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Motivation
Let Ω ⊂ R

n,

u(x , t) satisfy a wave equation in Ω× R

Inverse problem:

Can we determine the coefficients of the wave equation, i.e.,
physical model in Ω by observing

u(x , t) near ∂Ω ×R

for all possible solutions u(x , t)?



The inverse problem has no unique solution as

◮ We can change definition of x-coordinate: Let

v(x , t) = u(φ(x), t)

where

φ : Ω → Ω, φ|∂Ω = id

◮ We can change scale of u-coordinate: Let

w(x , t) = κ(x)u(x , t)

where κ(x) > 0.

All functions u, v and w model the same physical process.



Let us consider Ω as Riemannian manifold

dg (x , y) = travel time between x and y .

Let us identify all isometric Riemannian manifolds, that is, we ask
following question

Do the boundary measurements determine uniquely the isometry
type of the Riemannian manifold?



Setting of the problem in different cases

Let (M, g) be a Riemannian manifold. Let us consider the wave
equation

utt(x , t) + Au(x , t) = 0, in M × R+,

u|t=0 = 0, ut |t=0 = 0,

u|∂M×R+ = f

where M is a n-dimensional manifold and local coordinates

Au = −
n∑

j ,k=1

ajk ∂2u

∂x i∂x j
+

n∑

j=1

bj ∂u

∂x j
+ cu,

where ajk , bj , c are real, smooth, ajk(x) = g jk(x). We write below
A = a(x ,D) = −∆g + P + q.
In addition ...



Assume that there is dV = m(x)dVg such that A is selfadjoint in
L2(M, dV ) with

D(A) = H2(M) ∩ H1
0 (M).

Then we can write

Au = −m−1divg (m gradgu) + qu.



Let u satisfy the wave equation on a manifold (M, g),

utt + a(x ,D)u = 0.

Then the gauge transformation of u,

w(x , t) = κ(x)u(x , t)

satisfy

wtt + aκ(x ,D)w = 0,

where

aκ(x ,D)w = κa(x ,D)(κ−1 w)

We say that the gauge equivalence class of a(x ,D) is

[a(x ,D)] = {aκ(x ,D) : κ > 0}

Can the equivalence class be uniquely determined?



Invariant inverse problem

The Dirichlet-to-Robin map is

Λ : u|∂M×R+ 7→ (∂νu + σu)|∂M×R+ .

Dynamical inverse problem:

Let ∂M and the map Λ be given. Can we determine

(M, g) and [A(x ,D)]?



Energy flux through boundary The energy of the wave at time t
is

E (u, t) =

∫

M

(
|∂tu(t)|2 + |Grad u(t)|2g + q|u(t)|2

)
dV +

+

∫

∂M

σ|u(t)|2dS .

For h = u|∂M×R+ ∈ C∞
0 (∂M × R+) let

Π(h) = lim
t→∞

E (u, t).

Inverse problem for energy flux:

Let ∂M and map Π be given. Can we determine

(M, g) and [A(x ,D)]?



Inverse boundary spectral problem:
Operator A has in L2(M, dV ) orthonormal eigenfunctions ϕj ,

(A − λj )ϕj = 0,

ϕj |∂M = 0.

Let boundary spectral data

{∂M, λj , ∂νϕj |∂M , j = 1, 2, . . . }

be given. Can we determine

(M, g) and [A(x ,D)]?



◮ Let κ(x) > 0 be smooth and define Gκu = κ u,

Aκ = κAκ−1, uκ = κ u,

dVκ = κ−2dV , σκ = σκ + κ−1∂νκ.

Then (∂ν + σκ)uκ = Gκ(∂ν + σ)u and

∫

M

u ·Au dV =

∫

M

uκ ·Aκuκ dVκ

◮ The Dirichlet-to-Neumann map is the same for all operators in
the gauge equivalence class [A(x ,D)] of A(x ,D). Then there
is a unique Schrödinger operator

−∆g + q ∈ [A(x ,D)].

Because of this we next restrict ourselves to the case
A = −∆g + q.



Setting of the problem for the Schrödinger equation
Denote by

uf = uf (x , t)

the solutions of

utt −∆gu + qu = 0 on M × R+,

u|∂M×R+ = f ,

u|t=0 = 0, ut |t=0 = 0,

where ν is unit interior normal of ∂M. Define

ΛT f = (∂ν + σ)uf |∂M×(0,T ).

We denote Λ = Λ∞. Assume that we are given the boundary data
(∂M, g∂M ,Λ), where g∂M is the metric on ∂M.



Results on the problem:

◮ First global result for ∆+ q in R
n, by using exponentially

growing solutions, Nachman-Sylvester-Uhlmann ’88, Novikov
’88.

◮ c(x)2∆ in R
n by boundary control method, Belishev ’87 ,

Belishev-Kurylev ’87, using the local controllability by Tataru
’95.

◮ ∆g on manifold, Belishev-Kurylev ’92.

◮ Equivalence of above inverse problems
Katchalov-Kurylev-L.-Mandache 2004

◮ Maxwell’s equations Kurylev-L.-Somersalo 2006.

◮ Dirac system Kurylev-L. 2009.

◮ Reconstruction based on iterated time reversal
Bingham-Kurylev-L.-Siltanen 2007.

Next we present the reconstruction of (M, g) from the boundary
data using the geometric version of the Belishev-Kurylev-Tataru
method.



Direct problem: If u = uf (x , t) satisfies

utt −∆gu + qu = 0 on M × R+,

u|∂M×R+ = f ,

u|t=0 = 0, ut |t=0 = 0,

then (Lasiesca-Lions-Triggiani 1986) U : f 7→ u is a bounded map

U : L2(∂M × (0,T )) → C ([0,T ]; L2(M)),

U : H1
0 (∂M × (0,T )) → C ([0,T ];H1(M)),

‖∂νu|∂M×(0,T )‖L2 ≤ C‖f ‖H1

0
(∂M×(0,T )).

Sometimes below we omit the x-variable and denote
uf (t) = uf ( · , t) ∈ C ([0,T ]; L2(M)).



Blagovestchenskii identity

Lemma
Let f , h ∈ C∞

0 (∂M × [0, 2T ]). Then

∫

M

uf (x ,T )uh(x ,T ) dVg (x) =

∫

[0,2T ]2

∫

∂M

J(t, s)
[
f (t)(Λ2Th)(s)− (Λ2T f )(t)h(s)

]
dSg (x)dtds,

where J(t, s) = 1
2
χL(s, t) and χL being the characteristic function

of the triangle

L = {(s, t) ∈ R+ × R+ : t + s ≤ 2T , s < t}.



Proof. Let w(t, s) =
∫
M

uf (t)uh(s) dVg . Integrating by parts, we
see that

(∂2
t − ∂2

s )w(t, s) = −
∫

M

[
Auf (t)uh(s)− uf (t)Auh(s)

]
dVg (x)

= −
∫

∂M

[
(∂ν + σ)uf (t)uh(s)− uf (t)(∂ν + σ)uh(s)

]
dSg

= −
∫

∂M

[
Λf (t) h(s)− f (t) Λh(s)

]
dSg .

Moreover,

w |t=0 = w |s=0 = 0, ∂tw |t=0 = ∂sw |s=0 = 0.

Thus we can find w(s, t) by solving a wave equation with known
initial data and right side. �



Domains of influence
Let Γ ⊂ ∂M be a non-empty open set. We denote by
L2(Γ× [0,T ]) the subspace of L2(∂M × [0,T ]) that consists of the
functions f with supp (f ) ⊂ Γ× [0,T ].

Definition
The subset M(Γ, τ) ⊂ M, τ > 0,

M(Γ, τ) = {x ∈ M : d(x , Γ) < τ}

is called the domain of influence of Γ at time τ .

Observe that we use open domains of influence. By Oksanen
(2011), M(Γ, τ) \ M(Γ, τ) has measure zero.

τ

Γ



Lemma
Let Γ ⊂ ∂M be open and f ∈ L2(∂M × [0,T ]),
supp (f ) ⊂ Γ× (0,T ]. Then

supp (uf (τ)) ⊂ M(Γ, τ).

Proof. The result follows finite velocity of wave propagation. �
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We denote by L2(Ω), Ω ⊂ M, the subspace of L2(M), which
consists of all functions f ∈ L2(M) that are equal to zero in M \ Ω.
We prove following Tataru-type controllability type theorem.

Theorem
Let τ > 0. The linear subspace,

{uf (τ) ∈ L2(M(Γ, τ)) : f ∈ C∞
0 (Γ× (0, τ))},

is dense in L2(M(Γ, τ)).



Proof. Let ψ ∈ L2(M(Γ, τ)) be such that

〈uf (· , τ), ψ〉L2(M) = 0

for all f ∈ C∞
0 (Γ× [0, τ ]).

To prove the claim, it is sufficient to show that ψ = 0.



We consider the wave equation,

(∂2
t −∆g + q)e = 0, in M × (0, τ),

e|∂M×(0,τ) = 0, e|t=τ = 0, ∂te|t=τ = ψ.

Integrating by parts we obtain

0 =

∫

M×(0,τ)
[uf (∂2

t −∆g + q)e − ((∂2
t −∆g + q)uf )e] dVg dt

=

∫

M

uf (τ)ψ dVg +

∫

∂M×(0,τ)
f ∂νe dSg dt

=

∫

∂M×(0,τ)
f ∂νe dSg dt,

for all f ∈ C∞
0 (Γ× [0, τ ]).

This yields that the Cauchy data of e vanish on Γ× (0, τ).



Recall that e(x , τ) = 0. We continue e onto t ∈ [τ, 2τ ] as

E (x , t) =

{
e(x , t), for t ≤ τ,
−e(x , 2τ − t), for t > τ.

Then E ∈ C ([0, 2τ ];H1(M)) ∩ C 1([0, 2τ ]; L2(M)) and

(∂2
t −∆g + q)E = 0 in M × (0, τ).

The Cauchy data of E vanish on Γ× ([0, 2τ ] \ {τ}). Since
∂νE ∈ L2(∂M × (0, 2τ)), we see that

E |Γ×(0,2τ) = 0, ∂νE |Γ×(0,2τ) = 0.

Then ψ = 0 by the following Tataru-Holmgren-John theorem.



Theorem
Let u be a solution in M × (0, 2τ) of the wave equation

(∂2
t −∆g + q)u = 0 in M × (0, 2τ).

such that for an open set Γ ⊂ ∂M,

u|Γ×[0,2τ ] = 0, ∂νu|Γ×(0,2τ) = 0.

Then, at t = τ , the function u and its derivative ∂tu vanish in the
domain of influence of Γ,

u(x , τ) = 0, ∂tu(x , τ) = 0 for x ∈ M(Γ, τ).
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Wave basis

The set

{uf (τ) ∈ L2(M(Γ, τ)) : f ∈ C∞
0 (Γ× (0, τ))}

is dense in L2(M(Γ, τ)). Thus, there are functions fj , j = 1, 2, . . . ,
such that {ufj (τ)}∞j=1 form an orthonormal basis in the space

L2(M(Γ, τ)).
We will construct such functions fj ∈ C∞

0 (Γ× (0, τ)) from the
boundary data. The corresponding basis {ufj (τ)}∞j=1 is called the
wave basis.

τ

Γ



Lemma
Let τ > 0. Given the boundary data it is possible to construct
boundary sources fj ∈ C∞

0 (Γ× (0, τ)) such that

vj = ufj (τ), j = 1, 2, . . . ,

form an orthonormal basis of L2(M(Γ, τ)).

τ

Γ



Proof. Let {hj}∞j=1 ⊂ C∞
0 (Γ× (0, τ)) be a complete set in

L2(Γ× [0, τ ]).
We can compute that inner products

cjk = 〈uhj (τ), uhk (τ)〉L2(M).

Next we use the Gram-Schmidt orthogonalization procedure to
construct fj . More precisely, we define fj ∈ C∞

0 (Γ× (0, τ))
recursively by

gj = hj −
j−1∑

k=1

〈uhj (τ), ufk (τ)〉L2(M)fk ,

fj =
gj

〈ugj (τ), ugj (τ)〉1/2
L2(M)

.

When gj = 0, we remove the corresponding hj from the original
sequence and continue the procedure. �



Since {hj} ⊂ C∞
0 (Γ× (0, τ)), we have fj ∈ C∞

0 (Γ× (0, τ)). Thus
ufj (τ) ∈ C∞(M).

Let T > diam (M). Then M(∂M,T ) = M, and the corresponding
wave basis

{ufj ( · ,T )}∞j=1

is the orthonormal basis in L2(M). Next we reserve the notation
ηj ∈ C∞(∂M × (0,T )) for the functions fj for which

{uηj ( · ,T )}∞j=1 is an orthonormal basis of L2(M).

We denote below ψj(x) = uηj (x ,T ).



Projectors

Denote by PΓ,τ the orthogonal projector in L2(M) onto the space
L2(M(Γ, τ)),

PΓ,τ : L2(M) → L2(M(Γ, τ)),

(PΓ,τa)(x) = χM(Γ,τ)(x)a(x),

where χM(Γ,τ) is the characteristic function of the domain of
influence M(Γ, τ),

χM(Γ,τ)(x) =

{
1, for x ∈ M(Γ, τ),
0, for x 6∈ M(Γ, τ).



Lemma
Let f , h ∈ C∞

0 (Γ× (0, τ)) and Γ ⊂ ∂M be an open set. Then,
given the the map Λ, it is possible to find the inner product

〈PΓ,τu
f (t), uh(s)〉L2(M) =

∫

M(Γ,τ)
uf (x , t) uh(x , s) dVg

for any 0 ≤ t, s, τ ≤ T.

τ

Γ



Proof. We can find fj ∈ C∞
0 (Γ× (0, τ)) such that vj = ufj (τ) is

an orthonormal basis in L2(M(Γ, τ)),
Then, for any a ∈ L2(M(Γ, τ)),

a =
∞∑

j=1

〈a, vj 〉L2(M) vj .

As 〈PΓ,τu
f (t), vj 〉L2(M) = 〈uf (t), vj 〉L2(M), we have

〈PΓ,τu
f (t), uh(s)〉L2(M) =

∞∑

j=1

〈uf (t), vj 〉L2(M)〈uh(s), vj 〉L2(M).

Here 〈uf (t), vj 〉L2(M) and 〈uh(s), vj 〉L2(M) can be computed using
boundary data. �



Denote by M(y , τ) the domain of influence of a point y ∈ ∂M,

M(y , τ) = {x ∈ M : d(x , y) ≤ τ},

and by Py ,τ the orthoprojector

Py ,τ : L2(M) → L2(M(y , τ)).



Corollary

Let f , h ∈ L2(∂M × [0,T ]) and y ∈ ∂M be given. Then the
boundary data determine the inner product

〈Py ,τu
f (t), uh(s)〉L2(M) =

∫

M(y ,τ)
uf (x , t) uh(x , s) dVg

for any 0 ≤ t, s, τ ≤ T.
In particular, we can find 〈Py ,τu

ηk (T ), uηl (T )〉L2(M) where

{uηk (τ)}∞k=1 form an orthonormal basis in L2(M).



Proof. Let Γl , l = 1, 2, . . . be open sets such that

Γl+1 ⊂ Γl ,

∞⋂

l=1

Γl = {y}.

Then,
lim

l→∞
χM(Γl ,τ)(x) = χM(y ,τ)(x)

pointwise. By the Lebesgue dominated convergence theorem,

lim
l→∞

〈PΓl ,τu
f (t), uh(s)〉L2(M) = 〈Py ,τu

f (t), uh(s)〉L2(M).

�



Corollary

Let yj ∈ ∂M, τj > 0, k , l ∈ Z+. Then the boundary data determine
the inner product

〈QNuηk (T ), uηl (T )〉L2(M)

where

QN =
N∏

j=1

Pyj ,τj

and {uηj (τ)}∞j=1 form an orthonormal basis in L2(M).



Proof. For N = 1 the claim follows from Corollary 8. Assume now
that it is valid for N − 1.
We can write for f = ηp

QN−1u
f (s) =

∞∑

k=1

〈QN−1u
f (s), uηk (T )〉L2(M)u

ηk (T )

and

〈QNuf (T ), uηl (T )〉L2(M) = 〈PyN ,τNQN−1u
f (T ), uηl (T )〉L2(M)

=

∞∑

k=1

〈PyN ,τNuηk (T ), uηl (T )〉L2(M)〈QN−1u
f (s), uηk (T )〉L2(M).

Thus we find the matrix of QN in the basis (uηj (T ))∞j=1 of L2(M).
From this the claim follows by induction. �



Observations:

◮ We can compute the Gram matrix [qjk ]
∞
j ,k=1,

qjk = 〈Quηj (T ), uηk (T )〉L2(M)

where {uηj (T )}∞j=1 is an orthonormal basis in L2(M) and

Q =




N∏

j=1

Pyj ,τ
+
j







N∏

j=1

(1 − Pyj ,τ
−

j
)




◮ The projector Q : L2(M) → L2(M) is

Qv(x) = χI (x) v(x), I =
N⋂

j=1

(M(yj , τ
+
j ) \ M(yj , τ

−
j )).



◮ The projector Q : L2(M) → L2(M) is

Qv(x) = χI (x) v(x), I =

N⋂

j=1

(M(yj , τ
+
j ) \ M(yj , τ

−
j )).

◮ The projector Q : L2(M) → L2(M) vanishes, that is, its Gram
matrix is zero if and only if

m(I ) = 0, I =

N⋂

j=1

(M(yj , τ
+
j ) \ M(yj , τ

−
j )).

Thus we can check using boundary data if m(I ) = 0.



y2

y1

y3
N⋂

j=1

(M(yj , τ
+
j ) \ M(yj , τ

−
j ))



Boundary distance functions. For x ∈ M define

rx(y) = d(x , y), y ∈ ∂M.

Let

R : M → C (∂M), R(x) = rx .

Next we consider R(M) as a submanifold on C (∂M).

Theorem
Using boundary data we can determine

R(M) = {rx ∈ C (∂M) : x ∈ M}.

Thus the constructed set R(M) can be identified with M.



By previous observations, it is enough to prove the following result:

Lemma
Let {zn}∞n=1 be a dense set on ∂M. Then r(·) ∈ C (∂M) lies in
R(M) if and only if, for any N > 0,

IN =
N⋂

n=1

M(zn, r(zn) +
1

N
) ∩

N⋂

n=1

(M(zn, r(zn)−
1

N
))c .

satisfies

m(IN) 6= 0 (1)

Moreover, condition (1) can be verified using the boundary data.
Thus boundary data determines R(M) ⊂ C (∂M).



Proof “If”–part. Assume that r(·) = rx(·) with some x ∈ M.
Consider a ball B1/N(x). Then,

B1/N(x) ⊂ M(z , r(z) +
1

N
) \ M(z , r(z)− 1

N
).

Thus if B1/N(x) ⊂ IN and m(IN) 6= 0.



”Only if”–part. Assume that m(IN) 6= 0. Then there exists

xN ∈
N⋂

n=1

(
M(zn, r(zn) +

1

N
) \ M(zn, r(zn)−

1

N
)

)
.

Since M is compact, we can choose a subsequence of xN (denoted
also by xN), so that there exists a limit

x = lim
n→∞

xN .

By continuity of the distance function, it follows from (2) that

d(x , zn) = r(zn), n = 1, 2, . . . .

Since {zn} are dense in ∂M, we see that r(z) = d(x , z) for all
z ∈ ∂M. Thus r = rx . �
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Visualization how to check if r( · ) is in R(M).
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τ1

τ2 τ3

m(
N⋂
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(M(yj , τ
+
j ) \ M(yj , τ

−
j ))) = 0?



Reconstruction of (M, g) from R(M).

Next, we prove Kurylev’s theorem:

Theorem
The set R(M) has a Riemannian manifold structure which is
isometric to (M, g). Moreover, when C (∂M) and R(M) are given,
this Riemannian manifold structure is uniquely determined.



Recall that for x ∈ M

rx(z) = d(x , z), z ∈ ∂M

and that

R : M → C (∂M), R(x) = rx .

Next we consider R(M) as a submanifold on C (∂M).

r

r

r

y

x

z



By triangular inequality we have

‖rx − ry‖C(∂M) ≤ d(x , y), x , y ∈ M.

Example: Consider that case when all geodesics of a compact
manifold (M, g) are the shortest curves between their endpoints
and all geodesics can be continued to geodesics that hit the
boundary. Then for any x , y ∈ M the geodesic from x to y hits
later to z ∈ ∂M. Then

‖rx − ry‖C(∂M) ≥ |rx(z)− ry(z)| = d(x , y)

Then (M, d) is isometric to (R(M), ‖ · ‖∞).



Lemma
The set R(M) is homeomorphic to (M, g).

Proof.
Recall the following simple result from topology:

Assume that X and Y are Hausdorff spaces, X is compact and
F : X → Y is a continuous, bijective map from X to Y . Then F is
a homeomorphism.



Clearly, R : M → R(M) is surjective and continuous.
Next we prove that it is one-to-one. Assume that rx(·) = ry (·).
Denote by z0 any point where

d(x , ∂M) = min
z∈∂M

rx(z) = rx(z0) or

d(y , ∂M) = min
z∈∂M

ry(z) = ry (z0).

Then z0 is a nearest boundary point to x implying that the shortest
geodesic from z0 to x is normal to ∂M. The same is true for y with
the same point z0.
Thus x = γz0

(s) = y for s = d(x , z0). �



Boundary normal coordinates.

Consider a normal geodesic γz(s) = γz ,ν(s) starting from z . For
small s,

d(γz(s), ∂M) = s, (2)

and z is the unique nearest point to γz(s) on ∂M. Let τ(z) be the
largest value for which (2) is valid. Then for s > τ(z),

d(γz(s), ∂M) < s,

and z is no more the nearest boundary point.



τ(z) ∈ C (∂M) is the cut locus distance function,

τ(z) = sup{s > 0; d(γz(s), ∂M) = s}.

The cut locus is

ω = {xz : z ∈ ∂M, xz = γz(τ(z))}.

In domain M \ ω we can use the ∂M × [0,∞) valued coordinates

x 7→ (z(x), t(x)),

where z(x) ∈ ∂M is the unique nearest point to x and
t(x) = d(x , ∂M). More precisely, when x0 ∈ M \ ω and W ⊂ ∂M
and Y : W → R

n−1 are some local coordinates near z(x0)„
x 7→ (Y (z(x)), t(x)) are the boundary normal coordinates near x0.



We will now use boundary normal coordinates to introduce a
differential structure and metric tensor, g

R
, on R(M) to have an

isometry
R : (M, g) → (R(M), g

R
).

We will concentrate mainly on doing so for R(M) \ R(ω).



First, observe that we can identify those r = rx ∈ R(M) with
x ∈ M \ ω.

Indeed, r = rx with x = γz(s), s < τ(z) if and only if

i. r(·) has a unique global minimum at some point z ∈ ∂M.

ii. there is r̃ ∈ R(M) having a unique global minimum at the same
z and r(z) < r̃(z).



A differential structure on R(M \ ω) can be defined by introducing
coordinates near each r0 ∈ R(M \ ω).
In a sufficiently small neighbourhood V ⊂ R(M) of r0 the
coordinates

r 7→ (Z (r),T (r)) = (Y (argmin
z∈∂M

r), min
z∈∂M

r)

are well defined. The

x 7→ (Z (rx),T (rx))

coincides with the boundary normal coordinates
x 7→ (Y (z(x)), t(x)) on (M, g).
These coordinate determine the differential structure on R(M \ ω).



Construction the differential structure on R(M) near R(ω).
Let z0 ∈ ∂M and t0 = τ(z0). The first conjugate point γz0,ν(t1) on
γz0,ν satisfies t1 > t0.
Let x0 = γz0,ν(t0). Then if z1, . . . , zn−1 ∈ ∂M are such points near
z0 that wj = Grad d( · , zj )|x0

, j = 0, 1, 2, . . . , n − 1 are linearly
independent, there is a small neighbourhood V ⊂ R(M) of
r0 = R(x0) in which the coordinates

r 7→ (r(zj))
n−1
j=0

are well defined. The

x 7→ (r(zj ))
n−1
j=0

coincides with the distance normal coordinates x 7→ (d(x , zj ))
n−1
j=0

on (M, g).
These coordinate determine the differential structure near R(ω).



Construction of the metric g
R

on R(M).

Let r0 ∈ R(M \ ω), V ⊂ R(M) be its neighbourhood, and
X : V → U ⊂ R

n be local coordinates, X (r0) = 0

For z ∈ ∂M we define an evaluation function

Kz : V → R, Kz(r) = r(z).

The function Ez = Kz ◦ X−1 : U → R satisfies

Ez(y) := d(z ,X−1(y)), y ∈ U.



Consider the function Ez(y) as a function of y with a fixed z .
The differential dEz at point 0 is a covector in T ∗

0 U.
Since the gradient of a distance function has length one, we see
that

‖dEz‖2
g
R
:= (g

R
)jk
∂Ez

∂y j

∂Ez

∂yk
= 1, j , k = 1, . . . , n.

Varying z ∈ ∂M we obtain a set of covectors dEz(0) in the unit ball
of (T ∗

0 U, gR) which contains an open set.

This determines uniquely the tensor g
R
.



Hence we have proven the following result (originally proven by
Belishev-Kurylev 1992).

Theorem
The boundary data (∂M,Λ) determine the manifold (M, g) upto
isometry.

Also the potential q(x) of the operator −∆g + q can be uniquely
determined.



Alternative point of view: Time reversal

Let us next consider the Neumann problem: We denote by

uf = uf (x , t)

the solutions of

utt −∆gu + qu = 0 on M × R+,

−∂νu|∂M×R+ = f ,

u|t=0 = 0, ut |t=0 = 0,

where ν is unit interior normal of ∂M. Define

Λ
(N)
T f = uf |∂M×(0,T ).

We denote Λ
(N)
T = Λ

(N)
∞ . Assume that we are given the boundary

data (∂M,Λ(N)).



Direct problem: If u = uf (x , t) satisfies

utt −∆gu + qu = 0 on M × R+,

−∂νu|∂M×R+ = f ,

u|t=0 = 0, ut |t=0 = 0,

then ( Lasieska-Triggiani 1990) U : f 7→ u is a bounded map

U : L2(∂M × (0,T )) → C ([0,T ];Hα(M)), α < 3/5.

We are interested in the case α = 0.



On formal level, the the previous algorithm is based on the
following task: Let f be given. Can we find h such that

uh(x ,T ) = χM(Γ,τ)(x)u
f (x ,T ).

This is equivalent of the minimization of

‖uf (T )− uh(T )‖L2(M) : h ∈ L2(Γ× [0, τ ]).

C
C
C
C
C
C
C

�
�
�
�
�
�
�

M(Γ, τ)



Generally, the minimization problem has no solution and is
ill-posed. We consider the regularized minimization problem

min
h∈L2(∂M×[0,2T ])

F (h, α)

where α ∈ (0, 1) and

F (h, α) = 〈K (Ph − f ),Ph − f 〉L2(∂M×[0,2T ],dSg ) + α‖h‖2
L2 .



Let us recall the Blagovestchenskii identity

∫

M

uf (x ,T )uh(x ,T ) dVg (x)

=

∫

[0,2T ]2

∫

∂M

J(t, s)[f (t)(Λ
(N)
2T h)(s)− (Λ

(N)
2T f )(t)h(s)]dSgdtds

=

∫

∂M×[0,2T ]
(Kf )(x , t)h(x , t) dSg (x)dt,

where J(t, s) = 1
2
χL(s, t) and

L = {(s, t) ∈ R+ × R+ : t + s ≤ 2T , s > t}.



Here

K = R2TΛ
(N)
2T R2T J − JΛ

(N)
2T ,

where
Rf (x , t) = f (x , 2T − t),

is the time reversal operator and

Jf (x , t) =
1

2

∫ min(2T−t,t)

0

f (x , s)ds,

is the time filter. Note that

(Λ
(N)
2T )∗ = R2TΛ

(N)
2T R2T as G (x , x ′, t ′ − t) = G (x ′, x ,−(t)− (−t ′)).

We also use the restriction operator

PB f (x , t) = χB(x , t)u(x , t),



The processed time reversal iteration is

F :=
1

ω
P(RΛ

(N)
2T RJ − JΛ

(N)
2T )f ,

an := Λ
(N)
2T (hn),

bn := Λ
(N)
2T (RJhn),

hn+1 := (1 − α

ω
)hn − 1

ω
(PRbn − PJan) + F ,

where f ∈ L2(∂M × [0, 2T ]) and α, ω > 0 are parameters. Iteration
starts at h0 = 0.



Theorem (Bingham-Kurylev-L.-Siltanen 2007)

Let Γ1 ⊂ ∂M, 0 ≤ T1 ≤ T, and B = Γ1 × [T − T1,T ]. Let
f ∈ L2(∂M × R+) and hn = hn(α) be defined by the processed
time reversal iteration. Then

h(α) = lim
n→∞

hn(α)

and the limits satisfy in L2(M)

lim
α→0

uh(α)(x ,T ) = χM(Γ1,T1)(x)u
f (x ,T ).

τ

Γ

M(Γ, τ) = {x ∈ M : d(x , Γ) ≤ τ}.



Proof. The minimization problem

min
h∈L2(∂M×[0,2T ])

F (h, α)

with α ∈ (0, 1) and

F (h, α) = 〈K (Ph − f ),Ph − f 〉L2(∂M×[0,2T ],dSg )

+α‖h‖2
L2

leads to a linear equation

(PKP + α)h = PKf .

This can be solved using iteration. �



Corollary

Assume we are given the boundary ∂M and the response operator
Λ(N). Then using the the processed time reversal iteration we can
find constructively the manifold (M, g) upto an isometry and on it
the operator A uniquely.



x

z

y

τ

s T − ε

x

z

y

τ

s T − ε

Let x = γz ,ν(s). The distance dist(x , z) is the infimum of all τ that
satisfy the condition

(A) The set

(M(z , s) ∩ M(y , τ)) \ M(∂M, s − ε)

is non-empty for all ε > 0.



Denote A1 = M(z , s), A2 = M(y , τ)), and B = M(∂M, s − ε) and
f ∈ L2(∂M × [0,T ]),

v = χA1∩A2
uf ( · ,T ),

= (χA1
+ χA2

− χA1∪A2
) uf ( · ,T ),

w = χ(A1∩A2)\B uf ( · ,T )

= v − χBv .

Using time reversal we can find for given τ > 0 if there exists f
such that where w is non-vanishing. Taking the infimum of such τ
we find dist(x , z).
Thus R(M) can be found using modified time-reversal method.
This determines (M, g).



How to solve inverse spectral problems?

Operator A = −∆g + q has in L2(M, dVg ) orthonormal
eigenfunctions ϕj ,

(−∆g + q − λj)ϕj = 0,

∂νϕj |∂M = 0.

Let boundary spectral data

{∂M, λj , ϕj |∂M , j = 1, 2, . . . }

be given. Can we determine

(M, g) and q?

Main points of previous construction for wave equation were:
-Control theory
-Computing inner products 〈uf (T ), uh(T )〉L2(M) using boundary
data.



We consider the Fourier coefficients of uf (x , t) w.r.t. basis ϕk ,

uf (x , t) =

∞∑

k=1

uf
k(t)ϕk(x), uf

k(t) = 〈uf (t), ϕk〉L2(M).

Lemma
Fourier coefficients can be written in terms of boundary spectral
data as

uf
k(t) =

∫ t

0

∫

∂M

f (z , t ′)sk(t − t ′)ϕk(z) dSg (z)dt ′. (3)

Here

sk(t) =





sin
√
λk t√
λk

, λk > 0,

t, λk = 0,
sinh

√
|λk |t√

|λk |
, λk < 0.



Proof. We see that uf (x , t)|t=0 = 0 and ∂tu
f
k(t)|t=0 = 0.

Therefore,

d2

dt2
uf
k(t) =

∫

M

∂2
t uf (x , t)ϕk (x)dVg

=

∫

M

(
∆guf (x , t)− q(x)uf (x , t)

)
ϕk(x)dVg

= −
∫

∂M

(∂νu
f (x , t)ϕk (x)− uf (x , t)∂νϕk(x))dSg

−λk

∫

M

uf (x , t)ϕk(x)dVg

= −
∫

∂M

f (x , t)ϕk (x)dSg − λkuf
k(t).

Solving this ordinary differential equation with the initial conditions
uf
k(0) = ∂tu

f
k(0) = 0 we obtain the equation (3). �


