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Some results for hyperbolic inverse problems for linear equations:

» Belishev-Kurylev 1992 and Tataru 1995: Reconstruction of a
Riemannian manifold with time-indepedent metric.
The used unique continuation fails for non-real-analytic
time-depending coefficients (Alinhac 1983).

» Eskin 2008: Wave equation with time-depending
(real-analytic) lower order terms.

» Helin-Lassas-Oksanen 2012: Combining several measurements
for together for the wave equation.




Outline:
» Inverse problems in space-time for passive measurements

» Inverse problem for non-linear wave equation

» Einstein-scalar field equations




Inverse problems in space-time: Passive
measurements

NGC 265,

Star Clusters in the Small Magellanic Cloud
Hubble Space Telescope » ACS/WFC

oy and NASA STSCI-PRCO6-17

Can we determine structure of the space-time when we see light
coming from many point sources that vary in time?
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Definitions

Let (M, g) be a Lorentzian manifold,
where the metric g is semi-definite.

€ € TxM is light-like if g(&,£) =0, £ #0.
€ € TxM is time-like if g(&,¢) < 0.

A curve p(s) is time-like if fi(s) is time-like.

Example: the Minkowski metric in R? is

ds? = —(dx®)? +

(dxh)? + (dx®)? + (dx®)2.



“Worldline” of Defi n itions

amoving object

act

Let (M, g) be a Lorentzian manifold.

— ) - LgM = {¢ € T4MN\ 0; g(€,€) =0},
Séig:': L?;M C LgM is the future light cone,
> JT(q) = {x € M; xis in causal future of q},
Elsewhere
prenis / J=(q) = {x € M; x is in causal past of g},

Yx,e(t) is a geodesic with the initial point (x,§).

(M, g) is globally hyperbolic if

there are no closed causal curves and the set
J=(p1) N JT(p2) is compact for all py, pr € M.
Then M can be represented as M =R x N.




More definitions
Let = pu((—1,1)) C M be a time-like geodesics, p~, p* € p.
We consider observations in a neighborhood V C M of p.
Let U C J=(p')\ J (p~) be an open, relatively compact set.

The light observation set Py(q) for g € U is the intersection of the
future light cone of g and V,

Py (q) = expg(LEM) NV = {yq¢(r) € V; £ € LIM, r >0},




Theorem

Let (M, g) be an open, globally hyperbolic Lorentzian manifold of
dimension n > 3. Assume that i is a time-like geodesic containing
points p~ and p*, and V. C M is a neighborhood of .

Let UcC J=(pt)\ J (p~) be a relatively compact open set.

Then (V, g|v) and the collection of the light observation sets,

Pv(U) = {Pv(q) cVv ' qe U},

determine the set U, up to a change of coordinates, and the
conformal class of the metric g in U.
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Reconstruction of the topological structure of U

i\
Assume that g1, g2 € U are
% ' U such that Py (q1) = Pv(q2).
) Then all light-like geodesics from gy

to V go through g».

Let x; be the earliest point of u N Py(q1).
X1

qz



Reconstruction of the topological structure of U

Assume that g1, g2 € U are

such that Py(q1) = Py(q2).

Then all light-like geodesics from gy
to V go through g».
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Let x; be the earliest point of u N Py(q1).
Using a short cut argument we see that
there is a causal curve from g1 to x1

that is not a geodesic.



Reconstruction of the topological structure of U

Assume that g1, g2 € U are
such that Py(q1) = Py(q2).
Then all light-like geodesics from gy

%
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to V go through g».

Let x; be the earliest point of u N Py(q1).
Using a short cut argument we see that
there is a causal curve from g1 to x1

that is not a geodesic.

This implies that g; can be
observed on p before x;.

X2 \ qz
The map Py : U~ 27V is continuous
\ and one-to-one.
7! a1

As U is compact, the map
Py : U — Py(U) is a homeomorphism.



Possible applications of the theorem
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Left: Variable stars in Hertzsprung-Russell diagram on star types.
Right: Galaxy Arp 220 (Hubble Space Telescope)

Black Hole Flare PS1-10jh in Distant Galaxy = Pan-STARRS = GALEX

Artistic impressions on matter falling into a black hole and
Pan-STARRSI telescope picture.



History of the Universe

Radius of the Visible Universe
Nuclear Fusion Begins
Nuclear Fusion Ends

o01s 3 mi
Age of the Universe

BICEP2: B signal
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The Bicep2 observed gravitational waves in the cosmic microwave
background that are produced in the inflation period.
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“Can we image a wave using other waves?"



Inverse problem for non-linear wave equation

Let M =R x N, dim(M) = 4. Consider the equation

Ogu(x) + a(x) u(x)? = f(x) on My = (—o0, T) x N,

u(x) =0 for x = (x% x1, x%,x3) € (—00,0) x N,

where supp(f) C V, V C M; is open,

3
Dpu=Y |det (g(x))| 3 Efi,, <|det (g(x))ﬁg""(x)a%uv)) :
p,q=0

f e CO(V) is a source, and a(x) is a non-vanishing C>°-smooth
function.

In a neighborhood W C C§(V) of the zero-function, define the
measurement operator (source-to-solution operator) by

Ly : feuly, fewcV).



Theorem

Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension (1 + 3). Let u be a time-like path containing p~ and
pT, V C M be a neighborhood of i1, and a(x) be a non-vanishing
function. Consider the non-linear wave equation

Ogu(x) + a(x) u(x)> = f(x) on My = (—oc0, T) x N,
u=0 in(—o00,0)x N,

where supp(f) C V. Then (V,g|v) and the measurement operator
Ly : f + u|y determine the set J*(p~)NJ (p™) C M, up to a
change of coordinates, and the conformal class of g in the set
JH(pT)nJI=(p").




Idea of the proof.
The non-linearity helps in solving the inverse problem.
Let u=cwy + 2w + 3wz + e*wy + E. satisfy
Ogu+au’=f, on My =(—00, T) x N,
u‘(—oo,O)XN =0

with f = ¢f;, € > 0.
When Q = Dé_,l, we have

wr = Qf,

wo = —Q(awywy),

ws = 2Q(awy Q(awy wy)),

wa = —Q(aQ(awiwr)Q(awy wy))

—4Q(awi Q(awy Q(awy wy))),
IE-|| < Ce°.



Interaction of waves in Minkowski space R*

Let x/, j = 1,2,3,4 be coordinates such that {x/ = 0} are
light-like. We consider waves

u(x)=v-()T, ()7 =1s|"H(s), vER,j=1,234
Waves uj are conormal distributions, u; € I’"+1(Kj), where
Ki = {¥=0}CR* j=1,234
The interaction of the waves u;(x) produce new sources on
Ki2 = Kinky,
K3 = KiN KN Kz =line,
Kizza = KiNKaNKzN Kz ={q} = one point.




Interaction of two waves

If we consider sources f(x) = e1f(1)(x) + e2f(2)(x), &= (e1,¢€2),
and the corresponding solution uz of the wave equation, we have

851 862 © =0

= Q(a Uy - U(2)),

W2(X) =

where Q = D;l and
ugjy = Qfj).

Recall that Kip = K1 N Ky = {x! = x2 = 0}. Since light-like
co-vectors in the normal bundle N*Kjs are in N*K; U N*Kj,

singsupp(W2) C K1 U Ka.

Thus no interesting singularities are produced by the interaction of
two waves.



Interaction of three waves

If we consider sources f=(x) = 2?21 gjf(jy(x), €= (e1,€2,¢3), and
the corresponding solution uz, we have

W3 = 851852853 ug ‘g:()
= Qauqgy- Qaup) - ug))) + ...,

where Q@ = D;l. The interaction of the three waves happens on
the line K123 = K1 N Ko N K.

The normal bundle N*Kio3 contains light-like directions that are
not in N*K1; U N*K, U N*K3 and hence new singularities appear.



Interaction of waves:

The non-linearity helps in solving the inverse problem.
Artificial sources can be created by interaction of waves using the
non-linearity of the wave equation.
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The interaction of 3 waves creates a point source in space that
seems to move at a higher speed than light, that is, it appears like
a tachyonic point source, and produces a new “shock wave” type
singularity.



(Loading talkmoviel.mp4)

Three plane waves interact and produce a conic wave.
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Interaction of four waves

Consider sources f=(x) = 2?21 gifj)(x), €= (e1,€2,¢€3,€4), the
corresponding solution uz, and

Wy = 851852883864“5(X)|5:0’

Since Ki234 = {q} we have N*Kip3q = TgM. Thus, when the
conic waves intersect, an artificial point source appears. We have

singsupp(W4) C (U, K))UZ U LFM,

where ¥ is the union of conic waves produced by 3-interactions.
Above, E;M = equ(L;;/\/l) is the union of future going light-like
geodesics starting from the point q.



Interaction of four waves.

The 3-interaction produces conic waves (only one is shown below).

The 4-interaction produces
a spherical wave from the point g
that determines the light

observation set Py(q).

(Loading talkmovie2.mp4)
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Einstein equations

The Einstein equation for the (—, +, +, +)-type Lorentzian metric
gjk of the space time is

Einjx(g) = Tik,
where
. . | .
Einjk(g) = Ric(g) — 5(&"7 Ricpe(g))gjk-
In vacuum, T = 0. In wave map coordinates, the Einstein equation

yields a quasilinear hyperbolic equation and a conservation law,

&%) 5rp a8+ (X) + Bix(g(x), 98(x)) = Ti(x),

vp(gpj T_Ik) = 0.




One can not do measurements in vacuum, so matter fields need to
be added. We can consider the coupled Einstein and scalar field
equations with sources,

Ein(g) =T, T=T(¢,g)+F1, on(—o0,T)x N,
Ogpe — mP*py=Fs, £=1,2,...,L, (1)
glt<o=8, ¢lico= Gg
Here, g and gg are C*°-smooth and satisfy equations (1) with the
zero sources and

L

Ti(g, ¢) =Y e Oupe — —g,kgpqapw g — —m 2078k
/=1

To obtain a physically meaningful model, the stress-energy tensor
T needs to satisfy the conservation law

Vo(g? Ti) =0, k=1,234.



Definition
Linearization stability (Choquet-Bruhat, Deser, Fischer, Marsden)
Let f = (f1, f2) satisfy the linearized conservation law

Sby f2 Ojd + 38PVofl =0, j=1,2,34 (2)

and let (g, ¢) be the corresponding solution of the linearized
Einstein equation. We say that f has the Linearization Stability
(LS) property if there is g > 0 and families

Fo = (FLF2) = ef + 0(£?),
8 = :?,'\ +eg+ 0(52)7
e = Q/b\"" Ed)'i_ 0(52)’

where ¢ € [0,20), such that (g, ¢) solves the non-linear Einstein
equations and the conservation law

VE(TH(ge, ¢c) + (FLYF) =0, k=1,2,3,4.



Let Vz C M be a open set that is a union of freely falling geodesics
that are near u, L > 5.

Condition A: Assume that at any x € V3 the 5 x 5 matrix

() — (8J$A(X))é§5, j<4
[Aje(x)])e<5 [ (G0 ]

is invertible.

Let /%(Y) be the space of conormal distributions for Y C M.

Theorem

Let condition A be valid, W C Vg be open, and Y C W be a
2-dimensional space-like surface. Assume that f = (f1,f2) € I¥(Y)
satisfies the linearized conservation law and f is supported in W.
Then there is a smoother correction term fo,, € 1X"1(Y) supported
in W such that f + f.o. has a linearization stability property with a
family F. supported in W.



Idea of proof: We formulate the direct problem with adaptive
source functions,

L

. 1
Eini(g) = Pi — )_(Sede + 557)gi + Tiulg. ),
/=1
Ogde — Mgy =Sy, in My, £=1,2.3,...,L,

S@ = Q€+Sgnd(g7¢7v¢v viQv vaP)>

g = g? ¢@ = G/b\b in (_O0,0) x N.

Here @ and Pj, are considered as the primary sources.
The functions Sf”d are constructed so that the conservation law is
satisfied for all solutions (g, ¢).



Let Vz C M be a neighborhood of the geodesic 1 and p~, p* € .

Theorem

Assume that the condition A is valid. Let

D = {(Vg glv,,?lv,Flv,): g and ¢ satisfy Einstein equations
with a source F = (F1,F2), supp (F) C Vg, and
Vi(T*(g, ) + F) = 0}.

The data set D determines uniquely the conformal type of the
double cone (J*(p~)NJ~(pT),8).




Thank you for your attention!



