I am a professor of applied mathematics and a member of the Centre of Excellence of Inverse Modelling and Imaging as well as Flagship of Advanced Mathematics for Sensing, Imaging and Modelling. My publications as of September 2024 are below, see arXiv for my preprints.
My research interests include inverse problems for partial differential equations, their numerical analysis, and related geometric problems such as inversion of the geodesic ray transform. See my lecture notes of a summer school in 2018 at the Max Planck Institute in Leipzig for an introduction to these problems.
For contact information, see my profile.
1 | M. V. de Hoop, M. Lassas, J. Lu, and L.O. Stable recovery of coefficients in an inverse fault friction problem. Arch. Ration. Mech. Anal., 248(4):18, 2024. Id/No 64. doi |
2 | C. I. Cârstea, M. Lassas, T. Liimatainen, and L.O. An inverse problem for the Riemannian minimal surface equation. J. Differ. Equations, 379:626–648, 2024. doi |
3 | L.O., M. Salo, P. Stefanov, and G. Uhlmann. Inverse problems for real principal type operators. Am. J. Math., 146(1):161–240, 2024. doi |
4 | M. V. de Hoop, M. Lassas, J. Lu, and L.O. Quantitative unique continuation for the elasticity system with application to the kinematic inverse rupture problem. Commun. Partial Differ. Equations, 48(2):286–314, 2023. doi |
5 | E. Burman, J. J. J. Gillissen, and L.O. Stability estimate for scalar image velocimetry. J. Inverse Ill-Posed Probl., 31(6):811–822, 2023. doi |
6 | E. Burman, A. Feizmohammadi, A. Münch, and L.O. Spacetime finite element methods for control problems subject to the wave equation. ESAIM, Control Optim. Calc. Var., 29:40, 2023. Id/No 41. doi |
7 | C. I. Cârstea, A. Feizmohammadi, and L.O. Remarks on the anisotropic Calderón problem. Proc. Am. Math. Soc., 151(10):4461–4473, 2023. doi |
8 | Y. Kurylev, M. Lassas, L.O., and G. Uhlmann. Inverse problem for Einstein-scalar field equations. Duke Math. J., 171(16):3215–3282, 2022. doi |
9 | X. Chen, M. Lassas, L.O., and G. P. Paternain. Detection of Hermitian connections in wave equations with cubic non-linearity. J. Eur. Math. Soc. (JEMS), 24(7):2191–2232, 2022. doi |
10 | T. Liimatainen and L.O. Counterexamples to inverse problems for the wave equation. Inverse Probl. Imaging, 16(2):467–479, 2022. doi |
11 | A. Feizmohammadi and L.O. Recovery of zeroth order coefficients in non-linear wave equations. J. Inst. Math. Jussieu, 21(2):367–393, 2022. doi |
12 | L.O., T. Yang, and Y. Yang. Linearized boundary control method for an acoustic inverse boundary value problem. Inverse Probl., 38(11):26, 2022. Id/No 114001. doi |
13 | E. Burman, M. Nechita, and L.O. A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: Convection-dominated regime. Numer. Math., 150(3):769–801, 2022. doi |
14 | S. Alexakis, A. Feizmohammadi, and L.O. Lorentzian Calderón problem under curvature bounds. Invent. Math., 229(1):87–138, 2022. doi |
15 | A. Kirpichnikova, J. Korpela, M. J. Lassas, and L.O. Construction of artificial point sources for a linear wave equation in unknown medium. SIAM J. Control Optim., 59(5):3737–3761, 2021. doi |
16 | A. Feizmohammadi, M. Lassas, and L.O. Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers. Forum Math. Pi, 9:52, 2021. Id/No e10. doi |
17 | A. Feizmohammadi, K. Krupchyk, L.O., and G. Uhlmann. Reconstruction in the Calderon problem on conformally transversally anisotropic manifolds. J. Funct. Anal., 281(9):109191, 25, 2021. doi |
18 | A. Feizmohammadi, J. Ilmavirta, and L.O. The light ray transform in stationary and static Lorentzian geometries. J. Geom. Anal., 31(4):3656–3682, 2021. doi |
19 | X. Chen, M. Lassas, L.O., and G. P. Paternain. Inverse problem for the Yang-Mills equations. Comm. Math. Phys., 384(2):1187–1225, 2021. doi |
20 | A. Feizmohammadi, J. Ilmavirta, Y. Kian, and L.O. Recovery of time-dependent coefficients from boundary data for hyperbolic equations. J. Spectr. Theory, 11(3):1107–1143, 2021. doi |
21 | E. Burman, A. Feizmohammadi, A. Munch, and L.O. Space time stabilized finite element methods for a unique continuation problem subject to the wave equation. ESAIM Math. Model. Numer. Anal., 55:S969–S991, 2021. doi |
22 | M. Lassas, L.O., P. Stefanov, and G. Uhlmann. The light ray transform on Lorentzian manifolds. Comm. Math. Phys., 377(2):1349–1379, 2020. doi |
23 | A. Feizmohammadi and L.O. An inverse problem for a semi-linear elliptic equation in Riemannian geometries. J. Differential Equations, 269(6):4683–4719, 2020. doi |
24 | E. Burman, A. Feizmohammadi, and L.O. A finite element data assimilation method for the wave equation. Math. Comp., 89(324):1681–1709, 2020. doi |
25 | E. Burman, M. Nechita, and L.O. A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime. Numer. Math., 144(3):451–477, 2020. doi |
26 | E. Burman, A. Feizmohammadi, and L.O. A fully discrete numerical control method for the wave equation. SIAM J. Control Optim., 58(3):1519–1546, 2020. doi |
27 | C. I. Cârstea, G. Nakamura, and L.O. Uniqueness for the inverse boundary value problem of piecewise homogeneous anisotropic elasticity in the time domain. Trans. Amer. Math. Soc., 373(5):3423–3443, 2020. doi |
28 | Y. Kian, M. Morancey, and L.O. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Math. Control Relat. Fields, 9(2):289–312, 2019. doi |
29 | Y. Kian, Y. Kurylev, M. Lassas, and L.O. Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets. J. Differential Equations, 267(4):2210–2238, 2019. doi |
30 | Y. Kian and L.O. Recovery of time-dependent coefficient on Riemannian manifold for hyperbolic equations. Int. Math. Res. Not. IMRN, (16):5087–5126, 2019. doi |
31 | J. Korpela, M. Lassas, and L.O. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Probl. Imaging, 13(3):575–596, 2019. doi |
32 | E. Burman, M. Nechita, and L.O. Unique continuation for the Helmholtz equation using stabilized finite element methods. J. Math. Pures Appl. (9), 129:1–22, 2019. doi |
33 | E. Burman, M. G. Larson, and L.O. Primal-dual mixed finite element methods for the elliptic Cauchy problem. SIAM J. Numer. Anal., 56(6):3480–3509, 2018. doi |
34 | E. Burman and L.O. Data assimilation for the heat equation using stabilized finite element methods. Numer. Math., 139(3):505–528, 2018. doi |
35 | M. Lassas, L.O., P. Stefanov, and G. Uhlmann. On the inverse problem of finding cosmic strings and other topological defects. Comm. Math. Phys., 357(2):569–595, 2018. doi |
36 | E. Burman, J. Ish-Horowicz, and L.O. Fully discrete finite element data assimilation method for the heat equation. ESAIM Math. Model. Numer. Anal., 52(5):2065–2082, 2018. doi |
37 | Y. Kian, L.O., E. Soccorsi, and M. Yamamoto. Global uniqueness in an inverse problem for time fractional diffusion equations. J. Differential Equations, 264(2):1146–1170, 2018. doi |
38 | M. V. de Hoop, P. Kepley, and L.O. Recovery of a smooth metric via wave field and coordinate transformation reconstruction. SIAM J. Appl. Math., 78(4):1931–1953, 2018. doi |
39 | M. V. de Hoop, P. Kepley, and L.O. An exact redatuming procedure for the inverse boundary value problem for the wave equation. SIAM J. Appl. Math., 78(1):171–192, 2018. doi |
40 | T. Helin, M. Lassas, L.O., and T. Saksala. Correlation based passive imaging with a white noise source. J. Math. Pures Appl., 116:132–160, 2018. doi |
41 | Y. Kurylev, L.O., and G. P. Paternain. Inverse problems for the connection Laplacian. J. Differential Geom., 110(3):457–494, 2018. doi |
42 | M. V. de Hoop, L.O., and J. Tittelfitz. Uniqueness for a seismic inverse source problem modeling a subsonic rupture. Comm. Partial Differential Equations, 41(12):1895–1917, 2016. doi |
43 | M. V. de Hoop, P. Kepley, and L.O. On the construction of virtual interior point source travel time distances from the hyperbolic Neumann-to-Dirichlet map. SIAM J. Appl. Math., 76(2):805–825, 2016. doi |
44 | J. Korpela, M. Lassas, and L.O. Regularization strategy for an inverse problem for a 1+1 dimensional wave equation. Inverse Problems, 32(6):065001, 24, 2016. doi |
45 | S. Liu and L.O. A Lipschitz stable reconstruction formula for the inverse problem for the wave equation. Trans. Amer. Math. Soc., 368(1):319–335, 2016. doi |
46 | M. Lassas, L.O., and Y. Yang. Determination of the spacetime from local time measurements. Math. Ann., 365(1-2):271–307, 2016. doi |
47 | O. Chervova and L.O. Time reversal method with stabilizing boundary conditions for photoacoustic tomography. Inverse Problems, 32(12):125004, 16, 2016. doi |
48 | T. Helin, M. Lassas, and L.O. Inverse problem for the wave equation with a white noise source. Comm. Math. Phys., 332(3):933–953, 2014. doi |
49 | M. Lassas and L.O. Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets. Duke Math. J., 163(6):1071–1103, 2014. doi |
50 | L.O. and G. Uhlmann. Photoacoustic and thermoacoustic tomography with an uncertain wave speed. Math. Res. Lett., 21(5):1199–1214, 2014. doi |
51 | L.O. Solving an inverse obstacle problem for the wave equation by using the boundary control method. Inverse Problems, 29(3):035004, 12, 2013. doi |
52 | L.O. Inverse obstacle problem for the non-stationary wave equation with an unknown background. Comm. Partial Differential Equations, 38(9):1492–1518, 2013. doi |
53 | T. Helin, M. Lassas, and L.O. An inverse problem for the wave equation with one measurement and the pseudorandom source. Anal. PDE, 5(5):887–912, 2012. doi |
54 | L.O. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Probl. Imaging, 5(3):731–744, 2011. doi |
55 | M. Lassas and L.O. An inverse problem for a wave equation with sources and observations on disjoint sets. Inverse Problems, 26(8):085012, 19, 2010. doi |