Lauri Oksanen

University of Helsinki
lauri.oksanen@helsinki.fi

I am a professor of applied mathematics and a member of the Centre of Excellence of Inverse Modelling and Imaging as well as Flagship of Advanced Mathematics for Sensing, Imaging and Modelling. My publications as of September 2024 are below, see arXiv for my preprints.

My research interests include inverse problems for partial differential equations, their numerical analysis, and related geometric problems such as inversion of the geodesic ray transform. See my lecture notes of a summer school in 2018 at the Max Planck Institute in Leipzig for an introduction to these problems.

For contact information, see my profile.

Publications

1 M. V. de Hoop, M. Lassas, J. Lu, and L.O. Stable recovery of coefficients in an inverse fault friction problem. Arch. Ration. Mech. Anal., 248(4):18, 2024. Id/No 64. doi 
2 C. I. Cârstea, M. Lassas, T. Liimatainen, and L.O. An inverse problem for the Riemannian minimal surface equation. J. Differ. Equations, 379:626–648, 2024. doi 
3 L.O., M. Salo, P. Stefanov, and G. Uhlmann. Inverse problems for real principal type operators. Am. J. Math., 146(1):161–240, 2024. doi 
4 M. V. de Hoop, M. Lassas, J. Lu, and L.O. Quantitative unique continuation for the elasticity system with application to the kinematic inverse rupture problem. Commun. Partial Differ. Equations, 48(2):286–314, 2023. doi 
5 E. Burman, J. J. J. Gillissen, and L.O. Stability estimate for scalar image velocimetry. J. Inverse Ill-Posed Probl., 31(6):811–822, 2023. doi 
6 E. Burman, A. Feizmohammadi, A. Münch, and L.O. Spacetime finite element methods for control problems subject to the wave equation. ESAIM, Control Optim. Calc. Var., 29:40, 2023. Id/No 41. doi 
7 C. I. Cârstea, A. Feizmohammadi, and L.O. Remarks on the anisotropic Calderón problem. Proc. Am. Math. Soc., 151(10):4461–4473, 2023. doi 
8 Y. Kurylev, M. Lassas, L.O., and G. Uhlmann. Inverse problem for Einstein-scalar field equations. Duke Math. J., 171(16):3215–3282, 2022. doi 
9 X. Chen, M. Lassas, L.O., and G. P. Paternain. Detection of Hermitian connections in wave equations with cubic non-linearity. J. Eur. Math. Soc. (JEMS), 24(7):2191–2232, 2022. doi 
10 T. Liimatainen and L.O. Counterexamples to inverse problems for the wave equation. Inverse Probl. Imaging, 16(2):467–479, 2022. doi 
11 A. Feizmohammadi and L.O. Recovery of zeroth order coefficients in non-linear wave equations. J. Inst. Math. Jussieu, 21(2):367–393, 2022. doi 
12 L.O., T. Yang, and Y. Yang. Linearized boundary control method for an acoustic inverse boundary value problem. Inverse Probl., 38(11):26, 2022. Id/No 114001. doi 
13 E. Burman, M. Nechita, and L.O. A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: Convection-dominated regime. Numer. Math., 150(3):769–801, 2022. doi 
14 S. Alexakis, A. Feizmohammadi, and L.O. Lorentzian Calderón problem under curvature bounds. Invent. Math., 229(1):87–138, 2022. doi 
15 A. Kirpichnikova, J. Korpela, M. J. Lassas, and L.O. Construction of artificial point sources for a linear wave equation in unknown medium. SIAM J. Control Optim., 59(5):3737–3761, 2021. doi 
16 A. Feizmohammadi, M. Lassas, and L.O. Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers. Forum Math. Pi, 9:52, 2021. Id/No e10. doi 
17 A. Feizmohammadi, K. Krupchyk, L.O., and G. Uhlmann. Reconstruction in the Calderon problem on conformally transversally anisotropic manifolds. J. Funct. Anal., 281(9):109191, 25, 2021. doi 
18 A. Feizmohammadi, J. Ilmavirta, and L.O. The light ray transform in stationary and static Lorentzian geometries. J. Geom. Anal., 31(4):3656–3682, 2021. doi 
19 X. Chen, M. Lassas, L.O., and G. P. Paternain. Inverse problem for the Yang-Mills equations. Comm. Math. Phys., 384(2):1187–1225, 2021. doi 
20 A. Feizmohammadi, J. Ilmavirta, Y. Kian, and L.O. Recovery of time-dependent coefficients from boundary data for hyperbolic equations. J. Spectr. Theory, 11(3):1107–1143, 2021. doi 
21 E. Burman, A. Feizmohammadi, A. Munch, and L.O. Space time stabilized finite element methods for a unique continuation problem subject to the wave equation. ESAIM Math. Model. Numer. Anal., 55:S969–S991, 2021. doi 
22 M. Lassas, L.O., P. Stefanov, and G. Uhlmann. The light ray transform on Lorentzian manifolds. Comm. Math. Phys., 377(2):1349–1379, 2020. doi 
23 A. Feizmohammadi and L.O. An inverse problem for a semi-linear elliptic equation in Riemannian geometries. J. Differential Equations, 269(6):4683–4719, 2020. doi 
24 E. Burman, A. Feizmohammadi, and L.O. A finite element data assimilation method for the wave equation. Math. Comp., 89(324):1681–1709, 2020. doi 
25 E. Burman, M. Nechita, and L.O. A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime. Numer. Math., 144(3):451–477, 2020. doi 
26 E. Burman, A. Feizmohammadi, and L.O. A fully discrete numerical control method for the wave equation. SIAM J. Control Optim., 58(3):1519–1546, 2020. doi 
27 C. I. Cârstea, G. Nakamura, and L.O. Uniqueness for the inverse boundary value problem of piecewise homogeneous anisotropic elasticity in the time domain. Trans. Amer. Math. Soc., 373(5):3423–3443, 2020. doi 
28 Y. Kian, M. Morancey, and L.O. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Math. Control Relat. Fields, 9(2):289–312, 2019. doi 
29 Y. Kian, Y. Kurylev, M. Lassas, and L.O. Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets. J. Differential Equations, 267(4):2210–2238, 2019. doi 
30 Y. Kian and L.O. Recovery of time-dependent coefficient on Riemannian manifold for hyperbolic equations. Int. Math. Res. Not. IMRN, (16):5087–5126, 2019. doi 
31 J. Korpela, M. Lassas, and L.O. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Probl. Imaging, 13(3):575–596, 2019. doi 
32 E. Burman, M. Nechita, and L.O. Unique continuation for the Helmholtz equation using stabilized finite element methods. J. Math. Pures Appl. (9), 129:1–22, 2019. doi 
33 E. Burman, M. G. Larson, and L.O. Primal-dual mixed finite element methods for the elliptic Cauchy problem. SIAM J. Numer. Anal., 56(6):3480–3509, 2018. doi 
34 E. Burman and L.O. Data assimilation for the heat equation using stabilized finite element methods. Numer. Math., 139(3):505–528, 2018. doi 
35 M. Lassas, L.O., P. Stefanov, and G. Uhlmann. On the inverse problem of finding cosmic strings and other topological defects. Comm. Math. Phys., 357(2):569–595, 2018. doi 
36 E. Burman, J. Ish-Horowicz, and L.O. Fully discrete finite element data assimilation method for the heat equation. ESAIM Math. Model. Numer. Anal., 52(5):2065–2082, 2018. doi 
37 Y. Kian, L.O., E. Soccorsi, and M. Yamamoto. Global uniqueness in an inverse problem for time fractional diffusion equations. J. Differential Equations, 264(2):1146–1170, 2018. doi 
38 M. V. de Hoop, P. Kepley, and L.O. Recovery of a smooth metric via wave field and coordinate transformation reconstruction. SIAM J. Appl. Math., 78(4):1931–1953, 2018. doi 
39 M. V. de Hoop, P. Kepley, and L.O. An exact redatuming procedure for the inverse boundary value problem for the wave equation. SIAM J. Appl. Math., 78(1):171–192, 2018. doi 
40 T. Helin, M. Lassas, L.O., and T. Saksala. Correlation based passive imaging with a white noise source. J. Math. Pures Appl., 116:132–160, 2018. doi 
41 Y. Kurylev, L.O., and G. P. Paternain. Inverse problems for the connection Laplacian. J. Differential Geom., 110(3):457–494, 2018. doi 
42 M. V. de Hoop, L.O., and J. Tittelfitz. Uniqueness for a seismic inverse source problem modeling a subsonic rupture. Comm. Partial Differential Equations, 41(12):1895–1917, 2016. doi 
43 M. V. de Hoop, P. Kepley, and L.O. On the construction of virtual interior point source travel time distances from the hyperbolic Neumann-to-Dirichlet map. SIAM J. Appl. Math., 76(2):805–825, 2016. doi 
44 J. Korpela, M. Lassas, and L.O. Regularization strategy for an inverse problem for a 1+1 dimensional wave equation. Inverse Problems, 32(6):065001, 24, 2016. doi 
45 S. Liu and L.O. A Lipschitz stable reconstruction formula for the inverse problem for the wave equation. Trans. Amer. Math. Soc., 368(1):319–335, 2016. doi 
46 M. Lassas, L.O., and Y. Yang. Determination of the spacetime from local time measurements. Math. Ann., 365(1-2):271–307, 2016. doi 
47 O. Chervova and L.O. Time reversal method with stabilizing boundary conditions for photoacoustic tomography. Inverse Problems, 32(12):125004, 16, 2016. doi 
48 T. Helin, M. Lassas, and L.O. Inverse problem for the wave equation with a white noise source. Comm. Math. Phys., 332(3):933–953, 2014. doi 
49 M. Lassas and L.O. Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets. Duke Math. J., 163(6):1071–1103, 2014. doi 
50 L.O. and G. Uhlmann. Photoacoustic and thermoacoustic tomography with an uncertain wave speed. Math. Res. Lett., 21(5):1199–1214, 2014. doi 
51 L.O. Solving an inverse obstacle problem for the wave equation by using the boundary control method. Inverse Problems, 29(3):035004, 12, 2013. doi 
52 L.O. Inverse obstacle problem for the non-stationary wave equation with an unknown background. Comm. Partial Differential Equations, 38(9):1492–1518, 2013. doi 
53 T. Helin, M. Lassas, and L.O. An inverse problem for the wave equation with one measurement and the pseudorandom source. Anal. PDE, 5(5):887–912, 2012. doi 
54 L.O. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Probl. Imaging, 5(3):731–744, 2011. doi 
55 M. Lassas and L.O. An inverse problem for a wave equation with sources and observations on disjoint sets. Inverse Problems, 26(8):085012, 19, 2010. doi