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Inverse problem for an anisotropic wave operator

Let M C R", n > 2 and v be the unit normal of the boundary OM.

Let g(x) be a matrix valued function and u(x, t) = uf(x, t) solve
(02 =V -g(x)V)u(x,t) =0 on (x,t) € M x Ry,
v-gVu(x, t)omxr, = f(x, t),
U‘t:O =0, atu‘t:O =0.

Emitter

The Neumann-to-Dirichlet map is defined by
N:f— uf(X7 t)|(x,t)€8M><R+~

Inverse problem:

, Assume that A is given.
O Actual receiver

i Virtual receiver Can we determine g on local coordinate charts?
\—EF it - =~ Straight ray
— Bentray To study this problem, we consider (M, g) as a manifold.

(Image credit Xiaolei Qu)



Let (M, g) be a Riemannian manifold, dim(M) = n > 2, g = (gjx(x)) k=1
Let u(x, t) = uf(x, t) solve the wave equation
(02 — Ag)u(x,t) =0 on (x,t) € M xRy,
aVU(X, t)’aMXR+ - f(X7 t)7

U’t:0 =0, atU’t:O =0,

where v is the unit normal vector of the boundary, (gjk) = (gjk)_1 |g| = det (g), and

Deu= ) lg(x)|” 1/2axj(lg( x)[/2g% (x) 8xk Z g 8X18 -+ lot.
J k=1

The Neumann-to-Dirichlet map is Af = uf (x,t) ‘( £)COMXR, "
For (02 — c(x)?A)u = 0 the metric is gix(x) = c(x) 25k

Inverse problem:
Assume that OM and A are given. Can we determine (M, g) up to an isometry?



Some results on inverse problems for linear hyperbolic equations

» Uniqueness for inverse problem for (02 — c(x)2A)u=0in Q C R"
by combining the Boundary Control method by Belishev '87, Belishev-Kurylev '87
and Tataru's unique continuation result '95.

> Belishev-Kurylev 1992: Spectral problem for A, on manifold.

» Bingham-Kurylev-L.-Siltanen 2008: Solution for the inverse problem for the wave
equation by focusing of waves.

» de Hoop-Kepley-Oksanen 2016: Numerical methods for focusing of waves.

All these results are based on Tataru's unique continuation result and require that the
metric is time-independent, or real-analytic in the time variable [Alinhac 1983].
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Imaging in non-linear elasticity: Quantitative elastography
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Figures: Doyley (Phys. Med. Biol. 2012) and Tzschatzsch (Phys. Med. Biol. 2014)

Inverse problems for non-linear elastic medium: de Hoop-Uhlmann-Wang (2018).



Non-linear wave equation in space-time
Let M =R x N be a Lorentzian manifold with time-depending metric g,
dim(M)=1+n,n>2. Let m>2and
Ogu(x) + u(x)™ = f(x), (x°,x',...,x") € (—o0, T] x N,
u(x)=0 fort=x%<0,

where
Teu = |det (g(x))| <\det (g(x))I> fk(x%fik“(x’) '
J,k=0

An alternative model is
82

Sau(ty) = c(t,y)Au(t,y) + a(t,y)u(t,y)" = f(t,y), x=(ty) eR".

This corresponds to the metric g = (—1,c2,c72,¢c72), ¢ = c(t, y).



Definitions

“Worldline’ of ) ot (M g) be a Lorentzian manifold,

A amoving objeet
where the metric g = (gj)7 x—g is semi-definite.
\u‘) T.M is the space of tangent vectors at x.
Ié:)g;: ¢ € TyM is light-like if g(£,£) =0, £ #0.
X £ € T«M is time-like if g(£,£) < 0.
; Elsewhe: A curve p(s) is time-like if fi(s) is time-like.
Present LM = {¢€ € T,M\O; g(&,€) =0, € future pointing},

T e
w Example: Minkowski space R*3.

I Coordinates (x%, x!,x2,x3) e R1*3 x0 = ¢

g =diag (—1,1,1,1).



“Worldline” of

4 amovmsobiest  Definitions
m ’ ) Yx,¢(t) is a geodesic with the initial point (x,§),

—
Light
Cone
x JT(p) = {x € M; x is in causal future of p},
;7 Elsexvhere J7(p) = {x € M; x is in causal past of p},
Present

Pl

k_h“/ (M, g) is globally hyperbolic if

| there are no closed causal curves and the set

JT(p1) N J=(p2) is compact for all p1, pr € M.
Then M can be represented as M =R x N.




Theorem (Kurylev-L.-Uhlmann 2018 and L.-Uhlmann-Wang 2017)

Let (M, g) be a globally hyperbolic Lorentzian manifold, dim(M) = 4,
1w C M be a time-like curve, p1,p2 € 1 and V' be a neighbourhood of .
Let Ly : f — u|y be the source-to-solution map for

Ogu+u?=f in(—00, T)x N C M,
u=0 int=x"<0.

Ly is defined for small sources f, supp(f) C V. Then V and Ly, determine
JT(p1) N J~(p2) and the metric g on it (up to change of coordinates).

P1




For the equation Ugu + u? = f in a 4-dimensional space-time, the fourth order non-linear

interaction produces artificial microlocal point sources in space-time.

-The non-linear interaction
of distorted plane waves
creates artificial microlocal

point sources.

-Observations of waves from the point sources

determine the metric g in the causal diamond

JH(p1) NI~ (p2).
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New results based on interaction of three waves in 1 4+ n dimensions

Theorem (Feizmohammadi-L.-Oksanen 2020)

Let (M, g) be a globally hyperbolic Lorentzian manifold of dimension 1 + n, n > 2.
Let u be a time-like curve from py to po and V' be a neighborhood of yn and m > 2.
Consider the non-linear wave equation

Ogu+u™=1f inNx(—o0,T),
u(x,t)=0 int<D0,

where supp(f) C V is sufficiently small.

Assume that V' and the source-to-solution operator Ly, : f — u|y are given.

If (n,m) # (3,3), these data determine the manifold J*(p1) N J~(p2) and the metric
gjk(x) on it.

If (n,m) = (3, 3), the conformal class of metric of g is determined.



A similar result are valid for separated sources and observations:

Assume that sources are supported in €;, and
the waves are observed in Qqu¢.

Qi When (n, m) # (3, 3), the metric is determined in
the set R enclosed by the black rectangle.

Theorem (Feizmohammadi-L.-Oksanen 2020)
Let G(x, s) be a Lorentzian metric tensor depending on s and 0?G(x, s)|s=o > 0. In the
above geometric setting, the source-to-solution map L¢ : C5°(Qjn) — C®(Qout) for

n

. 2u
> G xulx)) 5

= xJ Oxk
.l7 =

(x)="f

determines the conformal class of g = G(x,0) in R



Inverse problem for the connection A in the Higgs field equation

Let V4 = d + A be a connection on the trivial ] !
vector bundle C" over the Minkowski space R!*3. A I B 2
D N
Let V be a cylinder in R*3, and let D be the N
optimal causal diamond associated to V.
%
Theorem (Chen-L.-Oksanen-Paternain 2019) S

For any k € Ry, b € R, and sufficiently small p > 0 the map
Latf—ulvi (VA Vauts(luf = b)u =1, uleco =0, [IFllcsqy) < p:

determines A in D up to the natural gauge transformation.
The linear case = 0 is open as coefficients A;(x%, x’) are time-depending functions.



Idea of the proof with a non-linear equation Oyu + v = f in R'*3,

Consider in Minkowski space R*3 the solutions uz(x) of
Uuz + (Ug)3 =0,

that depend on parameters &= (1,2, ¢3) € R3.
When ug|z—g = 0, the linearized waves

uj(x) = 8€ju5~’g:0, j=1,273
satisfy Ouj = 0. Then, w = 0:,0:,0., U5(x)‘520 satisfies
Ow = —6uiuous.

The function 6u; uou3 can be considered as an artificial source produced by the
non-linear interaction.



We use coordinates x = (t, y1, y2, y3) € RY*3.
As a motivation, consider we linearized waves

ui(t,y) = 6(t—n),
w(t,y) = (t—y),
us(t,y) = O(t—ys).

Then

uupuz = 30.(t,y),
L={(t,y1,y2,3): iy =y2=ys =t} CR'3

Let w be the solution of the wave equation
Ow=S, S=-6uiuus

Physically, S is a moving point source that at the time t is located at the point
y(t) = (t,t,t) € R3. The line L is the path of the point source in the space-time.



Three plane waves with directions &1, &2, &3 interact and produce a conic wave.
By varying the directions &1 and & of the incoming waves near &3, the interaction can
produce a wave front to an arbitrary direction [Chen-L.-Oksanen-Paternain 2019].
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Three plane waves with directions &1, &2, &3 interact and produce a conic wave.
By varying the directions &1 and & of the incoming waves near &3, the interaction can
produce a wave front to an arbitrary direction [Chen-L.-Oksanen-Paternain 2019].



Interaction of three spherical waves in the Euclidean space

\ ul -

When 3 spherical waves (blue) interact they produce a new wave front (red) that
propagates to the direction where the spherical waves came from.

The figure shows the wave fronts at four times t, to, t3, ta.
[Chen-L.-Oksanen-Paternain 2019].

Next we return to consider general Lorentzian manifolds.



Reconstruction of a space-time with conjugate points [Feiz.-L.-O. 2020]

Consider wave fronts that are sent from the points x1, x2, x3 € V along the light-like
geodesics 71,72,73. For Ogu + u® = f the following conditions are true:

(A) If 41,72,v3 do not intersect, then we do not observe A/
wave fronts at z. A,
D .~
(B) If y is the first intersection point of geodesics and
A

71(s1) = 72(52) = 73(s3) = v C_
¢ espan{ij(s), j=1.23}nLiM, N

then we observe a wave front at z.

Lemma for 3-to-1 scattering relation: We say that a 4-tuple (1, 72,73, z) satisfies
relation R if we observe a wave front at z. When (A) and (B) are valid, the relation R
determines the conformal class of (D, g).

This lemma can be applied for any non-linear hyperbolic equation of 2nd order.
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Inverse problem in Minkowski space with a 1-dimensional measurement

Theorem (L., Liimatainen, Potenciano-Machado, Tyni (2020))
Let Q C R", diam (Q) < D, and m > 2. Letty, > t; > D and T > to+ D.
There is a measurement function ¢ € Cg°(0Q x [0, T]) such that the following is true:
Let supp (q) C Q x [t1, t2]. For f small enough, let u = u' satisfy
(02 — A)u(x, t) + q(x, t)u(x, t)™ =0 in Q x [0, T],

ulpaxjo,m1 =f, ult=0 =0, Orult=0 = 0.

Then the real-valued non-linear map

f
Ay o f = (¥, 0pu }8Q><[0,T]>L2(39><[0,T]) €R
determines q(x, t) uniquely. Moreover, when ||q||cr+1 < Cp, the reconstruction is

Hélder stable.

This means that, g(x, t) can be stably reconstructed from low resolution observations if
we can control the source f.



|dea of the proof with one-dimensional measurement.

The m:th Frechet derivative of Ay (f) = (¢,Byuf}BQX[O’T]>L2(3QX[O,T]) at f =0is
(D" Xp)olfr, oy ..., fm] = m!/ V- QVIVo . . . VimdXdt,
Qx[0,T]
where v; are solutions of the linear wave equation
(62— A)y(x, ) =0 inQx[o,T]
Viloaxio,11 = iy  Vjle=0 =0, 0tVjlt=0 =0

and (02 — A)vy, =0, vislaax(o, 7] = ¥ is such that vy, = 1 in the set Q X [ty, to].
By varying boundary values f; we find the partial Radon transform of g(x, t).
This determines the function g(x, t).

Related inverse problem with a varying wave speed is studied in Hintz-Uhlmann-Zhai
2020 using the Dirichlet-to-Neumann map.
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Higher order linearization and non-linear interaction of solutions can be applied also for
elliptic equations.

Theorem (L.,Liimatainen,Yi-Hsuan Lin, Salo 2019)

Let (M, g) be a compact connected Riemannian manifold with boundary, dim(M) = 2
and m > 2. For the equation

Agu(x)+q(x)u(x)" =0in M, ulom =f,
we define the Dirichlet-to-Neumann map
Ngg: f — Oyulom,

for small f € C3(OM). Then OM and Nz 4 determine the conformal class of (M, g) and
the potential q up to a gauge transformation.

Related results in dimensions n > 3 are studied in L.-Liimatainen-Lin-Salo 2019,
Feizmohammadi-Oksanen 2019, Krupchyk-Uhlmann 2019



The idea of the proof

The Frechet derivative (DAg )0 determines the Dirichlet-to-Neumann map for the
linear equation Agu = 0. By L.-Uhlmann 2001, this determines the conformal class of
the two-dimensional manifold (M, g).

Let us choose g = hg, h: M — R, that is conformal to g.

The higher order derivatives of Az 4 are

/ (Dm/\éq)g[fl, fg, f3, Ceey fm] . fm+1 dS = —(m')/ qvivovy - - Vm+1 dV
oM M

where vy, k =1,...,m+ 1, satisfy Azvi = 0 with boundary value f;.

let vs=vg ="+ =Vpy1 =1.

By Guillarmou-Tzou 2011, the inner products (g, viv») determine g.

Note that it is enough to study only the solutions satisfying Azv = 0, that is we can
consider the case when g = 0. Roughly speaking, we need to analyze only the linearized
inverse problem a la Calderon and do not require Sylverster-Uhlmann type analysis.



Thank you for your attention!
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