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GENOME-PHENOME ASSOCIATION

association ?
Variation in the
Genome between
individuals.

”genome-wide” 
studies consider
variation in 
millions of positions

Measurable traits
(blood pressure)

Disease status
(MS-disease, diabetes)

Behavior
(chronotype, smoking)

Statistical association can
• allow predicting one from the other
• suggest causal links between the two

Genome Phenome = all phenotypes combined



GWAS IN MATRICES
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Weeks 1-7: 
statistical inference, 
statistical power,
confounders,
covariates,
summary statistics,
meta-analysis
polygenic scores

Weeks 3, 5:
Relatedness & population structure
Heritability & mixed models

Weeks 4,5:
Haplotypes & linkage disequilibrium
Stepwise search & fine-mapping
LD-score regression



GWAS PARAMETERS

• 𝛽 and "𝛽, marginal effect size, scaled versions 𝛽∗

• 𝜆 and "𝜆, causal effect size, scaled versions 𝜆∗

• 𝜆 is also used for genomic control parameter in QQ-plots

• SE, standard error of effect sizes

• 𝜎" error variance of linear regression model

• 𝑅" variance of phenotype explained by regression model

• 𝜏" (prior) variance of a non-zero effect size in Bayesian models and in LD-score regression

• 𝑹 LD-matrix of pairwise correlation between variants

• 𝑟 LD between pair of variants and 𝑟" the squared LD

• ℎ" heritability due to additive effects (for a variant, a region or whole genome)



STEPS OF A GWAS

Study design

1. Is the phenotype heritable?

2. Which set of samples is 
needed for a GWAS?

Running a GWAS

1. Regression model & covariates

2. Diagnostics

Downstream analyses

1. Conditional analyses & fine-
mapping

2. (Other typical analyses we 
haven’t studied on this course)

Replication & Meta-analysis

1. Does it replicate?

2. What is the combined evidence?

3. Relationship to other phenotypes?

Further applications

1. Polygenic scores

2. (Mendelian randomization)



HERITABILITY

• Proportion of phenotypic variance explained by variation in 
genome

• Depends on the population and point of time because 
environmental variance can vary
• Measurement accuracy can affect heritability

• Narrow sense heritability h2: variance explained by the additive 
effects of the variants
• Gives an upper bound for variance explained by polygenic scores

• Broad sense heritability H2 : variance explained by all genetic 
variation



HOW HERITABILITY HAS BEEN ESTIMATED ?

Compare concordance in 
monozygotic twins (share full genome)
to that of dizygotic twins (share ~50%).
Under (strong) assumptions, the difference
estimates heritability.

Do full-sib pairs that share more of their genomes
also have more similar phenotypes?
Heritability estimate for height from 3375 pairs of sibs
was 0.80 (0.46 – 085). (Visscher et al. 2006 PLoS Genetics)



LINEAR MIXED MODEL TO ESTIMATE 
HERITABILITY

SNP relatedness

~

Y

+

Independent environment

For height in Finns
we estimate h ~ 50%

h (1-h)

variation in phenotype ~       pattern of genetic similarity +         random noise uncorrelated between individuals

Parameter h measures how well phenotypic variation is explainable by pattern of genetic similarity



LD-SCORE REGRESSION



LDSC ON 
SCHIZOPHRENIA GWAS 

RESULTS

Each point represents an LD score quantile, where
the x coordinate of the point is the mean LD score of 
variants in that quantile and the y coordinate is the
mean χ2 statistic of variants in that quantile in the
most recent schizophrenia meta-analysis..Colors
correspond to regression weights, with red indicating
large weight and blue indicating small weight. The
black line is the LD score regression line. The
line appears to fall below the points on the right
because this is a weighted regression in which the
points on the left receive the largest weights.

Bulik-Sullivan et al. 2014 Nat Gen



WHICH SET OF SAMPLES FOR A GWAS?

• Definition of phenotype
• Measurement process for quantitative traits? 

• Measurement accuracy, measurement bias

• Case and control definitions for binary traits?

• Selection bias?

• Bias from different processing of cases and controls

• Statistical power
• Which kind of effects could / should we found?



REMINDER: P-VALUE

l Is the observed slope 
plausible if true slope = 0 ?

l P-value: Probability that we 
get at least as extreme 
estimate as we have observed, 
if true slope = 0 

l P = 0.84: No evidence for 
deviation from null

l P = 8e-5: Unlikely under the 
null à maybe not null



SIGNIFICANCE THRESHOLD & 
POWER

l Significance threshold ⍺ = 
Probability that a null 
variant has P-value ≤ ⍺

l What is the probability that 
a non-null variant has P-
value ≤ ⍺?

l Depends on the properties 
of the variant and study

l Is called statistical power of 
the significance test

beta corresponding
to significance threshold



TYPE 1 AND TYPE II ERRORS AND POWER

The probability distributions of test statistic
under H0 and H1, the critical threshold for 
significance (blue line), the probability of type 1 
error (α; purple) and the probability of type 2 
error (𝛽; red). 
Type 1 error: ”false positive”, wrongly
reject H0 when H0 holds. Making significance
level very low avoids Type I errors. 

We can lower α by dragging blue line to right.

Type II error: ”false negative”, wrongly
accept H0 when H0 is not true.
Making significance level very low creates
Type II errors.

Power = 1- 𝛽 = P(reject H0 | H1 true).
Sham & Purcell (2014)
Nature Reviews Genetics 15: 335–346.



WALD TEST

• Assuming that the GWAS model is correct (i.e., there are no biases), the 
regression coefficient estimator !𝛽 ~ 𝑁(𝛽, 𝑆𝐸*)

• Wald statistic z = ,+, -. ~ 𝑁
,
-.
, 1

• z ~ N(0,1) under the null (𝛽 = 0), and this is how we compute P-values

• Under the alternative hypothesis, the mean of the distribution of z depends on true 𝛽 and SE

• Chi-square statistic 𝑧* ~ 𝜒/* NCP = ,,!
-.! ,where NCP is the “non-centrality 

parameter”

• General definition:  When 𝑌 ~ 𝑁(𝜇, 𝜎") then #
#

$#
~ 𝜒!" NCP = )#!

$!

• 𝑧" ~ 𝜒!" under the null, i.e., the central (NCP = 0) chi-square distribution with 1 df



Z = %&𝛽 𝑆𝐸 ~𝑁
𝛽
𝑆𝐸

, 1

• The alternative’s test statistic 
distribution will move farther from the 
null distribution when |𝛽|/𝑆𝐸 grows

• For a fixed significance threshold, the 
power will thus increase as 𝛽 increases 
or as SE decreases

• Makes sense:
• “Larger effects are easier to find”

• “More precise estimates help separating real 
effects from noise”



FORMULAS FOR SE

• Liner model GWAS has SE ≈ 0
* 1 2 (/42)

• Logistic model GWAS has SE ≈ /
* 1 6 /46 2 /42

• 𝜎 is the error variance
• 𝑛 is the total sample size

• 𝑓 is the minor allele frequency

• 𝜙 is the proportion of cases among all samples



FORMULAS FOR NCP = 𝛽,/𝑆𝐸,

• Liner model GWAS has NCP≈ 2 𝑛 𝑓 1 − 𝑓 𝛽*/𝜎*

• Logistic model GWAS has NCP≈ 2 𝑛 𝜙 1 − 𝜙 𝑓 1 − 𝑓 𝛽*

• 𝜎 is the error variance
• 𝑛 is the total sample size

• 𝑓 is the minor allele frequency

• 𝛽 is the effect size

• 𝜙 is the proportion of cases among all samples



STEPS OF A GWAS

Study design

1. Is the phenotype heritable?

2. Which set of samples is 
needed for a GWAS?

Running a GWAS

1. Regression model & covariates

2. Diagnostics

Downstream analyses

1. Conditional analyses & fine-
mapping

2. (Other typical analyses we 
haven’t studied on this course)

Replication & Meta-analysis

1. Does it replicate?

2. What is the combined evidence?

3. Relationship to other phenotypes?

Further applications

1. Polygenic scores

2. (Mendelian randomization)



REGRESSION MODEL

• Linear/logistic regression 𝑦 ~ 𝜇 + 𝑧𝑇𝛾 + 𝑥 𝛽 where

• 𝑦 is the phenotype

• 𝜇 is baseline trait value in quantitative traits / log-odds in diseases

• 𝑧 are the covariates and 𝛾 their effects

• 𝑥 is the genotype (0,1 or 2) and 𝛽 additive effect per one copy of allele 1

• With logistic regression, all computations are done on the log-odds 
scale but results are often reported on the odds-ratio scale



CONFOUNDING

• We want to study X-Y relationship but if there are associations between
some 3rd variable Z and both X and Y, then Z may cause an observable X-Y 
association even if there is no direct/causal relationship between X and Y

• Z is confounder of X-Y association

• We can remove (some part of) confounding by adjusting the model for Z

• Geography is a typical confounder in GWAS because it affects both genetics
and phenotypes

• We can estimate population structure by PCA and include it in a regression 
model

• Relationship matrix can be included in a linear mixed model as a random effect to 
account for genetic relatedness (both population structure and close relatedness)

0.23 | 0.23

0.35 | 0.35

Frequencies
Case | Control

Sample
frequencies:
0.32 | 0.26



COLLIDER BIAS

• If a available covariate is caused by both the 
outcome Y and the predictor X, then adjusting 
for the covariate will cause an association 
between X and Y even if X and Y are 
independent in the general population
• Such collider bias associations are not of interest to us 

so we want to avoid them



n We consider two models when X and W are independent
§ Model M:  Y ~ μ + X β + W γ

§ Model M’:  Y ~ μ’ + X β’  

n In linear model β = β’ and model M gives more precise estimate

n In logistic model |β’| ≤ |β| but model M’ gives more precise
estimate

n In population data, model M is more powerful than model M’

n In case-control data, power depends on prevalence

n If prevalence < 2%, model M’ is typically more powerful

n If prevalence > 10%, model M is typically more powerful

INDEPENDENT COVARIATES



QQ-PLOT

• Shows the observed distribution of test statistics (chi-square or 
–log10(P-value)) against the null distribution as an ordered 
scatter plot

• Above diagonal means inflation, i.e., larger than expected 
association signal

• If inflation is present widely across the genome, some bias may 
be present
• But polygenicity also causes inflation in large data sets

• Genomic control parameter (𝜆) computed as ratio of median 
statistics

Inflated QQ-plot

Non-inflated QQ-plot



LD SCORE REGRESSION

(a) Quantile-quantile plot with population stratification (λGC = 1.32, LD score regression intercept = 1.30). 
(b) Quantile-quantile plot with a polygenic genetic architecture where 0.1% of SNPs are causal
(λGC = 1.32, LD score regression intercept = 1.006). (c) LD score plot with population stratification. 
Each point represents an LD score quantile, where the x coordinate of the point is the mean
LD Score of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that quantile. 
Colors correspond to regression weights, with red indicating large weight. The black line is the LD 
score regression line. (d) LD score plot as in c but with polygenic genetic architecture.

Bulik-Sullivan et al.
2014 Nat Gen



STEPS OF A GWAS

Study design

1. Is the phenotype heritable?

2. Which set of samples is 
needed for a GWAS?

Running a GWAS

1. Regression model & covariates

2. Diagnostics

Downstream analyses

1. Conditional analyses & fine-
mapping

2. (Other typical analyses we 
haven’t studied on this course)

Replication & Meta-analysis

1. Does it replicate?

2. What is the combined evidence?

3. Relationship to other phenotypes?

Further applications

1. Polygenic scores

2. (Mendelian randomization)



LINKAGE DISEQUILIBRIUM

a | At the outset, there is a polymorphic
locus with alleles A and a. b | When a 
mutation occurs at a nearby locus, 
changing an allele B to b, this occurs on a 
single chromosome bearing either allele A
or a at the first locus (A in this example). 
So, early in the lifetime of the mutation, 
only three out of the four possible
haplotypes will be observed in the
population. The b allele will always be
found on a chromosome with the A allele
at the adjacent locus. c | The association 
between alleles at the two loci will
gradually be disrupted by recombination. 
d | This will result in the creation of the
fourth possible haplotype and an eventual
decline in LD among the markers in the
population as the recombinant
chromosome (a, b) increases in frequency.

Ardlie et al. Nat Rev Gen 2002



LDPAIR

CEU
(Central Europe)

LWK
(Kenya) D’ is a normalized

version of D that
has maximum of 1.

From LDpair
https://ldlink.nci.nih.gov/



MARGINAL EFFECT AT A NON-CAUSAL SNP

1 2 A 3 4

Marginal effect at SNP A is a linear combination of the causal effects of all variants 
in LD with A, where the weights are the correlations with A (after scaling the genotypes).

𝛽3∗ = 𝜆3∗ + 𝑟35 𝜆5∗ + 𝑟3,𝜆,∗ + 𝑟36𝜆6∗ + 𝑟37𝜆7∗ + …

* denotes scaled effect: the allelic efect multiplied by 2𝑓(1 − 𝑓), where f is MAF of the SNP

where R is the LD-matrix of pairwise
correlations of the variants.



Simulation scenario where
causal effects were

𝜆! = 0.2
𝜆" = 0.2

and LD was 𝑟 = 0.6.
MAFs were 0.2 and 0.4.

Marginal effects are then
𝛽! = 0.2

𝛽" = 0.6 @ 0.2 = 0.18.

Consequences
• Lowest P-value need not be for
a causal variant, especially when there
are many causal variant in LD with 
each other
• Non-causal variants can tag the 
causal variants and show the signal
even if the causal variant was not included 
in the analysis.



STEPWISE FORWARD SEARCH

• Starts by conditioning on the lowest P-value
• Continues until no additional variant reaches 

pre-defined P-value threshold
• ➕ Informs about multiple causal variants 

accounting for LD
• ➖ Does not necessarily find the optimal 

configuration 
• ➖ Completely ignores the uncertainty of 

the possible causal configurations

Spain & Barrett 2016



Christian 
Benner



FINE-MAPPING ASSUMING 1 CAUSAL VARIANT

• If there is exactly one causal variant in the region and it is among the 
genotyped variants, then the posterior probability of being causal is 
proportional to the single-SNP marginal Bayes factor of association 
(ABF from GWAS4)

• This idea can be extended to fine-mapping each independent signal of 
the region after we have conditioned on the other signals in the region 
when we have computed the GWAS statistics (betas and SEs) that are 
used in calculating ABFs

• For multiple causal variants, we use methods such as FINEMAP or 
SuSiE



STEPS OF A GWAS

Study design

1. Is the phenotype heritable?

2. Which set of samples is 
needed for a GWAS?

Running a GWAS

1. Regression model & covariates

2. Diagnostics

Downstream analyses

1. Conditional analyses & fine-
mapping

2. (Other typical analyses we 
haven’t studied on this course)

Replication & Meta-analysis

1. Does it replicate?

2. What is the combined evidence?

3. Relationship to other phenotypes?

Further applications

1. Polygenic scores

2. (Mendelian randomization)



REPLICATION & META-ANALYSIS 

Top-SNP of migraine association in HMOX2 gene.
Is the signal consistent across studies?

Yes it is. What about in subtypes of migraine?

Migraine with aura: effect stronger. Migraine without aura: zero effect.



INVERSE VARIANCE WEIGHTED (IVW)
FIXED-EFFECT (F) ESTIMATOR

• Each study is weighted by its precision ( = inverse of the variance)

• Precision of the combined estimate is the sum of the precisions of the 
contributing estimates

• For binary outcomes, )𝛽 is on the log-odds scale as in logistic 
regression output, not on the odds-ratio scale

studies 1,…, K



(BAYESIAN) MODEL COMPARISONS

§ Specify how 
different models 
would produce 
observed summary 
statistic data

§ Combine likelihood 
functions with the 
prior probability of 
the models to get 
posterior 
probability of 
models

SAME REL

NULL ONLY in 1

Here, model probabilities
were computed by 
assuming same prior
probability for each 
model



STEPS OF A GWAS

Study design

1. Is the phenotype heritable?

2. Which set of samples is 
needed for a GWAS?

Running a GWAS

1. Regression model & covariates

2. Diagnostics

Downstream analyses

1. Conditional analyses & fine-
mapping

2. (Other typical analyses we 
haven’t studied on this course)

Replication & Meta-analysis

1. Does it replicate?

2. What is the combined evidence?

3. Relationship to other phenotypes?

Further applications

1. Polygenic scores

2. (Mendelian randomization)



POLYGENIC SCORES

Use GWAS results to predict external individuals’ risk for a disease from his/her genotypes.

Figure: NIH

Polygenic score, “PGS”
Polygenic risk score, “PRS”



GENERATING 
POLYGENIC SCORES

• Take allelic effect estimates ( B𝛽%) from
GWAS
• Ideally causal effects estimated by multiple

regression but often marginal effects used

• Take target individual’s genotypes (𝑔&%) at 
variants k = 1,…𝐾

• Compute PRS for individual i as sum

𝑃𝑅𝑆& = K
%'!

(

𝑔&%𝛽%

Choi et al. 2020 Nat Protocols



STANDARD PRS METHOD: 
CLUMPING & THRESHOLDING

• Consider only SNPs with GWAS P-value < Pthr , where Pthr is a 
threshold 

• From two SNPs that are in LD > r2 , choose the one with a 
smaller GWAS P-value
• This forms “clumps” of “significant” SNPs in LD with each other and only 

picks the most “significant” ANP as the only representative of the clump

• A light version of conditional analysis where no joint regression is used 
but r2 value alone determines whether two SNPs have “independent 
signals” 

• Use marginal allelic effect estimates in PRS calculation
• Tune parameters Pthr and r2 in a validation set to optimize 

performance



MENDELIAN RANDOMIZATION

§ Is risk factor (LDL-C) causal for disease 
(CHD)?

§ If yes, then any genetic variant that raises 
level of risk factor should also increase risk 
of disease

§ If we see such pattern, then causal 
association is possible 

§ but difficult to rule out that the same genetic 
variant couldn’t affect also other things than 
the particular risk factor of interest

Current Hypertension Reports14, p. 29–37 (2012)

https://link.springer.com/journal/11906


LDL-C AND CORONARY HEART DISEASE 

Log-linear association per unit 
change in low-density lipoprotein 
cholesterol (LDL-C) and the risk 
of cardiovascular disease as 
reported in meta-analyses of 
Mendelian randomization studies, 
prospective epidemiologic cohort 
studies, and randomized trials. 

The increasingly steeper slope of 
the log-linear association with 
increasing length of follow-up time 
implies that LDL-C has both a 
causal and a cumulative effect on 
the risk of cardiovascular disease.

Each Blue point is one variant
or a score of multiple variants
from one gene.

European Heart Journal, 38, (32), 2017, P. 2459–2472 



GWAS PARAMETERS

• 𝛽 and "𝛽, marginal effect size, scaled versions 𝛽∗

• 𝜆 and "𝜆, causal effect size, scaled versions 𝜆∗

• 𝜆 also used for genomic control parameter in QQ-plots)

• SE, standard error of effect sizes

• 𝜎" error variance of linear regression model

• 𝑅" variance of phenotype explained by regression model

• 𝜏" (prior) variance of a non-zero effect size in Bayesian models and in LD-score reg.

• 𝑹 LD-matrix of pairwise correlation between variants

• 𝑟 LD between pair of variants and 𝑟" the squared LD

• ℎ" heritability due to additive effects (for a variant, a region or whole genome)


