disease-free controls is almost the
same as RAF in the whole population since over 99% of the population are eligible to become controls. By
definition, the risk allele is more frequent among the cases than among the controls and hence the RAF in the
ascertained case-control sample, that is heavily enriched for cases compared to their population frequency,
will be higher than RAF in the population. Hence, if the risk allele is also the minor allele, then the MAF
in the ascertained case-control sample will be higher than in the population, which increases the power.
However, if the risk allele is the major allele, then the MAF in the ascertained case-control sample will be
lower than in the population, which decreases the power. We conclude that in an ascertained case-control
sample, we have more power to detect risk increasing minor alleles than protective minor alleles even when
their MAFs were the same in population Chan et al. 2014 AJHG. This reminds us about the importance of
considering f in the power calculations as the MAF in the particular sample that we are analysing, which
for ascertained case-control studies may differ from the population’s MAF.

3.3 Why well powered studies are so important?

The GWAS evolution over the last 15 years gives an illuminating lesson on the influence of statistical power
on scientific conclusions. Since the effect sizes of common variants affecting complex diseases are relatively
small, the first years of GWAS of any one disease were able to detect only few GWS associations because
the sample sizes were only a few thousands. However, when the sample size grew to tens of thousands, the
number of associations started a steep increase. This pattern has occurred for nearly all traits and diseases
studied. (Demonstrated for schizophrenia on slides 8-10.)

Example 3.8. Let’s look at the results of the Schizophrenia study (“Biological insights from 108
schizophrenia-associated genetic loci”)[https://www.nature.com/articles/nature13595], Nature 511:421-427
taken from their Supplementary table 2.

sz.res = read.table("http://www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/sz_res.txt",
as.is = TRUE, header = TRUE)

sz.res[1,] #see what data we have
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## Index_SNP A12 Frq_case Frq_control Chr Start_Position End_Position
## 1 rs4648845 TC 0.533 0.527 1 2372401 2402501
## Combined_OR Combined_95lower Combined_95upper Combined_P Discovery_OR
## 1 1.072 1.049 1.097 8.7e-10 1.071
## Discovery_P Replication_OR Replication_P
## 1 4.03e-09 1.088 0.0885

#Let's plot the known SZ variants on frequency - effect size coordinates
#And draw some power curves there at genome-wide significance threshold
maf = sz.res[,"Frq_control"] #Not yet maf but allele 1 frequency
maf[maf > 0.5] = 1 - maf[maf > 0.5] #Make it to MAF: always less than 0.5
b = abs(log(sz.res[,"Combined_OR"])) #effect size on log-odds-ratio scale with positive sign
pw.thresh = 0.5
p.threshold = 5e-8
plot(maf, b, ylim = c(0, 0.3), xlim = c(0.01, 0.5), xlab = "MAF",

ylab = "EFFECT SIZE (in log-odds-ratio)", xaxt = "n", yaxt = "n", log = "x", #make x-axis logarithmic
main = substitute(paste("Power = ", pw.thresh ," at ", alpha ," = ",p.threshold),

list(pw.thresh = pw.thresh, p.threshold = p.threshold)),
cex.main = 1.8, cex.lab = 1.3, pch = 19)

axis(1, at = c(0.01, 0.02, 0.05, 0.10, 0.25, 0.5), cex.axis = 1.3)
axis(2, at = c(0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3), cex.axis = 1.3)
grid()

q = qchisq(p.threshold, df = 1, lower = FALSE) #chi-square value corresp. significance threshold
#matrix of numbers of cases (col1) and controls (col2):
Ns = matrix( c(3332,3587,

10000,10000,
34000,45600),

ncol = 2 , byrow = TRUE)
cols=c("green", "cyan", "blue")

f = seq(0.01, 0.5, length = 200)
b = seq(0, 0.3, length = 200)
legends = c()
par(mar = c(6, 6, 5, 1))
for(set in 1:nrow(Ns)){

pw = rep(NA, length(b)) #power at each candidate b
b.for.f = rep(NA,length(f)) #for each f gives the b value that leads to target power
for(i in 1:length(f)){

pw = pchisq(q, df = 1, ncp = Ns[set,1]*Ns[set,2] / sum(Ns[set,])*2*f[i]*(1 - f[i])*bˆ2, lower = FALSE)
b.for.f[i] = b[ min( which(pw > pw.thresh) ) ]

}
lines(f, b.for.f, t = "l", col = cols[set], lwd = 1.6)
legends = c(legends, paste(Ns[set,],collapse = "/") ) #make a "#cases/#controls" tag for legend

}
legend("bottomleft", lty = c(1, 1), col = cols, legend = legends, lwd = 2, cex = 1.3)
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Power = 0.5 at α = 5e−08
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No wonder that the 2009 study with 3300 cases and 3600 controls (slide 8) did not find any individual SNPs
associated with SZ because it had insufficient power for any now know (common) SZ variant. Note that none
of these GWS variants has MAF < 0.02, most likely because rare variants have not yet been comprehensively
analyzed in these large meta-analyses.

3.3.1 Absence of evidence is not evidence of absence It is important to understand that a “non-
significant” P-value should not be interpreted as evidence that there is no effect. It can be so interpreted
only for those effect sizes for which the power to detect them was ~100%. But a “non-significant” P-value
does not rule out smaller effects. Therefore, any claims that argue based on statistical evidence that an
effect does not exist must be made precise by stating which power there would had been to detect effects,
as a function of quantities of interest, such as β and MAF. Additionally, the effect size estimate and its SE
should be reported in addition to the “non-significant” P-value.

Example 3.9. Suppose that we study migraine and find a variant v that has an association P-value 3.2e-15
in a large migraine GWAS, a P-value of 2.1e-9 in a subset of cases with migraine without aura and a P-value
of 0.08 in a subset of cases with migraine with aura. Would you interpret this as evidence that the variant v
is associated with migraine, and, in particular, that this effect is specific to migraine without aura and is not
present in migraine with aura? What other information would you need to make this conclusion? Describe
some example study setting (by describing sample sizes and effect sizes) where the above conclusion would
be appropriate, and another study setting where it would not be appropriate.

3.3.2 Proportion of true positives Let’s recall the formula for the odds of a significant P-value indicating
a true positive rather than a false positive:

P (T | S)
P (N | S) = P (T )P (S | T )

P (N)P (S | N) = prior-odds × power
significance threshold .

Thus, for a fixed significance threshold and prior-odds of association, the probability of a significant result
being a true effect increases proportionally to the power of the study. Hence, a larger proportion of the
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significant findings from a well powered study is likely to be true positives than from an underpowered
study. Another way to think this is that all studies (independent of their power) have the same rate of
labelling null effects as significant (and this rate is α, the significance level, the Type I error rate) but
different rates of labelling true effects as significant (and this rate is the power of the study). Hence, by
increasing power, a larger proportion of all significant results will be true positives.

3.3.3 Winner’s curse Suppose that we have 50% power to detect MAF=5% variants with effect β = 0.2
with our GWAS sample at GWS threshold. This means that, in our data, half of the variants whose true
effect is 0.2 will reach the threshold and other half does not. How are these two groups different in our
data? They are different in that those that reach the threshold have estimated β̂ > 0.2 whereas those that
don’t reach the threshold have estimated β̂ < 0.2. Consequently, out of all those variants with true β = 0.2
and MAF=5%, the ones that become GWS in our data have their effect sizes overestimated. This is the
winner’s curse: when power is low enough, the variants can reach the GWS threshold only if their effect
sizes are overestimated. We are “winners” because we are able to detect some of these true effects but we are
simultaneously “cursed” because we have upwardly biased effect size estimates. And this curse gets worse as
the power decreases. Originally, the term winner’s curse relates to auctions where the winner is the one who
has made the biggest offer and the biggest offer tends to be higher than the consensus value of the item; the
winner is always cursed to pay too much.

Note that the winner’s curse, as defined above, does not occur for variants that have so large effect sizes that
power to detect them is ~100%. For such variants, we still overestimate the effect size in 50% of variants and
underestimate it in the remaining 50% of variants, but now we will detect essentially all of those variants at
the given significance threshold, even those whose effects we underestimate. Hence, with high power, there
is no general trend of the significant variants’ effects being overestimated. In practice this means that we
are less concern with the winner’s curse for GWS variants that have P-values, say < 1e-20, than for those
that have P-values just slightly below 5e-8.

Of note, we may induce another flavor of winner’s curse when we choose the variant with the smallest P-value
from a GWAS locus to represent the locus. The logic is that if, in a GWAS locus, we have many correlated
variants that truly have similar effect sizes, then the particular one that happens to have the smallest P-value
in our data set tends rather to have an overestimated effect size than an underestimated effect size in our
data set.

How to get rid of winner’s curse? There are some statistical methods for that (of course!) but the simplest
way is to get an effect size estimate from an independent replication data set. Since those replication data
were not used for the original GWS finding, there is no reason to expect that the effect size estimate would
be (upwardly) biased also in the replication data.

When deciding on the size of the replication study, it is good to remember that, due to the winner’s curse
in the original study, the raw effect size estimate from the discovery GWAS (i.e., the GWAS that made
the GWS discovery in the first place) may result in a too low sample size estimate if used in the power
calculation.

3.3.4 Reasonable study design If a study proposal has low power to answer the question of interest, it
is difficult to argue why that study should be funded. The funding agencies want to know that the studies
they fund will have a reasonable chance to provide solid conclusions.

Power calculations are crucial in medical studies that study treatment options on patients or animals because
there either too small or too large cohorts are unethical. Too small cohorts sacrifice some individuals by
exposing them to potentially harmful treatments without ever producing solid results, whereas too large
cohorts will expose unnecessarily many individuals to a suboptimal treatment, even after available statistical
evidence could had already told which is the optimal treatment.

In GWAS studies, it is typical that each new GWAS data collection will be combined with the already
existing ones, and hence the joint power of all existing data is the scientifically most relevant quantity to
consider.
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