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Questions to be answered wrt non-
renewable resources

• What is the optimal extraction rate q?
• Market prices p in time?
• When do we run out x(T)=0, T?



Answers will depend on

• Demand

• Discount rate

• Known reserves of the resource

• Price of the subsitute



Hotelling model (JPE 1931)

• Initial stock size is x(0), the resource stock
decreases in time when it is used.
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Equation of motion
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• The resource is used untill it is exhausted
at time T
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Competitive market



Objective function

• Maximise the Net Present Value by
choosing the extraction q(t)

• Max J=

• St equation of motion
• c = (constant) unit cost of extraction
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Optimal control problem

• q(t) control variable
• x(t) state variable
• equation of motion
• x(0) initial state
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Current value Hamiltonian
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Maximun principle
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Interpretation

• Net revenue= scarcity price of the
resource



Comparison to regular market

• Non-renewable resource price is higher than
”normal” competitive market.

• Scarcity price measures the difference.
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Dynamic condition
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Hotelling rule
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Interpretation
• Scarcity price increases according to the

discount rate. The resource should yield the
same rate of interest than any other (risk-free)
investment



1.3 Scarcity price in time

• Let us solve the differential equation
(Hotelling’s rule)



…

• On the LHS the time derivative of the
discounted scarcity price

• integrate
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Timepath of scarcity (shadow) price
(m0 = 10; r = 0.05;)
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Backstop-price and optimal price
of the resource

• Assume c=0.
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Initial price

• At T, price of the resource is equal to the
backstop-price.

• At t=0 price can be computed since price
increases now with the rate of discount.
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Optimal price
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1.5 Optimal rate of extraction and
the optimal time to exhaustion

• Assume the following demand:

• The whole resource stock is exhausted
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Optimal extraction rate
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Integrate to yield the time to
exhaustion
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Solving the time to exhaustion

• Needs to be computed numerically from
the previous equation. It will be affected by
backstop-price, discount rate, initial stock
and demand.

• Note that this needs to be computed first
before moving on to computing the optimal
extraction and optimal price


