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Inverse problem in a d-dimensional body
Let u(x , t) = uh(x , t) solve the wave equation

(∂2
t − c(x)2∆)u(x , t) = 0 on (x , t) ∈ M × R+,

∂νu(x , t)|∂M×R+ = h(x , t), u|t=0 = 0, ∂tu|t=0 = 0,

where h is boundary source, M ⊂ Rd . The Neumann-to-Dirichlet map is

Ych = uh(x , t)
∣∣
(x ,t)∈∂M×R+

.

In the inverse problem we aim to find the unknown wave speeds c(x) from
boundary measurements Yc (Traditionally, one denotes Yc = Λc).
Next we consider this problem in the 1-dimensional case and solve it using
neural networks.
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Results on the hyperbolic inverse problem:

1-dimensional problems: Gelfand, Levitan, Marchenko 1950-1960.

Inverse problem for ∆ + q: Nachman-Sylvester-Uhlmann 1988.

Reconstruction of a Riemannian manifold with time-indepedent
metric: Belishev-Kurylev 1992 and Tataru 1995.

Solution by modified time reversal and focusing of waves:
Bingham-Kurylev-L.-Siltanen 2008.

Combining several measurements for together for the wave equation:
Helin-L.-Oksanen 2012.

Numerical methods for focusing of waves: de Hoop-Kepley-Oksanen
2018.

Partial data: L.-Oksanen 2014, Mansouri-Milne 2017.

Inverse problems for the connection Laplacian:
Kurylev-Oksanen-Paternain 2018.

Scattering control: Caday-de Hoop-Katsnelson-Uhlmann 2018.
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Overview of the talk

1 We consider the solution map S : Yc → c that solves the inverse
problem in the 1-dimensional case.
For this, we use the boundary control method (Belishev 1987,
Belishev-Kurylev 1992) and its regularized version
(Bingham-Kurylev-L.-Siltanen 2008 and Korpela-L.-Oksanen 2018).

2 We propose an architecture of neural networks, where the input is
a linear operator Y .

3 We show that the solution map S can be written as a neural network
with the proposed architecture.

4 The performance of the trained neural network can be estimated
using stability theorems for inverse problems.
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Outline:

Solution of the inverse problem in 1-dimensional space

Standard neural networks

Operator recurrent networks
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Inverse problem in 1-dimensional space
Consider the wave equation in one-dimensional space, x ∈ R+.
This corresponds to subsurface imaging when the wave speed depends only
on the depth.
Let u(x , t) be the solution of the wave equation

(
∂2

∂t2
− c(x)2 ∂

2

∂x2
)u(x , t) = 0, x ∈ R+, t ∈ R+

∂

∂x
u|x=0 = h(t), u|t=0 = 0,

∂

∂t
u|t=0 = 0,

where the wave speed c(x) is unknown. Denote u(x , t) = uh(x , t).
Let T > 0. Suppose we are given the Neumann-to-Dirichlet map, Y = Yc ,

Ych = uh(x , t)

∣∣∣∣
x=0

, t ∈ (0, 2T ).

Yc is a linear operator or “a matrix”. Physically,

Yc : boundary source h → the boundary value of the wave u|x=0.
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Travel time function

The travel time for the wave from the boundary point 0 to the point x is

τ(x) =

∫ x

0

1

c(x ′)
dx ′.

Assume that we can construct the function τ−1 : R+ → R+. Then we can
determine the travel time function τ : R+ → R+ and the wave speed by

c(x) =
1

d
dx τ(x)

.

Next, we study the inverse problem of finding the inverse travel time
function τ−1 when Yc is given.
We will consider the function F : Yc → τ−1 and construct a neural
network that approximates F .
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Neumann-to-Dirichlet map determines inner products of
waves
Denote

〈uf (T ), uh(T )〉 =

∫
R+

uf (x ,T )uh(x ,T )dV (x), dV =
1

c(x)2
dx ,

‖uf (T )‖L2(M) = 〈uf (T ), uf (T )〉
1
2 .

By Blagovestchenskii formula,

〈uf (T ), uh(T )〉 =

∫ 2T

0
(KY f )(t)h(t) dt, 〈uf (T ), 1〉 =

∫ T

0
f (t)(T − t) dt

where Y = Yc is the Neumann-to-Dirichlet map,

KY = JY − RYRJ,

Rf (t) = f (2T − t) “time reversal operator”,

Jf (t) = 1
2 1

[0,T ]
(t)

∫ 2T−t

t
f (s)ds “low pass filter”.
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An analytic solution algorithm for the inverse problem
By Bingham-Kurylev-L.-Siltanen 2008 and dH-L-W 2020, the inverse
problem is solved as follows: Suppose we are given Y = Yc .

Step 1: For the depth parameter 0 ≤ s ≤ T , let hβ,s ∈ L2(0, 2T ) solve

min
h
‖uh(T )− 1‖2

L2 + β‖Ah‖`1 = 〈KY h, h〉 − 2〈h, b〉+ C + β‖Ah‖`1 ,

where supp(h) ⊂ [T − s,T ].
Here, A : L2(0, 2T )→ `2 is an isometry and KY = JY − RYRJ. Then,

lim
β→0

uhβ,s (x ,T ) =

{
1, if τ(x) ≤ s

0, otherwise.
.

We call hβ,s the optimized sources.

Thus, when β is small,

uhβ,s (x ,T ) ≈

{
1, if τ(x) ≤ s

0, otherwise.
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An analytic solution algorithm for the inverse problem

Step 2. Using the the optimized sources hβ,s , we compute

V (s) = lim
β→0

∫ T

0
hβ,s(t) (T − t)dt = lim

β→0
〈uhβ,s (T ), 1〉L2(M)

= volc([0, τ−1(s)]) =

∫ τ−1(s)

0

1

c(x)2
dx ,

w(s) =
∂

∂s
V (s).

Then

τ−1(s) =

∫ s

0

1

w(t)
dt, and c(τ−1(s)) =

1

w(s)
.
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An analytic solution algorithm for the inverse problem

The above minimization problem can be solved using an iteration.
Writing sources in a finite basis, the inverse problem is solved as follows:

Step 1: For j = 1, . . . ,K and h(j) = h
(j)
L be computed by doing L steps of

the iterated soft thresholding,

h
(j)
`+1 := σβ

(
(I + PjRYRJ − PjJY )h

(j)
` + Pjb

)
, h

(j)
0 = 0.

Here, β > 0 is the regularization parameter and

R is the matrix of the time-reversal operator, Pj is a projector,

J is the matrix of the low-pass filter, b is a constant vector,

σβ(x) = relu(x−β)−relu(−x−β) is soft thresholding, relu(x) = max(x , 0).

Step 2. Compute τ−1(sj) ≈ Gj(h
(1), . . . , h(K)), where sj = jT

K and Gj are
explicit functions.
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Summary on the analytic solution of the inverse problem

Consider the map F : Yc → τ−1 that determines the inverse of the travel
time function τ−1 (and the wave speed c(x)) from the boundary
measurements Yc .
The discretized version of this map, F : Rn×n → R2K can be written as

F (Yc) = G (f (1)(Yc), f (2)(Yc), . . . , f (K)(Yc))

where f (j) : Rn×n → Rn map Yc to the optimized sources,

f (j)(Yc) = h(j).

Next we define a family of neural networks (operator recurrent networks)
than can approximate functions f (j) : Rn×n → Rn.
The explicit function G can be approximated by a standard neural network.
Then, we can approximate F by a neural network.
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Outline:

Solution of the inverse problem in 1-dimensional space

Standard neural networks

Operator recurrent networks
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Standard neural network

In every node in the hidden layers, one operates with a non-linear
activation function φ. In this talk, φ is the Rectified Linear Unit,

φ(x) = relu(x) := max(0, x) =

{
x , x > 0,

0, x ≤ 0,
x ∈ R.
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Definition of the standard deep neural network

A standard neural network is a function fθ : Rd0 → RdL defined by

h0 = x ,

h`+1 = φ
(
A`θh` + b`θ

)
, ` = 0, . . . , L− 1,

fθ(x) = hL.

Architecture:

`: the layer index, max depth L.

h`: intermediate output at layer `.

b`θ ∈ Rd`+1 , A`θ ∈ Rd`+1×d` are the biases and weight matrixes that
depend on parameters θ = (θ1, θ2, . . . , θm).

φ is the activation function, the Rectified Linear Unit (relu)

φ : Rd → Rd , φ(x1, . . . , xd) = (max(0, x1), . . . ,max(0, xd))
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Applications of neural networks in inverse problems

Modified gradient descent: Adler-Öktem 2017.

Splines and Neural networks: Unser-Fageot-Ward (SIAM Rev. 2017),
Jin-McCann-Froustey-Unser 2017.

Data driven models: Arridge-Maass-Öktem-Schönlieb (Acta Numerica
2019)

Generative adversarial networks: Bora-Jalal-Price-Dimakis 2017,
Lunz-Öktem-Schönlieb 2018.

Neumann Networks: Gilton-Ongie-Willett 2019.

Diffusion problems: Arridge-Hauptmann 2019,
Antholzer-Haltmeier-Schwab 2019,
Agnelli-Col-L.-Murthy-Santacesaria-Siltanen 2020.

Limited angle tomograpy:
Bubba-Kutyniok-L.-Marz-Samek-Siltanen-Srinivasan 2019.

Scattering problems: Uhlmann-Wang 2018, Khoo-Ying 2019,
Li-Wang-Teixeira-Liu-Nehorai-Cui 2019, Wei-Chen 2019.
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A modification of a neural network

Recall: A standard deep neural network is a function fθ : Rd0 → RdL that
takes in a vector x ∈ Rd0 and computes following operations

h0 = x ,

h`+1 = φ
(
A`θh` + b`θ

)
, ` = 0, . . . , L− 1,

fθ(x) = hL.

We will modify this: We define a function fθ : Rn×n → Rn that takes in
a linear operator Y ∈ Rn×n and computes following operations

h0 = b0,

h`+1 = φ
(
A`θYh` + b`θ

)
, ` = 0, . . . , L− 1,

fθ(Y ) = hL.
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Outline:

Solution of the inverse problem in 1-dimensional space

Standard neural networks

Operator recurrent networks

Λ

: : :

: : :

x
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Definition

An operator recurrent network with depth L, width n and parameters
θ ∈ [−1, 1]D ⊂ RD is a function fθ : Rn×n → Rn given by

h0 = b0,1
θ ,

h` = b`,1θ + A`,1θ h`−1 + A`,2θ Yh`−1 + φ
[
b`,2θ + A`,3θ h`−1 + A`,4θ Yh`−1

]
,

fθ(Y ) = hL,

where the initial vector h0 = b0,1
θ ∈ Rn is independent of the input

Y ∈ Rn×n and A`,iθ ∈ Rn×n, b`,iθ ∈ Rn.
Activation functions φ are relu functions.

Λ

: : :

: : :

x
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Iteration in the analytic algorithm is a neural network

Recall the earlier: The optimized sources were computed by doing L
steps of the iterated soft thresholding,

h
(j)
`+1 := σβ

(
(I + PjRYRJ − PjJY )h

(j)
` + Pjb

)
, h

(j)
0 = 0.

Here, β > 0 and

R is the matrix of the time-reversal operator, Pj is a projector,

J is the matrix of the low-pass filter, b is a constant vector,

This iteration can be written as an operator recurrent network by using
matrixes of operators.
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Parametrization of the weight matrixes in the network
The weight matrixes A`,iθ ∈ Rn×n have the form

A`,iθ = A`,i ,(0) + A
`,i ,(1)
θ , A

`,k,i ,(1)
θ =

n∑
p=1

θ`,i2p−1(θ`,i2p)T ,

where A`,i ,(0) are fixed matrixes that do not depend on θ,

A
`,i ,(1)
θ are sparse matrixes that are determined by parameters θ`,ip ∈ Rn.

The above iterated soft thresholding can be written as an operator
recurrent network as follows:

The compact operators in the analytic method (e.g. the low pass

filter J) are replaced by sparse matrixes A
`,i ,(1)
θ . These matrixes are

learned from the training data.

Non-compact operators in the analytic method (e.g. the identity
operator I or the time reversal R) determine the fixed matrixes
A`,i ,(0). The matrixes A`,i ,(0) are not learned but determined by the
analytic method.
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Loss function and regularization

Next, we consider a general target function f : Rn×n → Rn.
We want to learn the parameters θ such that the neural network
fθ : Rn×n → Rn approximate the function f : Rn×n → Rn.

Definition

The regularized loss function L with regularization parameter α > 0 is
given by

L(θ,Y ) = ‖fθ(Y )− f (Y )‖2
Rn + αR(θ)

To make the weight matrixes A
`,i ,(1)
θ sparse, we use the `1-norm

R(θ) = ‖θ‖1 =
∑
`,k,p

‖θ`,ip ‖Rn .
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Training a neural network with sampled data

Assume that Y is random and has a priori distribution µ, that is, Y ∼ µ.

Let Y1,Y2, . . . ,YN be independent samples from a priori distribution µ.
Suppose we are given the training set

S = {(Y1, f (Y1)), . . . , (YN , f (YN))}.

Training of the neural network means minimizing the the empirical loss
function,

θ(S) = argmin
θ
L(θ,S),

L(θ,S) =
1

N

N∑
i=1

‖fθ(Yi )− f (Yi )‖2
Rn + α‖θ‖1.
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Definition of the optimal neural network

For a network fθ with parameters θ, the expected loss is

L(θ, µ) := EY∼µ [L(θ,Y )] .

The parameters θ∗ of the optimal neural network fθ∗ : Rn×n → Rn are

θ∗ = argmin
θ
L(θ, µ).
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Neural network vs. analytic solution algorithm

Let fθ0(Y ) be a deterministic approximation of an analytic solution
algorithm (e.g. the analytic solution method for the inverse problem).

A trivial, but important result is that

EY∼µ [L(θ∗,Y )] ≤ EY∼µ [L(θ0,Y )] .

This means that the optimal neural network fθ∗(Y ) has at least as good
expected performance as fθ0(Y ).
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Approximation of the target function by a neural network

Definition

We say that the target function f : Rn×n → Rn can be approximated with
accuracy ε0 by a neural network with a depth L and a sparsity bound R0,
if there is θ0 such that

‖θ0‖1 ≤ R0, (1)

and the network fθ0 satisfies

sup
‖Y ‖≤1

‖f (Y )− fθ0(Y )‖Rn ≤ ε0. (2)

Stability results for the inverse problem for the 1-dimensional wave
equation [Korpela-L.-Oksanen 2018], show that (1)-(2) are valid with
ε0 > 0, L = C log(1/ε0), n = Cε−175

0 , and R0 = Cε−16
0 .
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How well a trained network works?

Next we estimate the expected performance gap between the trained
neural network fθ(S) and the optimal neural network fθ∗ , that is,

Gper (S) =

∣∣∣∣EY∼µL(θ(S),Y )− EY∼µL(θ∗,Y )

∣∣∣∣
Gper (S) is the difference of the expected loss of fθ(S) and fθ∗ .

Also, we estimate the expected generalization error that is the difference of
the empirical loss function and the true loss function for the neural
network fθ(S),

Ggen(S) =

∣∣∣∣L(θ(S), S)− EY∼µL(θ(S),Y )

∣∣∣∣.
Ggen(S) measures how well we can estimate the performance of fθ(S) with
a general input Y by using only the training data.
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Theorem

Let α > 0.
Let S = {(Y1, f (Y1)), . . . , (YN , f (YN))} be the training set that consists
of N independent samples from the distribution µ. Then,

PS∼µN [Ggen(S) ≤ δ ] ≥ 1− C1

(
1

δ

)C2

exp(− 1

50n2‖f ‖4
∞
δ2·N)

where

C1 = exp

(
8L+4n

3
2 (1 + ‖f ‖∞)exp(5‖f ‖2

∞α
−1)

)
,

C2 = 8L+1n exp(4‖f ‖2
∞α
−1),
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Theorem

Suppose the target function f can be approximated with accuracy ε0 by a
neural network with the depth L and the sparsity bound R0.
Let α ≥ ε2

0/R0.
Let S = {(Y1, f (Y1)), . . . , (YN , f (YN))} be the training set that consists
of N independent samples from the distribution µ. Then,

PS∼µN [Ggen(S) ≤ δ ] ≥ 1− C1

(
1

δ

)C2

exp(− 1

50n2‖f ‖4
∞
δ2·N)

where

C1 = exp

(
8L+3n

3
2 (R0 + L + ‖f ‖∞) e6R0α−1/2)

)
,

C2 = 8L+1n e6R0α−1/2.
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Theorem

Suppose the target function f can be approximated with accuracy ε0 by a
neural network with the depth L and the sparsity bound R0.
Let α ≥ ε2

0/R0.
Let S = {(Y1, f (Y1)), . . . , (YN , f (YN))} be the training set that consists
of N independent samples from the distribution µ. Then,

PS∼µN [Gper (S) ≤2δ ] ≥ 1−2C1

(
1

δ

)C2

exp(− 1

50n2‖f ‖4
∞
δ2·N)

where

C1 = exp

(
8L+3n

3
2 (R0 + L + ‖f ‖∞) e6R0α−1/2)

)
,

C2 = 8L+1n e6R0α−1/2.
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Learning travel depth in inverse problem for wave equation
Preliminary numerical tests on solving the inverse problem for a wave
equation with a recurrent operator neural network (without sparsity):
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(b) True depth
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(c) Predicted depth

Sample piecewise-constant wavespeed c(x); True depth τ−1(t) on how deep the
waves propagate as a function of time t; Predicted depth as a function of time.

Numerical details: Training with piecewise-constant medium; 5000 data
pairs, 20% withheld as testing data; Testing error: 6.3e-5; Networks with
16.5M parameters, sparsity regularization is not yet implemented.
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Thank you for your attention!
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