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Deep neural network with relu-functions

A deep neural network (DNN) is a function fθ : Rd0 → RdL+1 defined by

y0 = x ,
y`+1 = φ

(
W `
θ y` + b`θ

)
, ` = 0, 1, . . . , L− 1,

fθ(x) = W L
θ yL + bL

θ .

We denote the set of such functions fθ by NN (d0, dL+1). Above,
` = 0, 1, 2, . . . , L: the layer index.
y` ∈ Rd` : the state at layer `.
Weight matrixes W `

θ ∈ Rd`+1×d` and bias vectors b`θ ∈ Rd`+1

φ is the activation function, the Rectified Linear Unit (relu)

φ : Rd → Rd , φ(x1, . . . , xd ) = (max(0, x1), . . . ,max(0, xd ))

Matti Lassas (University of Helsinki) Mapping properties of neural networks 3 / 34



Basic mapping properties of neural networks
We consider the following topics

Examples of injective neural networks fθ : Rn → Rm that are
one-to-one, that is,

fθ(z1) = fθ(z2) =⇒ z1 = z2

Let K ⊂ Rn be a compact set and fθ : Rn → Rm be injective (and
continuous). Then,

fθ : K → fθ(K )

is a homeomorphism, and hence, K and fθ(K ) have the same
topology.

fθ−→
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Manifold hypothesis and a generative model
Let M ⊂ Rm be a d-dimensional surface (that is, a manifold) and
µ0 = µdata be a probability distribution supported on M.
Let us assume that the topology of M is known and let K ⊂ Rn be a
‘model space’ that has the same topology as M. Let Z ∼ Unif(K ) be a
random variable. Here, d ≤ n < m. Our aims are to

1 Find a neural network fθ : Rn → Rm such that fθ : Rn → Rm is
one-to-one and fθ(K ) = M (or fθ(K ) ≈ M).

2 Find fθ : Rn → Rm such that fθ(Z ) has the distribution µ0.

Figures: Goldt et al Phys. Rev. X 2020 and Bukhari et al Sci. Rep. 2022.
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φ(x) = relu(x) =
{

x , x > 0,
0, x ≤ 0,

for x ∈ R.
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Injective of layer of a relu-neural network

Consider function N : Rn → Rm defined by

N(x) = φ (Wx + b)

where
W ∈ Rm×n is a weight matrix and b ∈ Rn is a bias vector,
φ is the Rectified Linear Unit (relu)

φ : Rm → Rm,

φ(x1, . . . , xm) = (max(0, x1), . . . ,max(0, xm)) = max(x , 0).
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Examples of injective layers
1 The map N : Rn → R2n,

N(x) =
[
φ(x)
φ(−x)

]
=
[

max(x , 0)
max(−x , 0)

]

is injective.
2 Let W ∈ R2n×n be

W =
[

B
−B

]

where B ∈ Rn×n is an invertible matrix. Then

N : Rn → R2n

N(x) = φ(Wx)

is injective.
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Conditions for injectivity
Theorem (Conditions for injectivity of relu(Wx))

Let W ∈ Rm×n be a matrix with row vectors W = {wj}mj=1, and
relu(y) = max(y , 0). The function relu(W (·)) : Rn → Rm is injective if
and only if

span{w ∈ W : w · x ≥ 0} = Rn for all x ∈ Rn . (1)

If W is injective, then m ≥ 2n.

Theorem (Conditions for injectivity of relu(Wx + b))

Let W ∈ Rm×n, b ∈ Rm and W = {wj}mj=1 be the row vectors of W .
The function relu(W (·) + b) : Rn → Rm is injective if and only if
{wj ∈ W : bj ≥ 0, wj · x ≥ 0} spans Rn for every x ∈ Rn.

Reference: [Puthawala-Kothari-L.-Dokmanic-de Hoop JMLR 2022]
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Example with a specific weight matrix W

Consider N : R2 → R4, N(x) = relu(Wx), where

W =


cos(π/8) sin(π/8)

cos(5π/8) sin(5π/8)
cos(−5π/8) sin(−5π/8)
cos(−π/8) sin(−π/8)


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Spanning condition for the row vectors wj of W
Let N(x) = relu(Wx), where

W =


cos(π/8) sin(π/8)

cos(5π/8) sin(5π/8)
cos(−5π/8) sin(−5π/8)
cos(−π/8) sin(−π/8)


The dot is x , the black vectors are Wx = {wj : wj · x ≥ 0}

span(Wx ) = R2 span(Wx ) = R2 span(Wx ) 6= R2
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fθ(K ) = M, K ⊂ R2, M ⊂ Rm

fθ−→
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Universal Approximation by Injective Neural Networks
By using injective neural networks we are able to approximate any
continuous function that maps a low dimensional space into a higher one.

Theorem (Puthawala-Kothari-L.-Dokmanic-de Hoop JMLR 2022)
Let f : Rn → Rm be a continuous function, where m ≥ 2n + 1, and L ≥ 2.
Then for any ε > 0 and compact subset K ⊂ Rn there exists a relu-neural
network Nθ ∈ NN (n,m) of depth L such that Nθ : Rn → Rm is injective
(that is, a one-to-one function) and

|f (x)− Nθ(x)| < ε, for all x ∈ K .
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Universal Approximation by Injective Neural Networks
By using injective neural networks we are able to approximate any
continuous function that maps a low dimensional space into a higher one.

Theorem (Puthawala-Kothari-L.-Dokmanic-de Hoop JMLR 2022)
Let f : Rn → Rm be a continuous function, where m ≥ 2n + 1, and L ≥ 2.
Then for any ε > 0 and compact subset K ⊂ Rn there exists a neural
network Nθ ∈ NN (n,m) of depth L such that Nθ : Rn → Rm is injective
(that is, a one-to-one function) and

|f (x)− Nθ(x)| < ε, for all x ∈ K .

Combining our results with [Yarotsky, Neural Networks 2017], see also
[Guhring-Raslan, Neural Networks 2022], we can estimate the depth, the
width, and the inverse Lipschitz constant of Nθ in terms of ε, K and the
C 1-norm of f .
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fθ(K ) = M, fθ(Z ) ∼ µ0

fθ−→
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Diffeomorphic neural networks

The affine coupling flows are the maps g : Rn → Rn,

g(x1, . . . , xn−1, xn) =
(

x1, . . . , xn−1, eaθ(x1,...,xn−1) · xn + bθ(x1, . . . , xn−1)
)

where aθ and bθ are neural networks, e.g., relu-neural networks.
It is easy to compute the inverse function of g ,

g−1(x1, . . . , xn) =
(

x1, . . . , xn−1, e−aθ(x1,...,xn−1) · (xn − bθ(x1, . . . , xn−1))
)

Functions g : Rn → Rn and g−1 : Rn → Rn are continuous bijective maps.

References: Dinh et al ICLR 2015, Teshima et al NeurIPS 2020.
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Universal approximation of diffeomorphisms
The diffeo-networks are finite compositions of linear invertible maps
Lj : Rn → Rn and affine coupling flows gj : Rn → Rn, that is,

Tθ = Lk ◦ gk ◦ · · · ◦ L1 ◦ g1 : Rn → Rn.

We denote the set of diffeo-networks by Tn. Observe that

T−1
θ = g−1

1 ◦ L−1
1 ◦ · · · ◦ g−1

k ◦ L−1
k .

Teshima et al, NeurIPS 2020 (c.f. Bogachev 2007), proved the following:

Theorem

Let f : Rn → Rn be a Ck -smooth diffeomorphism, k ≥ 2, and 1 ≤ p <∞.
Then for any ε > 0 and compact subset K ⊂ Rn there exists a neural
network Tθ ∈ Tn

‖f − Tθ‖Lp(K) < ε.

Similar result holds for deep sigmoidal flows with p =∞.
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Definition of injective flow networks
Let n,m ∈ N. An injective flow network is function

f = T2 ◦ R ◦ T1 : Rn → Rm, where
1 T1 : Rn → Rn is a diffeo-network,
2 R : Rn → Rm be an injective linear map, e.g., R(x) = (x , 0),
3 T2 : Rm → Rm is a diffeo-network.

We denote the set of injective flow networks by IN = INn,m

When are these networks universal approximators for all embeddings?
When K ⊂ Rn is compact, we say that a function f : K → Rm is an
embedding if f : K → Rm is continuous and injective.
We denote embeddings by

embk(K ,Rm) = emb(K ,Rm) ∩ Ck(K ,Rm).

f−→
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All embeddings are not given by flow networks
Let K = S1 ⊂ R2 be a circle, and f : K → R3 be an embedding of K to a
trefoil knot to R3. There are no map E = T2 ◦ R ◦ T1, where
T1 : R2 → R2 is a diffeomorphism, R : R2 → R3 is an injective linear map
and T2 : R3 → R3 is a diffeomorphism, so that E (K ) = f (K ).

(a) K = S1
(b) Trefoil knot in R3.

Example: the manifold of 3× 3 patches of pixels of natural images can be
well modelled by a Klein bottle [Carlsson et al 2008].
Practical implication: It is difficult to learn a prior distribution that is
supported on a general submanifold. Next we show that this difficulty can
be avoided by choosing a finer discretization in the inverse problem.
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trefoil knot to R3. There are no map E = T2 ◦ R ◦ T1, where
T1 : R2 → R2 is a diffeomorphism, R : R2 → R3 is an injective linear map
and T2 : R3 → R3 is a diffeomorphism, so that E (K ) = f (K ).

(a) K = S1
(b) Trefoil knot in R3.

(c) Klein’s
bottle.

Example: the manifold of 3× 3 patches of pixels of natural images can be
well modelled by a Klein bottle [Carlsson et al 2008].
Practical implication: It is difficult to learn a prior distribution that is
supported on a general submanifold. Next we show that this difficulty can
be avoided by choosing a finer discretization in the inverse problem.
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All embeddings are extendable when m ≥ 3n + 1
Definition (Extendable Embedding)
Let K ⊂ Rn be compact set. The set of extendable embeddings is

Ik(K ,Rm) := {Φ ◦ R ∈ C(K ,Rm) : Φ ∈ Diffk(Rm → Rm),
R : Rn → Rm is injective and linear}.

Theorem (Puthawala-L.-Dokmanic-de Hoop ICML 2022)
When m ≥ 3n + 1, k ≥ 1, and K ⊂ Rn is compact, it holds that

Ik(K ,Rm) = embk(K ,Rm).

When p <∞, for any Ck -embedding f ∈ embk(Rn,Rm) there is a map E
in the Lp-closure of the injective flow neural networks IN such that
E (K ) = f (K ).

The proof is based on the “clean trick” in algebraic topology, see e.g.
Madsen-Tornehave 1997
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Approximation of probability measures

Theorem (Puthawala-L.-Dokmanic-de Hoop ICML 2022)
Suppose m ≥ 3n + 1. Let ν be a probability measure on a compact set
K ⊂ Rn that is absolutely continuous w.r.t. Lebesgue measure,
f : K → Rm a C 1-embedding, and

1 R : Rn → Rm is an injective linear map
2 Tm is universal approximator of diffeomorphisms in L∞,
3 T ′n is universal approximator of diffeomorphisms in Lp, p ≥ 1.

Then, there are Ei = Ti ◦ R ◦T ′i , Ti ∈ Tm, T ′i ∈ T ′n , i = 1, 2, . . . such that

lim
i→∞

W2
(

f#ν, (Ei )#ν
)

= 0,

where W2 is the Wasserstein distance and F#ν(A) = ν(F−1(A)).

This means the following: if Z ∼ ν and X = f (Z ) ∼ µ0 then
the distribution of Xi = Ei (Z ) is close to µ0.
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Credit on figure: Kothari-Khorashadizadeh-de Hoop-Dokmanic UAI 2021.

Matti Lassas (University of Helsinki) Mapping properties of neural networks 24 / 34



Solving an inverse problem with a learned prior
Let µ0 be a distribution supported on manifold M ⊂ Rm.
Let xj , j = 1, 2, . . . ,N be independent samples from the distribution µ0
and Z ∼ N(0, I) in Rn.
We aim to find a neural network fθ : Rn → Rm such that fθ(Z ) ∼ µ0.

Then, we will consider the following inverse problem:
Let A : Rm → Rk and

Y = AX + ε,

X = fθ(Z ) ∈ Rm, where Z ∼ N(0, I) in Rn,

ε ∼ N(0, I).

Let y be a sample of the random variable Y . The Maximum A Posteriori
estimate for X is

xMAP = argmaxxπX |Y (x |y)

We seek a solution of the form x = fθ(z).
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Numerical results

Figure below shows numerical the results with iFlow and iFlow-L in
[Kothari-Khorashadizadeh-de Hoop-Dokmanic UAI 2021] when
Y = AX + ε and A is a down-sampling operator or a random mask.
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Definition (Neural operators, by Kovachki-Lanthaler-Mishra 2021)
Let D ⊂ Rd is bounded open set. A neural operator is a function

F : L2(D)n0 → L2(D)nk , F = Lk−1 ◦ Lk ◦ · · · ◦ L0

where layers L` : L2(D)n` → L2(D)n`+1 are

L`(u)(x) = σ(W`u(x) + K`(u)(x)),

and W` ∈ C(D,Rn`+1×n`) and K` are non-linear integral operators

K`(u)(x) =
∫

D
k`(x , y , u(x), u(y))u(y)dy ,

where k` are bounded and C 3-smooth (or a generalized function), and
σ : Rn → Rn is pointwise activation function (e.g. a leaky relu).

A leaky relu is σa(x) = relua(x) =
{

x , x > 0,
ax , x ≤ 0,

for x ∈ R, a ≥ 0.

Analogous continuous generative networks based on wavelets by Alberti,
Santacesaria, and Sciutto 2022.
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A non-linear operator G : L2(D)n → L2(D)n is coercive if

lim
‖u‖L2(D)n→∞

〈G(u), u
‖u‖L2(D)n

〉L2(D)n =∞.

Theorem (de Hoop-Furuya-L.-Puthawala, NeurIPS 2023)

Let σ : R→ R be surjective (e.g., a leaky relu), values of
W ∈ C 1(D;Rn×n) be invertible matrixes, and K : L2(D)n → L2(D)n be a
non-linear integral operator with a C 3-smooth kernel.
Moreover, assume that the map u 7→ αu + W−1K (u) is coercive with
some 0 < α < 1. Then, the operator

F : L2(D)n → L2(D)n,

F (u) = σ(Wu + K (u))

is surjective.

The proof is based on Leray-Schauder degree theory.
If K is a non-linear Volterra operator, then u →Wu + K (u) is injective.
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Next we consider the case n = 1 and the non-linear integral operator

K (u)(x) :=
∫

D
k(x , y , u(x))u(y)dy , x ∈ D.

Assume that

k(x , y , t) =
J∑

j=1
cj(x , y)φ(aj(x , y)t + bj(x , y)),

where φ is a wavelet activation function φwire : R→ R, see Saragadam et
al. 2023,

φwire(t) = Im (eiωte−t2),
and a, b, c ∈ C(D × D), aj(x , y) 6= 0.
For α > 0, the operators u 7→ αu + W−1K (u) are coersive and the
operator

F : L2(D)→ L2(D),
F (u) = σ(Wu + K (u))

is surjective.
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Let n = 1 and D ⊂ R be a bounded interval. Let

F (u) = σa ◦ G(u), G(u)(x) = W (x)u(x) +
∫

D
k(x , y , u(y))u(y)dy ,

where a > 0. Assume that W ∈ C 1(D) satisfies 0 < c1 ≤W (x) ≤ c2 and

‖k‖C3(D×D×R) ≤ c0, ‖W ‖C1(D) ≤ c0 (2)

and for all u0 ∈ H1(D), the Frechet derivatives satisfy

DG |u0 : H1(D)→ H1(D) is an injective operator. (3)

Theorem (de Hoop-Furuya-L.-Puthawala, NeurIPS 2023)
Assume that F satisfies the above assumptions (2) and (3) and that
F : H1(D)→ H1(D) is a bijection. Let Y ⊂ σa(BC1,α(D)(0,R)) where
α > 0. Then the inverse of F : H1(D)→ H1(D) in Y can written as a
limit as a limit of integral neural operators having distributional kernels.
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Idea of the proof
The inverse of F = σa ◦ G is F−1 = G−1 ◦ σ1/a.
When w is sufficiently near to wj = G(uj) in H1(D), the Banach fixed
point theorem implies that(

G−1(w)
w

)
= lim

m→∞
H◦mj

(
uj
w

)
,

Hj

(
u
w

)
=
(

u − A−1
uj (G(u)− w)

w

)
, Auj = DG |uj .

When we cover σ1/a(Y) with small neighborhoods of wj in H1(D), and
define a partition of unity Φj for these neighborhoods.
The operators Φj = ψj,k ◦ · · · ◦ ψj,1 are products operators of the form

ψj,k

(
u
w

)
(x) =

( ∫
D mj,k(x , y , v(x),w(y))dy

w(x)

)

where mj,k(x , y , v(x),w(y)) = v(x)1[sj,k ,sj,k +h)(w(y))δ(y − zj,k).
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Idea of the proof
Combining the above operators, we have for w ∈ σ1/a(Y)(

G−1(w)
w

)
= lim

m→∞

∑
j∈I

ΦjH◦mj

(
uj
w

)
.

Thus, G−1|σ1/a(Y) can be written as a limit of neural operators which
kernels are generalized functions.
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Summary

Neural operators are generalization of neural networks where matrix
multiplication is replaced by integral operators.
Compactness of integral operators make it possible to analyze
mapping properties of neural operators.
Neural operators are non-linear operators which share some properties
of pseudodifferential operators:

I Neural operators and pseudodifferential operators are algebras
I If pseudodifferential operator is invertible (more precisely, elliptic) then

the inverse operator is a pseudodifferential operator.
Similarly, if a neural operator is invertible then the inverse operator is a
neural operator.
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