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In this supplement to “Efficient Computation with a Linear Mixed
Model on Large-scale Data Sets with Applications to Genetic Stud-
ies” we give the details of the application of the linear mixed model to
binary data, of the conditional maximization of the likelihood func-
tion and of the Bayesian computations.

Throughout this text we consider the linear mixed model

(0.1) Y =XB+o0+c¢,
where Y = (y1,...,yn)" is the vector of responses on n subjects, X = (x)
is the n x K matrix of predictor values on the subjects, 8 = (B, ..., Bx)"

collects the (unknown) linear effects of the predictors on the responses Y
and random effects g and e are assigned distributions

(0.2) ol(1.0%) ~ N(0,70°R) and ¢|(n,0°) ~ N(0, (1 —n)o’I),

where R is a known positive semi-definite n X n matrix, I is the n x n
identity matrix, and parameters o2 > 0 and 1 € [0,1] determine how the
variance is divided between p and €.

1. Binary data. For 0-1 valued responses Y = (y1,...,9,)", a logistic
regression model assumes that

exp(a + X;7)
1+ exp(a+ X))’

pz:P(yi = 1|X,Oz,’)/) =

where the row i of X is denoted by X, the effects of the predictors are
in vector v and « is the population base-line effect. (Note that here the
base-line effect has been explicitly separated from the X matrix.) The log-
likelihood function for exchangeable observations is

n
Ly(a,y) =log P(Y|o,v) = > (yilogps + (1 — yi) log(1 — pi))
=1
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where we use the subscript b to denote “binary”.
First order approximation (FOA). By treating « and = as known, by
mean-centring the predictors and by expanding p; as a Taylor series around

the mean, X; = 0, we have
e e e“(1 —e®)

1.1 ;R X —_—
( ) pl 1+ea + (1—{—60‘)2 17+ 2(1+ea)3

When the effects are small on the log-odds scale in the sense that | X ;7|
is small, then (X ;)2 =~ 0 and the probability p; is accurately approximated
by a linear function of the predictors p; =~ u + X;8 constrained to lie in
[0,1]. According to (1.1), the parameters are transformed between logistic
(cr,) and linear (u,3) scales as

a :log<ﬁ), e =2 fork=1,... K,
6@

(1.2) n(1—p)’
=1 Br

o

Pyk(l—fj)% fork=1,... K.

The score and the Hessian of the logistic regression model are

oL
(1.3) aTb = XT(vy —p)
0L .
(1.4) Wb = —X'diag(pi(1 - p)X,

where we have included the base-line parameter « in v and augmented X ac-
cordingly with a column of ones, and p = (p1,...,pn)’ is a function of . By
using the small-effect approximation p ~ X3 as in the derivation of (1.2),
but now with p included in 3, we see that the score (1.3) is approximately
zero at the least squares estimate 3 = (X7 X)~'XTY . Thus, if the assump-
tion of small effects is valid, an application of the least squares method (i.e.
the maximum likelihood (ML) estimation in the standard linear model) to
binary data and the transformation of the parameters to the log-odds scale
using (1.2) should give a good approximation to the ML estimates of the
logistic regression model. The sampling variance of the coefficients could be
approximated by the inverse of the negative Hessian (1.4) at the estimated
maximum or by transformation (1.6) explained below. Despite the simplic-
ity of this linear approximation, we are not aware of its previous formal
derivation, although similar ideas have been applied before, for example by
Denby, Kafadar and Land (1998). From now on we call it the first order ap-
prozimation (FOA) to distinguish it from a more accurate approximation
that we have established particularly for our genetics application.
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Fic 1. Comparing the first order approzimation (FOA) and the GWAS approzimation.
Panels include 4,500 binary variants considered in Figure 2 of the main text. The leftmost
column shows relative errors (in percentages) between the FOA and the mazimum likeli-
hood estimates from the logistic regression model as a function of the estimated log-odds
ratios (top) and standard errors (bottom). The rightmost column shows similar results
for the GWAS approximation. The middle column shows histograms of the differences be-
tween absolute values of the relative errors (in percentages) from the FOA and the GWAS
approximation, truncated from above at 5%. logOR, log-odds ratio; SE, standard error.

GWAS approximation. We consider a GWAS setting in which the case-
control status is regressed on the population mean and the reference allele
count. By examining the second and third order terms of series (1.1) and
carrying out some empirical testing we found that the relative differences
between the log-odds estimates from the FOA and the ML estimates from
the logistic regression model are accurately described by

(1.5) r(7,0,¢) = 0.5(1 — 2¢)(1 — 26)7 — (0.084 + 0.9¢(1 — 24)0(1 — 0))7>,

where 0 is the frequency of the reference allele, 7 is the log-odds estimate for
the reference allele from the FOA and ¢ is the proportion of cases in the data.
This can be used for adjusting both the estimates: ¥ = 5/(1 4+ (7,0, ¢)),
and their standard errors. Figure 1 above shows the improvement of this
GWAS approximation over the FOA.

Mixed model. When we model the binary responses Y as correlated
according to the variance structure o2 where the matrix X is known,
an analogous estimate of the parameters is the generalized least squares
(GLS) solution 8 = (X721 X)"! X"~y which can be transformed to
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the log-odds scale using (1.2) (and possibly adjusting by the GWAS ap-
proximation). In this case the sampling variance on the linear scale can
be approximated using the GLS estimate /‘75 = 2(XT271X)"!, where
o? =1y - XB)TS1(Y — X). The corresponding estimates on the log-
odds scale are then given by the delta-method:

(1.6) V., =JVgJ", where J;; = (g%>

bi) o3
We note that in the most general case of our linear mixed model (0.1) the
covariance structure 3 = nR + (1 — n)I includes the parameter 7. If 7 is
estimated by maximum likelihood we cannot any more justify the method
as a pure least squares method. In any case the empirical results in the main
text suggest that the procedure works well in our application.

The standard way of finding ML estimates for logistic regression is known
as iteratively reweighted least squares (Nelder and Wedderburn, 1972). As
an instance of the Newton-Raphson algorithm it is based on the second
order Taylor series approximation of the log-likelihood and results in a se-
ries of least squares problems where the outcome variable and the diagonal
covariance matrix vary between each iteration. In contrast, our first order
approximation is based on the linear approximation of the probabilities p;
(not the log-likelihood) and is available after a single application of the least
squares method to the original binary data, but with a downside that it is
accurate only in the case of small effect sizes.

Equivalence between the trend test and the linear model. Above we showed
how the linear model can estimate the effects on the log-odds scale. Next
we give another justification for the application of the linear model to case-
control data by showing that for large sample sizes the likelihood ratio test
for the SNP effect in the standard linear model is equivalent to the Ar-
mitage trend test of the genotype counts (Armitage, 1955). The trend test
is widely-used for analysing case-control GWAS and in this context is also
equivalent to a score test of a logistic regression model. Previously, connec-
tions between the trend test and the linear model in the GWAS context
have been discussed by Kang et al. (2010); also Astle and Balding (2009)
give conditions under which the linear model can be applied to case-control
data.

Suppose that we have genotype data on S cases and R controls with
n = S+ R, and denote the mean-centred genotype of individual ¢ by x; and
the binary phenotype by y; € {0, 1}. The trend test-statistic can be written
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as T?/V where

1 1 n

r = 4 Ty — 47 T = 5= X
DI PILES DY
1 n

Vo= SR

i=1

and it has an asymptotic x?-distribution under the null hypothesis of no
linear trend in the genotype frequencies between the cases and the controls
(Astle and Balding, 2009).

The maximum likelihood estimates for the linear models My : y; ~
N (po,08) and M : y; ~ N(p1 + Brwg, o) are

o = &,

pr = &,

b= it
>ie1 2

B o= I ) = 61— 0,
=1

) 1 - N ~ (Z {L‘Z')Q
2 2 ies
= - i — i — B1r)” = o(1 — @) — ——=3—5+»
o1 - ;(y fn — Brzi)” = ¢(1 - 9) "oy )
where ¢ = S/n. The likelihood ratio statistic is
Li(i, B, o2 2
2log 1(“1’—61,’\01) = nlog 2
LO(ﬂO; U%) U%
= —log | [1— (Lies CEZZL 5
ne(l — @) 325y a3

(Pies i)
— —log|exp|— 1€
n—oo ( ( o1 —¢) X0y @7
(Zies 'ril)Q 5 — T2/V
P(1—¢) it ;
Here the convergence is derived from a basic property of the exponential

function: (1+a/n)" — e* as n — oo, for any real value a. Thus the likelihood
ratio statistics approaches the trend test statistic as n — oo.
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2. Likelihood analysis. The log-likelihood function for model (0.1) is

L(8,m,0%) = ¢ — 3 Tog(0®) — 1 log(|S) — 55 (¥ — X7 S7(¥ — XB)

where ¥ = nR+ (1 —n)I, c = — 5 log(27) and |X| denotes the determinant
of 3.

The eigenvalue decomposition of the positive semi-definite matrix R yields
an orthonormal n x n-matrix U of eigenvectors and a diagonal n X n-
matrix D of non-negative eigenvalues for which R = UDU? (see e.g.
Colub and Van Loan (1996)). Because UUT = I (orthonormality) it fol-
lows that

X = gR+(1-nI

nUDUT + (1 —p)UIU”
UnD+(1-nIU",
> ! = UnbD+ (1 -n)I)" U7,

n

= = [0 +nd-1)),
i=1
where d; is the ith eigenvalue of R, that is, the element (i,7) of D. The
inverse ¥ 7! is defined for all n € [0, 1] unless some d; is zero in which case
we restrict the model to the values n < 1.
By transformations Y = UTY, X = U"X, and & = D + (1 —n)I the
log-likelihood becomes

L(B,n,0%)
_ c*glogw)iloguinf%(”??fﬁﬁ*l(?jﬂ)
) . t (Y - X3))?
— c—glog( **;IOglen ;2 (14n(d; — 1))’

where [Y — X 8]; is the ith element of vector Y — X 3. For each set of values
of the parameters, the evaluation of the log-likelihood requires O(nK) basic
operations, where n is the number of individuals (rows of X matrix) and K
is the number of predictors in the model (columns of X).

2.1. Conditional maximization. To maximize the log-likelihood we use a
standard optimization technique of conditional maximization. After initial-
izing the parameters to values (,8(0),7](0), (02)(0)), we iterate the following
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three step process until convergence:

B(j-i-l) = arg mﬁaX L(an(j)’ (0'2)(j))
(0-2)(j+1) = argmax L(B(j+1),77(j)ao'2)
77(j+1) = arg my?XL(ﬁ(jH)ﬂ?a (02)(j+1))v

where the superscripts in parentheses denote the iteration. We have not
established theoretical conditions which would guarantee that the process
finds the global maximum, but we know that conditional on 7 we always find
the global maximum with respect to 8 and ¢?. Furthermore, in the compar-
isons with the EMMA algorithm we have not found a single data set where
the algorithm would have failed (see the main text). If such exist in some
applications, then one could run the algorithm several times starting from
different initial values. Steps 1 and 2 are done analytically by using standard
results on linear models, and step 3 is done by numerical maximization using
some ideas from Kang et al. (2008).
Step 1: The derivative

OL(B,n,0%) 1 = =  pe-lw
T_E(Y—Xﬁ) > X

~ T e o ~—T ~— 1~ —
iszeroat 3 =(X X 1X)_lX sy assuming that matrix X is of full col-
umn rank. Under the same assumption the Hessian %(,@) = 1 X s'X

is negative definite and thus the function 8 — L(3,7, 0?) attalns its global
maximum at 3.
Step 2: The derivative

IL(B,n,0*) n ii (Y — X))
o(o?) 202 o5t — (1+n(d; — 1))
is zero at o2 = %, where A = >7" % The second derivative

3

8(8;72%2(;5) = 54z < 0 thus showing that the function o® = L(B,n,07)

attains its global maximum at o2, (Actually, since the value ,@ in step 1
does not depend on o2, the steps 1 and 2 together give the global maximum
of the function (3,0?%) — L(8,n,5?).)

Step 3: We use a Newton-Raphson method to find zeros of the derivative

OL(B.n,0%) 1~ d;i—1 ([Y — X))
on 5;1 n(d; — 1) <02(1+n(di—1))_1>'
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We divide the interval [0, 1] into m subintervals by points {0, %, cel mT_l, 1}
and evaluate the derivative at each of these points. If the sign of the deriva-
tive changes from positive to negative within an interval, we apply the
Newton-Raphson algorithm to find a zero within that interval. Finally we
choose the maximum of the log-likelihood values among the local maxima
(zeros of the derivative) or the values at the endpoints. A problem would
occur if there were several zeros within a single interval because this algo-
rithm would find at most only one of them. To reduce chances of such an
event one should in principle use a relatively large number of subintervals
m. In our examples, we have used m = 10.

2.2. The second derivatives. Asymptotic likelihood theory allows us to
estimate the standard errors of the parameters by using the inverse of the
observed information matrix Z at the MLE. The elements of Z are

0L

Tij =~ 55255 (0).
J 00;00;
where (61,...,0k42) = (B1,...,BK,n,02). Straightforward calculations show
that the second derivatives are
2 — ~ —_—
UL _  1¥'s7'x
196} o
0*L 1 —  — e 11—
— = - (Y-Xp9)'x X
9BI(c?) 04( A)
PL —ifj (d; — DY — X8 X i
Ihdn 2 (I+nd— 1)
L a1 2": (Y - X8;)?
(0?2 20%  of — 1+n(d;—1)
L L (d = DY - XBL?
oo 201 (A4 —D)
PL 12":< di—1 )2 L 2Y —Xpl)
ot 2= \1+n(d —1) o2(1+n(d; —1)) )"

3. Bayesian computation. In a Bayesian version of the mixed model,
we combine the sampling distribution

Y‘(ﬁ,dQ,T]) NN(Xﬁ7n02R+ (1 - 77)021)7
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with the prior distributions

(B,0%) ~ Normal-Inverse-Gamma(m,V ,a,b),
n ~ Beta(r,t),

where a, b, r,t > 0 are scalar parameters, m is a K-dimensional vector and V'
is a K x K-matrix. These choices of prior distributions lead to the following
marginal properties:

B ~ toa(m, 26V) E@B)=m  Var() =5V
0% ~ Inv-Gamma(a,b) E(c?) = a—fl Var(o?) = %
n ~ Beta(r, t) E(n) =5 Var) = grpinaaD-

An intuitive description of the Normal-Inverse-Gamma (NIG) distribution
is that a pair (3,0?) is generated from NIG(m,V, a,b) by first sampling
02 ~ Inverse-Gamma(a, b) and then B|o? ~ N (m,a?V).

The most notable restriction of these priors is that 8 and o2 are a pri-
ori dependent (see O’'Hagan and Forster (2004)). To adjust the prior in a
particular setting it is often helpful to standardize both the quantitative
responses and each continuous predictor. The GWAS software SNPTEST2
uses a similar prior distribution for analyzing quantitative traits with the
standard linear model and some guidelines for prior specification can be
found in its manual®.

The steps to carry out analytic integration of B and o2 in the mixed
model considered here have the same form as the corresponding steps in
the general linear model (O’Hagan and Forster, 2004). This is an advantage
of our parameterization compared to a previous treatment of this mixed
model by Sorensen and Gianola (2002); for details of the differences, see the
discussion at the end of this section. Another novelty of our work is to show
that the marginal likelihood computations can be done efficiently using the
same matrix decomposition that was introduced for ML estimation in the
previous section. This is crucial in order that a large number of X matrices
can be analyzed efficiently in the Bayesian framework. To our knowledge,
this topic has not previously been considered in the literature.

3.1. Computation. As before, the likelihood part of the model is

p(Y18,0% ) = (2m) 2B Fexp (— (Y - XB)TE Y - XB))

Lwww.stats.ox.ac.uk/~marchini/software/gwas /snptest
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with ¥ = nR + (1 — n)I and the prior density p(3,02,1) = p(n)p(B,c?) is
composed of

B ba(O.Q)—(a-i-l-i-K/Z) 1 B
PB.Y) = G O (<55 ((B=m)T V18— m)+20))
p(n) = Wnr‘l(l — )" o1)(n).

By direct calculation it can be verified that
(Y - XB)"= (Y - XB) + (8-m)'V (B -m)
_ YTE_IY —i—mTV_lm _ (m*)T(V*)—l(m*) +
+ (8 —m*)T (V) "H(B - m"),
where
| VA - (V_l +XT2_1X)_1
m* = V*(Vim4+XTx 1Y),
With this notation the joint density P(Y,3,02,n) is
p(Y18,0% m)p(B, 0% m)

ba<02)7(1+a+#)

( n+ K

(2m)* 5 D(a)|V |2
SUB =)V (B m) 1))

202

2]_% X

X exp (—

where b* = 26 + YZE27IY + mTV~Im — (m*)T(V*)~1(m*). By noticing
that as a function of 3 the above density is proportional to the density of
N(m*,02V*), we are able to integrate analytically with respect to 3:

o2 _ p(n)b* 12\ o2 (+at) oo [ b*
W) = g (o) O e (5.

N

As a function of o2 the above function is proportional to the density of
Inv-Gamma (a + 3, %) allowing us to calculate

L bT(a+B) (bR [V 2
ey = () () v

As a function of 7, the density (3.1) is proportional to the posterior of 1, and
thus evaluating it at a grid over the interval [0, 1] allows us to do inference
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on 7 and approximate the marginal likelihood of the data, P(Y'), by inte-
grating (3.1) numerically. A Bayes factor, that is, the ratio of the marginal
likelihoods of two models, can thus be calculated between models that dif-
fer in the structure of the predictor matrix X (e.g. testing genetic effects in
GWAS)), in the prior distributions of the parameters (e.g. whether n = 0), or
both. Next we show how to do these computations efficiently by exploiting
the same eigenvalue decomposition of R and transformed variables X and
Y that were introduced for maximum likelihood estimation in the previous
section.
Consider the density (3.1), that is,

ny (V2 20)T(a + 2
pv = x 69) 42 (FED) ), whene o = C2°H0 2)
2 Ti0(a)| V|3
is independent of 7. The goal is to integrate this over the interval n € [0, 1],
for example, by evaluating it at a grid of m equally spaced points in [0, 1]

and by using the trapezoidal rule.

First we notice that p(n) and || do not depend on X and thus we evaluate
them once at the given grid points and store the results for repeated use with
different X matrices. A similar idea is applied to the first three terms of the
quantity

bV =204+ YTZYY + mTVvim — (m*)T (V)L m").
The only X dependent quantities are thus

vV = (V14 XTe71X)™! and
m* = VVim+XTz7lY).

Suppose that the analyzed X matrices differ from each other only in one
predictor which is stored in the last column K of X. Then only the element
K of the vector XT27'Y needs to be recomputed:

ZKY

XT) oS Y = (XT)oUS 'UTY = (X )i 'Y =
(XK (XU U (X )k <p(di — 1)+ 1

1=

where Y = UTY, X = UTX, and ¥ = nD + (1 — n)I as in the previous
section and (X7T)g, denotes the row K of matrix X 7. Similarly we can
recompute the elements
n o~ o~
X X
X' 1 X, =S ——22Y  forj=1,...,K.
( ) ;n(di—l)ﬂ J
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Since X and Y have already been computed for the ML estimation by
the conditional maximization algorithm, the additional complexity of these
Bayesian computations is O(mKn) operations. (Here we assume that K <
n so that the complexity of the matrix operations on K x K matrices is
negligible compared to the operations involving all n individuals.)

An existing Bayesian treatment of the linear mixed model considered uses
parameterization with two variance components o2 and ag which are related
to our parameters as 07 = (1 — 7)o and op = no? (Sorensen and Gianola,
2002). When independent Inverse-Gamma priors are assigned to o2 and ag
it seems that it is not possible to analytically derive their one-dimensional
marginal distributions (p. 323 Sorensen and Gianola (2002)). Thus, it seems
that our parameterization has an advantage in computing marginal likeli-
hoods since we only need to integrate numerically over the one-dimensional
compact set n € [0,1] as opposed to the unbounded two-dimensional set

(03,03) € (0,00) x (0, 00).
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