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1. A problem in the Minkowski space

In this section we consider a problem to determine a compactly supported po-
tential in the Minkowski space. This avoids some technicalities appearing in more
usual inverse boundary value problems, but it still allows us to introduce the main
techniques.

Let n ≥ 2, T > 0, q ∈ C∞0 ((0, T )× Rn), and consider the wave equation

�u+ qu = 0, in (0, T )× Rn,(1)

u|t=0 = u0, ∂tu|t=0 = u1.
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Define also the map

Lq : (C∞0 (Rn))2 → C∞0 (Rn), Lq(u0, u1) = u|t=T .
We will study how to solve the inverse problem to determine q given Lq.

Exercise 1. Equation (1) arises in a natural way when considering a purely geometric
wave equation on a conformal multiple of the Minkowski space. For a Lorentzian
metric tensor g on R1+n, the associated wave operator is defined by

�gu = |g|−1/2∂xj
(
gjk|g|1/2∂xku

)
,

where |g| is the determinant of the matrix g = (gjk)
n
j,k=0 and gjk is its inverse.

Consider now the Minkowski metric g, see (3) below, and let c(t, x) be smooth and
strictly positive. Show that v = c(n−1)/4u satisfies �gv + qcv = 0 if the function u
satisfies �cgu = 0, where

qc = c−(n−1)/4�cgc
(n−1)/4.

1.1. Geometric optics. Observe that the 1 + 1-dimensional wave equation

∂2t u− ∂2xu = 0,(2)

can be written as (∂t + ∂x)(∂t − ∂x)u = 0 and we see that functions of the form
u(t, x) = χ(t ± x) are solutions to this. Thus choosing χ(s) ≈ δ(s) we obtain a
solution concentrating on β(s) = (s,±s). Also the plane waves u(t, x) = eiσ(t±x),
σ ∈ R, are solutions to (2). In the more general case (1) we will construct geometric
optics solutions that combine features of these two types of solutions to (2).

In particular, we will construct solutions to (1) that concentrate on light rays, that
is, lines of the form

β(s) = (s, y + sv), s ∈ R,
where y is a point in Rn and v is a unit vector in Rn. We write

Sn−1 = {v ∈ Rn; |v| = 1}.

The name light ray comes from the fact that the tangent vector β̇ = (1, v) is light
like with respect to the Minkowski metric

(3) g =


−1

1
. . .

1

 ,

that is, (β̇, β̇)g = 0.
The idea is to find first an approximate solution of the form

eiσφ(t,x)(a0(t, x) + σ−1a1(t, x) + σ−2a2(t, x) + . . . ), σ >> 1,
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and then an actual solution u = eiσφ(a0 + . . . )+rσ where the remainder rσ converges
to zero as σ → ∞. We will begin with the single term approximation eiσφa0 and
write a0 = a.

1.1.1. Single term ansatz. The equation (� + q)u = 0 is equivalent with

(4) (� + q)rσ = −(� + q)(eiσφa),

and we want to choose φ and a so that

�(eiσφa) = eiσφ�a.(“C”)

The rationale is that in this case the absolute value of the right-hand side of (4) is
independent from σ, and therefore rσ is at least not blowing up as σ →∞.

It is a simple matter to expand the left-hand side of (“C”) but a useful computa-
tional technique is to consider the conjugated wave operator

e−iσφ�eiσφ = e−iσφ∂2t e
iσφ + · · · = e−iσφ∂te

iσφe−iσφ∂te
iσφ + . . . .

Now e−iσφ∂te
iσφ = ∂t + iσ(∂tφ) and

(e−iσφ∂te
iσφ)2 = ∂2t + 2iσ(∂tφ)∂t − σ2|∂tφ|2 + iσ(∂2t φ).

Treating the spacial derivatives in the same way we get

e−iσφ�eiσφ = � + iσ(2(∂tφ)∂t − 2(∇φ) · ∇+ (�φ))− σ2(|∂tφ|2 − |∇φ|2).(5)

Therefore for a 6= 0, (“C”) is equivalent with the following two equations

|∂tφ|2 − |∇φ|2 = 0,(E)

2(∂tφ)∂ta− 2(∇φ) · ∇a+ (�φ)a = 0.(T)

It is natural to normalize φ so that (E) becomes |∂tφ|2 = |∇φ|2 = 1. There is some
freedom when choosing a solution to (E), but for our purposes it suffices to use the
linear solution φ(t, x) = t+ v · x where v is a unit vector in Rn.

Exercise 2. Write Dφ = (∂tφ,∇φ) and apply the method of characteristic, as de-
scribed in [3, Section 3.2], to F (Dφ) = 1

2
(|∂tφ|2 − |∇φ|2). Using the notation there

we set z(s) = φ(x(s)) and p(s) = Dφ(x(s)) where x(s) is a characteristic of F . (Note
that here x(s) is a curve in the space time R1+n, not just in space.) Show that ṗ = 0,
ż = 0, and that the compatibility condition F (p(0)) = 0 implies that x(s) is a light
ray. Setting the initial condition φ(x) = v · x on the plane t = 0, show that the
solution to F (Dφ) = 0 is φ(t, x) = t+ v · x.

To simplify the notation, we may assume after a rotation that v · x = −x1. The
functions satisfying |∇φ| = 1 are often called distance functions, and the particular
choice x1 is of course the signed distance to the plane x1 = 0. Note also that, with
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this choice, the factor eiσφ = eiσ(t−x
1) coincides with the 1+1-dimensional plane wave

discussed above.
The transport equation (T) simplifies now to

∂ta+ ∂x1a = 0.

The solutions to this are of the form a(t, x) = χ(t−x1)η(x′) where x′ = (x2, x3, . . . , xn).
Analogously with 1 + 1-dimensional case, taking χ ≈ δ and η ≈ δ we obtain a that
concentrates on the light ray β(s) = (s, s, 0).

Neither φ nor a depend on q in the above construction. In order to obtain infor-
mation on q there are two typical approaches: use the difference of two solutions,
corresponding to different potentials, or use a multi-term approximation.

1.1.2. Multi-term ansatz. Let us consider the three term approximation,

eiσφA, A = a0 + σ−1a1 + σ−2a2,

and choose φ and a0 = a as above. As we are using a more complicated amplitude,
we can ask for more than (“C”), namely

(� + q)(eiσφA) = O(σ−2), σ >> 1.

We use the conjugation formula (5), to obtain

e−iσφ(� + q)eiσφA = (� + q)A+ 2i(∂t + ∂x1)(a1 + σ−1a2).

This is of order σ−2 whenever a1 and a2 solve the transport equations

∂taj + ∂x1aj −
i

2
(� + q)aj−1 = 0, j = 1, 2,

or after the change of variables,

s =
t+ x1

2
, r =

t− x1

2
,

equivalently ∂saj = i
2
(� + q)aj−1. Therefore we may choose

aj(s, r, x
′) =

i

2

∫ s

−r
(� + q)aj−1(s

′, r, x′)ds′.

Note that t = 0 is equivalent with s = −r. The choice of the lower limit −r in the
integration implies that aj = 0, j = 1, 2, when t = 0.
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1.1.3. Solving for the remainder. When χ ∈ C∞0 (R) and η ∈ C∞0 (Rn−1), the restric-
tions of all the amplitudes aj, j = 0, 1, 2, are compactly supported in [0, T ]×Rn. We
recall that the wave equation

�u+ qu = F, in (0, T )× Rn,

u|t=0 = ∂tu|t=0 = 0.

has a unique solution u satisfying

‖u‖C(0,T ;H1(Rn)) + ‖u‖C1(0,T ;L2(Rn)) ≤ C ‖F‖L2((0,T )×Rn) ,

see e.g. [3, Theorem 7.6]. We solve

�rσ + qrσ = −(� + q)(eiσφA), in (0, T )× Rn,

rσ|t=0 = ∂trσ|t=0 = 0.

As the right-hand side is pointwise of order σ−2 and compactly supported, we see
that rσ|t=T = O(σ−2) in H1(Rn).

1.2. Reduction to the light ray transform. Now u = eiσφA+ rσ solves (1) with

u0 = (eiσφA)|t=0, u1 = ∂t(e
iσφA)|t=0.

As q vanishes near t = 0, we see that u0 and u1 are independent from q. This again
implies that Lq determines u|t=T . For ψ ∈ C∞0 (Rn) we obtain

σ((e−iσφu− a0)|t=T , ψ)L2(Rn) → (a1|t=T , ψ)L2(Rn), σ →∞.
This determines a1|t=T . As �a0 is known, we find the integral∫ T−r

−r
qa0(s

′, r, x′)ds′, (s, r, x′) ∈ Ω.

Here we used the fact that t = T is equivalent with s = T − r.
In (s, r, x′) coordinates a0 = χ(2r)η(x′) and the above integral reduces at (r, x′) = 0

to ∫ T

0

q(s′, 0, 0)ds′χ(0)η(0).

As q vanishes for t < 0 and t > T , we can recover in (s, r, x′) coordinates
∫
R q(s, 0, 0)ds,

or equivalently, in (t, x1, x′) coordinates∫
R
q(β(s))ds, β(s) = (s, s, 0).

Repeating the above argument, after using rotations and translations, we obtain the
light ray transform of q,

Lq(y, v) =

∫
R
q(βy,v(s))ds, βy,v(s) = (s, y + sv), y ∈ Rn, v ∈ Sn−1.
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1.3. Inversion of the light ray transform. The above reduction works also when
n = 1, but inversion of L requires n ≥ 2. Indeed, if n = 1, then Lq = 0 for
q(s, r) = q0(s)q1(r) with qj, j = 0, 1, integrating to zero.

For a fixed v ∈ Sn−1, consider the change of coordinates in R1+n,

(t, x) = (s, y + sv).

Then y = x− tv. Using this, we obtain the Fourier slicing∫
Rn

e−iη·yLq(y, v) dy =

∫
R1+n

e−iη·(x−tv)q(t, x) dtdx = q̂(−η · v, η).

Here |η·v| ≤ |η|. Moreover, as n ≥ 2, we can choose a unit vector w that is orthogonal
to η. Then for a ∈ [−1, 1] and η 6= 0, we may choose

v = − a

|η|
η +
√

1− a2w ∈ Sn−1.

This gives −η · v = a|η|, and we see that the Fourier slicing allows us to recover
q̂(a|η|, η) for any a ∈ [−1, 1].

As q is compactly supported, q̂ is analytic. We know q̂ in a non-empty open cone
(in fact, in the cone of spacelike directions), and therefore everywhere by analytic
continuation. This shows that Lq determines q. By the above reduction also Lq
determines q.

2. A problem in simple geometry

We will now consider an inverse problem to determine a time-independent potential
on a simple Riemannian manifold.

Let (M, g) be a simple Riemannian manifold with boundary and let

T > max{d(x, y); x, y ∈M},(6)

where d(x, y) is the distance on M . Let q ∈ C∞(M) and consider the wave equation

∂2t u−∆u+ qu = 0, in (0, T )×M,(7)

u|x∈∂M = f,

u|t=0 = ∂tu|t=0 = 0.

Here ∆ is the Laplace operator on (M, g). Define also the map

Λq : C∞0 ((0, T )× ∂M)→ C∞((0, T )× ∂M), Λqf = ∂νu|x∈∂M .

We will study how to solve the inverse problem to determine q given Λq.
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2.1. Some geometric preliminaries. We denote by γ(r;x, v) the geodesic on
(M, g) with the initial data (x, v) ∈ TM . Then the exponential map at x ∈ M
is given by expx(v) = γ(1;x, v). As (M, g) is simple, expx is a diffeomorphism onto
M for all x ∈M . It is often convenient to consider a slightly larger simple manifold
M̃ such that M ⊂ M̃ . In what follows, expx being a diffeomorphism onto M̃ , for all
x ∈ M̃ , is the only aspect of simplicity that we will need.

2.1.1. Polar coordinates. Let x ∈ M and choose an orthonormal basis e1, . . . , en for
TxM . Then the map y = (y1, . . . , yn) 7→ expx(y

jej) gives global coordinates on M
that are called normal coordinates. Let us now write y ∈ Rn \ 0 in polar coordinates
y = rv where r > 0 and v ∈ Sn−1.

We will show that in rv coordinates the metric tensor has the form

(8) g(rv) =

(
1 0
0 h(rv)

)
,

where h(rv) is a smooth family of metric tensors on Sn−1. We write (v, w)g = vjgjkw
k

and |v|g for the inner product with respect to g and the corresponding norm. As
coordinate vectors for coordinates v are tangential to Sn−1, the form (8) is equivalent
with

(9) |∂r|g = 1, (∂r, w)g = 0,

for all w ∈ TvSn−1 and v ∈ Sn−1.
We will consider Sn−1 as a subset of TxM . Then in rv coordinates

γ(r;x, v) = rv.

In particular, the coordinate vector ∂r = v at rv coincides with γ̇(r;x, v). Therefore
|∂r|g = 1. Let us now turn to the second equation in (9).

Let ω be a path in Sn−1. Then γ(r;x, ω(s)) = rω(s) and

∂sγ(r;x, ω(s)) = rω̇(s) ∈ Tω(s)Sn−1.
For any r > 0 and (v, w) ∈ TSn−1 we can choose ω so that ω(0) = v and rω̇(0) = w.
Thus it is enough to show that

(γ̇(r;x, v), ∂sγ(r;x, ω(s))|s=0)g = 0,

or equivalently,
(γ̇(r;x, ω(s)), ∂sγ(r;x, ω(s)))g|s=0 = 0.

We begin by showing that this inner product is constant in r. Using the shorthand
notation Γ(r, s) = γ(r;x, ω(s)), we have

∂r(∂rΓ, ∂sΓ)g = (∂rΓ, Dr∂sΓ)g = (∂rΓ, Ds∂rΓ)g =
1

2
∂s|∂rΓ|2g = 0,

where we used the following three facts:
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(1) For fixed s, the path Γ(r, s) = γ(r;x, ω(s)) is a geodesic, and therefore its
acceleration Dr∂rΓ vanishes.

(2) The symmetry Dr∂sΓ = Ds∂rΓ, see e.g. [8, Lemma 6.3].
(3) For each s, the geodesic Γ(r, s) has unit speed, and therefore ∂s|∂rΓ|2 = 0.

To conclude, we observe that ∂sγ(0;x, ω(s)) = 0.

Exercise 3. Consider the boundary ∂M as a submanifold of M and let x ∈ ∂M .
Then Tx(∂M) is a subspace of TxM and we can choose a unit vector ν(x) ∈ TxM
such that (ν(x), w)g = 0 for all w ∈ Tx(∂M). Let us choose ν(x) so that it is inward
pointing in the sense that γ(r;x, ν(x)) stays in M for small r > 0. Then the choice
of ν(x) is unique and depends smoothly on x ∈ ∂M . We choose local coordinates
x = (x1, . . . , xn−1) on ∂M , and define the boundary normal coordinates by the map
(r, x) 7→ γ(r;x, ν(x)).

This map gives local coordinates near a point (0, x). Indeed, γ(0;x, ν(x)) = x
and thus ∂xjγ(0;x, ν(x)), j = 1, . . . , n − 1, give a basis of Tx(∂M). Moreover,
∂rγ(r;x, ν(x))|r=0 = ν(x) /∈ Tx(∂M), and we conclude that (r, x) 7→ γ(r;x, ν(x))
has surjective differential.

Show that in (r, x) coordinates the metric tensor has the form

(10) g(r, x) =

(
1 0
0 h(r, x)

)
,

where h(r, x) is a smooth family of metric tensors in the coordinates of ∂M . A proof
can be based on considering the family Γ(r, s) = γ(r; y(s), ν(y(s))) where y is a path
on ∂M .

2.1.2. Laplace operator and Green’s identity. The Laplace operator is defined in co-
ordinates by

∆u = |g|−1/2∂xj
(
gjk|g|1/2∂xku

)
.

It can be viewed as the composition of the gradient and divergence

(∇u)j = gjk∂xku, div V = |g|−1/2∂xj(|g|1/2V j).

The normal derivative is defined by ∂νu = (∇u, ν)g where ν is the unit outward
pointing normal to ∂M . The volume measure is defined in coordinates by

dV = |g|1/2dx1 . . . dxn.

The metric tensor restricts on the boundary ∂M simply by (v, w)g, v, w ∈ Tx(∂M),
x ∈ ∂M , where Tx(∂M) is considered as a subspace of TxM . The surface measure
dS on ∂M is then defined in coordinates of ∂M by using the above formula for the
restriction of g. We define the L2-inner products on M and ∂M with respect to
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these measures. Now we are ready to state Green’s identity, see e.g. [11, Proposition
2.4.1],

(∆u, v)L2(M) − (u,∆v)L2(M) = (∂νu, v)L2(∂M) − (u, ∂νv)L2(∂M), u, v ∈ C∞(M).

Exercise 4. Consider boundary normal coordinates (r, x) in [0, R)×X where R > 0 is
small and X ⊂ ∂M is a small coordinate neighbourhood. Using a partition of unity,
the proof of Green’s identity can be reduced to case where u, v ∈ C∞0 ([0, R) × X).
Using the form (10) show Green’s identity in this case.

2.2. Geometric optics. We will again use the ansatz eiσφa. To derive the geometric
analogues of the eikonal and transport equations, observe first that

e−iσφ∇eiσφ = ∇+ iσ∇φ.
In order to compute e−iσφ div eiσφ, note that in general

div(uV ) = u div V + V j∂xju = u div V + (∇u, V )g.

Thus e−iσφ div eiσφ = div +iσ(∇φ, ·)g.
Now for a 6= 0, (“C”) is equivalent with the following two equations

|∂tφ|2 − |∇φ|2g = 0,(E’)

2(∂tφ)∂ta− 2(∇φ,∇a)g + (�φ)a = 0.(T’)

Recall that in polar coordinates rv the metric tensor g has the form (8). This form
implies that ∇r = ∂r and |∇r|g = 1. In particular φ = t− r is a solution to (E’).

Note that �φ = |h|−1/2∂r(|h|1/2) = 1
2
∂r ln |h|. Thus (T’) reduces to

∂ta+ ∂ra+ (∂rµ)a = 0, µ = ln(|h|1/4).
We use the integrating factor eµ = |h|1/4. That is, writing e−µ∂re

µ = ∂r + (∂rµ), we
see that (T’) is equivalent with

∂tb+ ∂rb = 0, b = eµa.

As in the Minkowski case, we see that the solutions are b = χ(t− r)η(v), and hence
a = χ(t− r)η(v)|h|−1/4.

2.3. Sharper analysis of the remainder term. It follows again from [3, Theorem
7.6] that the wave equation

�u+ qu = F, in (0, T )×M,(11)

u|x∈∂M = 0,

u|t=0 = ∂tu|t=0 = 0.

has a unique solution u satisfying

‖u‖C(0,T ;H1(M)) + ‖u‖C1(0,T ;L2(M)) ≤ C ‖F‖L2((0,T )×M) .
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Analogously with the Minkowski case, we obtain rσ by solving (11) with

F = −(� + q)(eiσφa) = −eiσφ(� + q)a.

Then u = eiσφa + rσ is a solution to �u + qu = 0 but some work is still needed to
show that rσ decays as σ →∞.

Exercise 5. Define

Rσ(t, x) =

∫ t

0

rσ(t′, x)dt′,

and show that Rσ solves (11) with F = Fσ where

Fσ = e−iσr
∫ t

0

eiσt
′
Hdt′, H = −(� + q)a.

Furthermore, show that
∫ t
0
eiσt

′
Hdt′ = O(σ−1) as σ →∞, and conclude that

‖rσ‖C(0,T ;L2(M)) ≤ ‖Rσ‖C1(0,T ;L2(M)) ≤ C ‖Fσ‖L2((0,T )×M) = O(σ−1).

2.4. Reduction to the geodesic ray transform. Let us now consider two poten-
tials q1, q2 ∈ C∞(M) and the corresponding solutions u1 and u2 to

�uj + qjuj = 0, in (0, T )×M,

uj|x∈∂M = f,

uj|t=0 = ∂tuj|t=0 = 0.

Let x ∈ M̃ \ M , consider polar coordinates centred at x, and fix v ∈ Sn−1. We
assume that x and v are chosen so that the geodesic γ(r;x, v) enters M at r = r0
and then exits M at r = r1 where r1 < T . Note that the exit condition follows from
simplicity and the assumption (6) whenever x is close enough to M .

We choose χ ∈ C∞0 (R) and η ∈ C∞(Sn−1) with small supports. Then

a = χ(t− r)η(v)|h|−1/4

concentrates near the light ray β(t) = (t, γ(t;x, v)) = (t, tv). When supp(χ) and
supp(η) are small enough, the intersection of supp(a) with the boundary of the
cylinder (0, T )×M is contained in the lateral part (0, T )× ∂M .

We choose f = (eiσφa)|x∈∂M in (7). Then f does not depend on the potentials q1
and q2, and the solutions u1 and u2 satisfy uj = eiσφa+ rσ,j. Let us now integrate by
parts

0 = ((� + q1)u1, u2)L2((0,T )×M) − (u1, (� + q2)u2)L2((0,T )×M)

= ((q1 − q2)u1, u2)L2((0,T )×M) − (∂νu1, u2)L2((0,T )×∂M) + (u1, ∂νu2)L2((0,T )×∂M)

+ (∂tu1|t=T , u2|t=T )L2(M) − (u1|t=T , ∂tu2|t=T )L2(M).
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We have uj = eiσφa + O(σ−1) in L2((0, T ) ×M). Also uj|t=T = rσ,j|t=T = O(σ−1)
and ∂tuj|t=T = ∂trσ,j|t=T = O(1) in L2(M). Furthermore if Λq1 = Λq2 then

(∂νu1, u2)L2((0,T )×∂M) − (u1, ∂νu2)L2((0,T )×∂M)

= (∂νu1, u1)L2((0,T )×∂M) − (u1, ∂νu1)L2((0,T )×∂M).

The inner products here are complex valued, but replacing u2 and q2 with u1 and
q1 in the above computation, we see that these boundary terms are of order σ−1.
Finally using eiσφeiσφ = 1 we obtain

((q1 − q2)a, a)L2((0,T )×M) = O(σ−1).

Taking σ →∞ we have

0 =

∫ T

0

∫
M

(q1 − q2)χ2(t− r)η2(v)|h|−1/2dV dt.

As dV = |h|1/2drdv, we obtain after letting χ2 → δ and η2 → δ(v − v0),

0 =

∫ r1

r0

(q1 − q2)(tv0)dt.

Repeating this construction for all x ∈ M̃ \M close to M and all v ∈ Sn−1, we see
that the geodesic ray transform of q1 − q2 vanishes.

3. Further reading

An analogue of the inverse problem in Section 2, but with time dependent q, and
data also on the top and bottom of the cylinder (0, T ) ×M , is solved in [7]. The
problem is open if M ⊂ Rn is a convex set and ∂2t −∆ in (7) is replaced by �g with
g near the Minkowski metric. By combining the results in [9] and [10], this problem
can be solved under the additional assumption that g is real analytic.

For stability results related to the inverse problems in Sections 1 and 2, see [1]
and [2], respectively. For a result similar to that in Section 1, but with non-smooth,
unbounded q see [4].

The inverse problem in Section 2 can also be solved by using the Boundary Control
method. This approach is not based on reduction to a ray transform, and it works
when (M, g) is any compact, smooth Riemannian manifold with boundary. The
monograph [5] is a good introduction to the Boundary Control method, and [6]
discusses the method in the case of Minkowski geometry.
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