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Wave imaging and Riemannian geometry
Consider a body M ⊂ R3 where the wave speed is varying. Travel time of waves
between points determine a non-Euclidean metric

ds2 =
n∑

j ,k=1

gjk(x)dx jdxk , or with an isotropic wave speed, ds2 = c(x)−2dx2

The inverse problem for the linear wave equation is to determine the wave speed, or the
metric (gjk(x))nj ,k=1, from boundary measurements.

Figures by C. Ammon (Proc. SPIE. 2015)



Why more mathematics is needed in imaging?

Traditional algorithms in medical imaging based on ray tracing cause artifacts.
The ultrasound image taken during pregnancy (on left), has a mirror image artifact.
This led to a wrong diagnosis of an extra-uterine pregnancy.

By using wave equation such ghost images do not appear.

Figure: Malhotra et al., West J Emerg Med. 2014



Geometric inverse problem for a linear wave equation
Let (M, g) be a Riemannian manifold with boundary, dim(M) = n ≥ 2.
Let u(x , t) = uf (x , t) solve the wave equation

(∂2
t −∆g )u(x , t) = 0 on (x , t) ∈ M × R+,

∂νu(x , t)|∂M×R+ = f (x , t),

u|t=0 = 0, ∂tu|t=0 = 0,

where ν is the unit normal of the boundary ∂M and

∆gu =
n∑

j ,k=1

|g(x)|−1/2 ∂

∂x j
(|g(x)|1/2g jk(x)

∂

∂xk
u(x)).

The measurements on the boundary are modelled by the Neumann-to-Dirichlet map

Λf = uf (x , t)
∣∣
(x ,t)∈∂M×R+

.



Inverse problem: Let (M, g) be a Riemannian manifold with boundary.
Let the boundary ∂M and the map

Λ : ∂νu|∂M×R+ → u|∂M×R+

be given. Can we construct a manifold (M ′, g ′) that is isometric to (M, g)?

Example. Let M = R2 ×R+. Can we construct the metric tensor g in local coordinate
charts, or the wave speed function c(x), when the measurements are done on the
boundary?



Inverse problems for linear hyperbolic equations

1. Unique solvability of the inverse problem for (∂2
t − c(x)2∆)u = 0 in Ω ⊂ Rn was

proven by combining the boundary control method by Belishev 1987 and the
unique continuation theorem by Tataru 1995.

2. Belishev-Kurylev 1992: Spectral problem for ∆g on a manifold.
3. Burago-Ivanov-L.-Lu 2020: Stability of the reconstruction of a Riemannian

manifold from the boundary data.
4. Alexakis-Feizmohammadi-Oksanen 2022 (a recent breakthrough!):

Determination of the lower order terms in wave equation when the metric depends
on time and is close to the Euclidean metric.

All results 1-3 are based on Tataru’s unique continuation theorem and require that the
metric is time-independent.

Below, we will show how the non-linearity helps in solving inverse problems and consider
a time-depending metric and the new stability results.
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Can we determine the structure of the space-time when we observe wavefronts
produced by point sources?
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Inverse problem for point sources on a Riemannian manifold with boundary.
Assume that for all points x in M we know the boundary values of the wave produced
by a point source that goes off at x at a known time.
These data give us the boundary distance functions

rx(z) = distM(x , z), z ∈ ∂M for points x ∈ M.

Can we reconstruct (M, g) if we know ∂M and all boundary distance functions,
{rx ∈ C (∂M) : x ∈ M}?

When the times when the point sources goes off are unknown, a similar question for
distance difference function is studied in L.-Saksala 2020 and Ivanov 2021.



Reconstruction of the manifold from boundary distance functions
Assume that (M, g) is a compact Riemannian manifold with boundary.
Recall that rx(z) = distM(x , z), z ∈ ∂M.

Theorem (Kurylev 1997, Katcalov-Kurylev-L. 2001)
When ∂M and R(M) = {rx ∈ C (∂M) : x ∈ M} are given, we can uniquely determine
the topological and differentiable structures of M and the metric g , up to an isometry.
A manifold M is called simple if it is diffeomorphic to a Euclidean ball, has no
conjugate points, and the boundary is strictly convex.
For simple manifolds the map R : x → rx is an isometry, ‖rx − ry‖∞ = dM(x , y). Then,
R(M) is a submanifold of C (∂M) that is isometric to M.

Stability of the reconstruction is analyzed in [Fefferman-Ivanov-L.-Lu-Narayanan 2024].



Inverse problems in space-time: Passive measurements

Can we determine the structure of the space-time when we see light coming from
several point sources that vary in time?



Determination of the metric of the space-time

There may exist several light rays between two points (i.e., there are conjugate points
or caustics).
This causes difficulties in solving inverse problems in general space-times.

Figures: Einstein’s ring by R. Gavazzi and T. Treu and a light source behind a
wineglass by P. Doherty.



Inverse problem with passive observations

Passive imaging problem:
Assume that there are a large number of point sources in a subset U of a spacetime M.
Light from these point sources are observed in a set V .
Do these observations determine the structure of the space-time in U?

Inverse problem with passive observations

Next will formulate rigorously formulate the following result:

We do observations in a subset V of spacetime M.
The set U ⊂ M is unknown. U is as in the figure below.

Assume that U contains a dense set of point sources qj , j ∈ Z+.

If we observe in the set V the light coming from the every point qj ,
then we can determine the set U as a manifold.

Also, we can determine the metric g |U up to a scalar factor.

U

q

V

V

qxt

−→x



Definitions
Let (M, g) be a Lorentzian manifold, e.g. R4, g = −dt2 + dx2.

γx ,ξ(s) is a geodesic with the initial point (x , ξ)

ξ ∈ TxM is time-like if g(ξ, ξ) < 0,

ξ ∈ TxM is light-like if g(ξ, ξ) = 0, ξ 6= 0.

J+(p) = {x ∈ M| x is in causal future of p},
J−(p) = {x ∈ M| x is in causal past of p}.

(M, g) is globally hyperbolic if

there are no closed causal curves and

the set J+(p1) ∩ J−(p2) is compact for all p1, p2 ∈ M.

Then M can be represented as M = R× N.



We consider observations in an open set V ⊂ M. Assume that V is a union of time-like
curves µa : (−1, 1)→ M, a ∈ A ⊂ Rk . Let p1, p2 ∈ µa0 .
Let U ⊂ J−(p2) \ J−(p1) be an open, relatively compact set.

The observation time function Fq : A→ R for a point q ∈ U is
Fq(a) = min{s ∈ R : there is a future-directed light-like

geodesic from q to µa(s)}.
That is, Fq(a) is the first time when we observe on µa light that comes from q.

Inverse problem with passive observations

Next will formulate rigorously formulate the following result:

We do observations in a subset V of spacetime M.
The set U ⊂ M is unknown. U is as in the figure below.

Assume that U contains a dense set of point sources qj , j ∈ Z+.

If we observe in the set V the light coming from the every point qj ,
then we can determine the set U as a manifold.

Also, we can determine the metric g |U up to a scalar factor.

U

q

V

V

q

Theorem (Kurylev-L.-Uhlmann 2018)
Let (M, g) be a globally hyperbolic Lorentzian manifold of dimension n � 3.
Assume that µa(�1, 1) ⇢ M, a 2 A ⇢ Rk are time-like curves, V =

S
a2A µa is open,

and p1, p2 2 µa0 .
Let U ⇢ J�(p2) \ J�(p1) be a relatively compact open set.
Then (V , g |V ), µa, and the collection of the observation time functions,

{ Fq 2 C (A) | q 2 U}

determine the set U, up to a change of coordinates, and the conformal class of the
metric g in U.

1

2

V

µa

q

Theorem (Kurylev-L.-Uhlmann)
Let (M, g) be an open, globally hyperbolic Lorentzian manifold of
dimension n � 3. Assume that µa(�1, 1) ⇢ M, a 2 A ⇢ Rm are
time-like geodesic, V = [a2A µa is open, and p�, p+ 2 µa0 .
Let U ⇢ J�(p+) \ J�(p�) be a relatively compact open set.
Then (V , g |V ) and the collection of the light observation functions,

FU =

�
Fq : A ! R

���� q 2 U
�

,

determine the set U, up to a change of coordinates, and the
conformal class of the metric g in U.

U

q

V

V

qxt

−→x

p2

p1



Theorem (Kurylev-L.-Uhlmann 2018)
Let (M, g) be a globally hyperbolic Lorentzian manifold of dimension n ≥ 3. Assume
that µa(−1, 1) ⊂ M, a ∈ A ⊂ Rm are time-like paths, V = ∪a∈A µa is open, and
p1, p2 ∈ µa0 . Let U ⊂ J−(p2) \ J−(p1) be a relatively compact open set and U ′ ⊂ U be
dense. Then (V , g |V ) and the collection of the observation time functions,

{
Fq : A→ R

∣∣ q ∈ U ′
}
⊂ C (A),

determine the set U, up to a change of coordinates, and the conformal class of the
metric g in U.
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Let (M, g) be an open, globally hyperbolic Lorentzian manifold of
dimension n � 3. Assume that µa(�1, 1) ⇢ M, a 2 A ⇢ Rm are
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The imaging of the space-time is similar to triangulation used in map making.
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Non-linear wave equation in space-time
Let M = R× N be a Lorentzian manifold with the metric g , dim(M) = 1 + n, n ≥ 2.
Let m ≥ 2 and

�gu(x) + u(x)m = f (x), (x0, x1, . . . , xn) ∈ (−∞,T ]× N,

u(x) = 0 for t = x0 < 0,
where

�gu =
n∑

p,q=0

|det (g(x))|− 1
2
∂

∂xp

(
|det (g(x))| 12 gpq(x)

∂

∂xq
u(x)

)
.

where g = (gjk(x))nj ,k=0 and (g jk) = (gjk)−1.
An alternative model is

∂2

∂t2
u(t, y)− c(t, y)2∆u(t, y) + a(t, y)u(t, y)m = f (t, y), x = (t, y) ∈ R1+n.

This corresponds to the Lorentzian metric g = −dt2 +
∑n

j=1 c(t, y)−2(dy j)2



Theorem (Kurylev-L.-Uhlmann 2018 and L.-Uhlmann-Wang 2017)
Let (M, g) be a globally hyperbolic Lorentzian manifold, dim(M) = 4,
µ ⊂ M be a time-like curve, p1, p2 ∈ µ and V be a neighbourhood of µ.
Let LV : f 7→ u|V be the source-to-solution map for

�gu + u2 = f in (−∞,T )× N ⊂ M,

u = 0 in t = x0 < 0.

LV : f → u|V is defined for small sources f , supp(f ) ⊂ V . Then V and LV determine
W = J+(p1) ∩ J−(p2) and the metric g |W on it (up to change of coordinates).

Theorem (Kurylev-L.-Uhlmann 2015)
Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension (1 + 3). Let µ be a time-like path containing p− and
p+, V ⊂ M be a neighborhood of µ, and a(x) be a nowhere
vanishing function. Consider the non-linear wave equation

!gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T ) × N,

u = 0 in (−∞, 0) × N,

where supp(f ) ⊂ V . Then (V , g |V ) and the measurement operator
LV : f %→ u|V determine the set J+(p−) ∩ J−(p+) ⊂ M, up to a
change of coordinates, and the conformal class of g in the set
J+(p−) ∩ J−(p+).

p2

p1
µ

V
W

Using non-linear interaction of waves
we can solve inverse problems
for non-linear equations
that are unsolved for linear equations.xt

−→x



For the equation �gu + u2 = f in a 4-dimensional space-time, the fourth order non-linear

interaction produces artificial microlocal point sources in space-time.

Movie

-The non-linear interaction

of distorted plane waves

creates artificial microlocal

point sources.

-Observations for the point sources

determine the conformal class

of the metric g in

the space-time J+(p1) ∩ J−(p2).
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Idea of the proof with a 4th order non-linear term
Consider in the Minkowski space R4 the wave equation

�gu~ε(x) + a(x) (u~ε(x))4 = 0,

where ~ε = (ε1, ε2, ε3, ε4). Assume u~ε
∣∣
~ε=0 = 0. Then, the linearized waves

uj(x) = ∂εju~ε
∣∣
~ε=0, j = 1, 2, 3, 4

solve the linear wave equation �guj = 0 and

w = ∂ε1∂ε2∂ε3∂ε4u~ε(x)
∣∣
~ε=0

satisfies
�gw = −24au1u2u3u4.

Assume uj that depend on a parameter s > 0 and u
(s)
j (x)→ δ(x · ηj) as s → 0. That

is, uj are close to plane waves supported on hyperplanes Kj = {x ∈ R4 : x · ηj = 0}.
Then, we can consider au1u2u3u4 as a source that is supported on

K1 ∩ K2 ∩ K3 ∩ K4 = {q} = one point.



Ωout

Ωin

A similar result are valid for separated sources and observations:

Assume that sources are supported in Ωin and
the waves are observed in Ωout .
The metric is determined in
the set K enclosed by the black rectangle.

Theorem (Feizmohammadi-L.-Oksanen 2021)
Let G (x , s) be a Lorentzian metric tensor depending on s, ∂sG (x , s)|s=0 = 0 and
∂2
sG (x , s)|s=0 > 0. In the above geometric setting, the source-to-solution map

LG : C∞0 (Ωin)→ C∞(Ωout) for

n∑

p,q=0

Gpq(x , u(x))
∂2u

∂xp∂xq
(x) = f , supp (u) ⊂ J+(supp (f ))

determines the conformal class of g = G (x , 0) in K .



Interaction of three waves

Figure shows the 3-interaction produced by three plane waves that travel closely to
each other.
By slightly changing the directions of the plane waves, the 3-interaction sends waves to
an arbitrary direction. These waves can be used for the reconstruction of an unknown
Lorentzian metric in [Feizmohammadi-L.-Oksanen 2021].
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Inverse problem in Minkowski space with a 1-dimensional measurement

Theorem (L., Liimatainen, Potenciano-Machado, Tyni 2024)
Let Ω ⊂ Rn, diam (Ω) < D, and m ≥ 2.
There is a measurement function ψ ∈ L2(∂Ω× [0,T ]) such that the following is true:
Let supp (q) ⊂ Ω× [T − D,D]. For f small enough, let u = uf satisfy

(∂2
t −∆)u(x , t) + q(x , t)u(x , t)m = 0 in Ω× [0,T ],

u|∂Ω×[0,T ] = f , u|t=0 = 0, ∂tu|t=0 = 0.

ba

W

t

T

Then the real-valued non-linear map

λq,ψ : f →
∫

∂Ω

∫

[0,T ]
ψ(x , t) ∂νu

f (x , t) dS(x)dt

determines q(x , t) uniquely. Moreover, when ‖q‖Cn+1 < C0, the reconstruction is
Hölder stable, that is, ‖q1 − q2‖L∞ ≤ C‖λq1,ψ − λq2,ψ‖αC(BH2 (0,ρ)).

Thus q can be stably reconstructed from low resolution observations by varying f .



Numerical results

Left: q(x , t). Center: Numerical reconstruction. Right: Error in reconstruction.

Reconstruction of the coefficient q(x , t) in equation

∂2
t u(x , t)− ∂2

xu(x , t)− q(x , t)u(x , t)2 = 0, x ∈ [0, 1], t ∈ [0,T ],

from measurement operator λψ. Above, data has additive Gaussian noise and the
signal-to-noise ratio is 12 dB.



The Einstein-scalar field equations

Similar techniques can be used for the inverse problem for the Einstein-scalar field
equations for the metric g and the scalar fields φ = (φl)

L
l=1,

Ein(g) = T(g , φ) + F1, (1)

Tjk(g , φ) =
L∑

l=1

(
∂jφl∂kφl −

1
2
gjkg

pq∂pφl∂qφl

)
− V(φ)gjk , (2)

�gφl − V ′l (φ) = F2
l , l = 1, 2, ..., L. (3)

Then the source-to-solution map F 7→ (g |V , φ|V ), defined for sources that are
supported in a neighborhood V of a time-like path from p1 to p2 and satisfy the
physical conservation law, determines the conformal type of the space time
J+(p1) ∩ J−(p2). [Kurylev-L.-Oksanen-Uhlmann 2022, Uhlmann-Wang 2020].



Can we use methods of General Relativity in medical imaging?

Example on medical imaging with non-linear equations: Elastography

Figures on Elastography:

M. Doyley, Phys. Med. Biol. 2012 , H. Tzschätzsch, Phys. Med. Biol. 2014.

Non-linearity can be used as a beneficial effect in medical imaging. For this,
mathematics of general relativity is essential, see [de Hoop-Uhlmann-Wang 2020].
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Simultaneous recovery in 2D: metric and potential.

Theorem (L.,Liimatainen,Yi-Hsuan Lin, Salo 2019)
Let (M, g) be a compact connected manifold with boundary, dim(M) = 2 and m ≥ 2.
Let q(x) > 0 be a smooth function on M. For the equation

∆gu(x) + q(x)u(x)m = 0 in M

u|∂M = f ,

we define the Dirichlet-to-Neumann map

ΛM,g ,q : f → ∂νu|∂M ,

for small f ∈ C 3(∂M). Then ∂M and ΛM,g ,q determine the conformal type of
(M, g) and the potential q and g up to a gauge transformation.
The linear problem with m = 1 is solved in Carstea-Liimatainen-Tzou, Arxiv 2024.
Similar results are obtained for the minimal surface equation and for parabolic
equations.



The idea of the proof

The Frechet derivative (DΛM,g ,q)0 determines the Dirichlet-to-Neumann map for the
linear equation ∆gu = 0. By L.-Uhlmann 2001, this determines the conformal class of
the two-dimensional manifold (M, g).
Let us choose a metric ĝ = hg , h : M → R+, that is conformal to g .
The higher order derivatives of ΛM,ĝ ,q satisfy

∫

∂M
(DmΛM,ĝ ,q)|0[f1, f2, f3, . . . , fm] · fm+1 dS = −(m!)

∫

M
qv1v2v3 · · · vm+1 dV

where vk , k = 1, . . . ,m + 1, satisfy ∆ĝvk = 0 with the boundary value fk .
Let v3 = v4 = · · · = vm+1 = 1.
By Guillarmou-Tzou 2011, the inner products 〈q, v1v2〉L2(M) determine q.
Note that it is enough to study only the solutions satisfying ∆ĝv = 0. Roughly
speaking, we need to analyze only the linearized inverse problem and do not require
analysis of the non-linear problem.
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