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Abstract. Diagnostic and operational tasks in dental radiology often require
three dimensional information that is difficult or impossible to see in a
projection image. A CT-scan provides the dentist with comprehensive three
dimensional data. However, often CT-scan is impractical and, instead, only
a few projection radiographs with sparsely distributed projection directions
are available. Statistical (Bayesian) inversion is well-suited approach for
reconstruction from such incomplete data. In statistical inversion, a priori
information is used to compensate for the incomplete information of the
data. The inverse problem is recast in form of statistical inference from the
posterior probability distribution that is based on statistical models of the
projection data and the a priori information of the tissue. In this paper, a
statistical model for three dimensional imaging of dentomaxillofacial structures
is proposed. Optimization and MCMC-algorithms are implemented for the
computation of posterior statistics. Results are given with in vitro projection
data that was taken with a commercial intraoral X-ray sensor. Examples include
limited angle tomography and full-angle tomography with sparse projection data.
Reconstructions with traditional tomographic reconstruction methods are given
as reference for the assessment of the estimates that are based on the statistical
model.
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1. Introduction

The main tool in dental radiology is the X-ray projection image that reveals inner
structure of bone and teeth. However, the obvious drawback of a projection (or
a panoramic) image is irreversible overlapping of structures. Certain diagnostic and
operative tasks often require more precise knowledge of the three dimensional structure
of tissue than is available in single projection image. Such tasks include [3, 8, 25]

• Deciding whether two roots have grown together with common root canal or not.

• Detection of alveolar decease, or bone loss between teeth.

• Implant planning.
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• Finding out whether certain roots have intimate relationship with the inferior
dental canal. This is related to the risk of damaging nerves when removing a
tooth.

• Analysis of the form of the condylar process in the temporomandibular joint.

We consider taking a small number of projection images of the tissue from sparsely
distributed directions using the dentist’s regular X-ray equipment and reconstructing
the 3-D structure of tissue from the projections. More precisely, we consider the
following two types of sparse projection data:

(A) Sparse limited angle data. In intraoral imaging a few projection radiographs are
taken with a small digital sensor in fixed position inside the patient’s mouth. Due
to geometrical restrictions, the X-ray source positions are limited to a cone with
opening angle significantly less than 180◦.

(B) Sparse full angle data. In extraoral imaging the region of interest is imaged
through the head from a small number of sparsely distributed projection
directions.

For both data types, the projection images are often truncated due to small detector
size or in order to minimize dose to vital organs. In these cases the image
reconstruction has the additional complication of local tomography problem. Both
data types, (A) and (B), lead to ill-posed image reconstruction problems (i.e., the
solution is sensitive to measurement errors and/or the problem does not have unique
solution).

It is well-known that traditional CT algorithms, such as filtered backprojection,
are not well-suited for projection data of type (A) or (B) since these data types violate
the assumptions of those algorithms. Despite this conflict between the data and the
assumptions, traditional methods have been widely used for both data types. For data
type (A) a traditional reconstruction method is tuned aperture computed tomography
(TACT) method [32, 15, 36], which is basically equivalent to unfiltered backprojection.
For data type (B) a popular traditional method is filtered backprojection (FBP) in case
of global tomography (i.e., projections are not truncated). For the local tomography
data of type (B), a usual method is Λ-tomography which has been developed for local
tomography problems with non-sparse full-angle projection data [29, 20, 9, 10].

Statistical inversion (SI) is well-suited approach for 3-D reconstruction with both
data types (A) and (B). In statistical inversion, a priori knowledge of the tissue is
used in the image reconstruction problem in order to compensate for the incomplete
information in the sparse projection data. Separate statistical models (probability
distributions) are formulated for (a) the acquisition of the projection data and (b) the a
priori information. Based on these models and the Bayes formula, complete solution of
the inverse problem is obtained as the posterior probability distribution. Final images
of the target are then obtained as point estimates from the posterior distribution. In
contrast to traditional reconstruction methods, the statistical approach gives natural
means for the computation of confidence limits for the estimates.

We propose a statistical model for three dimensional dental imaging. In the
proposed model, we approximate the three dimensional problem by a stack of two-
dimensional problems. In the Bayesian model for each two dimensional problem we
use the following prior models:

(i) For each 2D-slice we use a total variation (TV) prior model. Total variation is a
feasible prior model for dental structures since they are expected to consist of a
few approximately homogeneous regions with sharp, well defined boundaries.
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(ii) To take the 3D nature of the problem into account, a L1-prior is used in the
model for the distance of the current slice from the previous one. This is based
on the assumption that the cross-section of dental structures does not change
much between two consecutive slices.

(iii) Positivity prior, which in short means that X-rays can only attenuate and not
intensify inside tissue.

To illustrate the performance of the model, results with in vitro sparse projection
data are given. For data type (A) we consider two examples. The first example is
a model problem with sparse projection data from a tooth phantom. For this test
case, the ground truth is given by a full-angle reconstruction. The second example
for (A) is reconstruction using truncated intraoral measurements from a realistic
head phantom. For both cases, the maximum a posteriori (MAP) estimates are
presented as reconstructions of the target. For both cases traditional tomosynthetic
(backprojected) reconstructions are shown as reference images for the assessment of
the statistical model. For the first test case, we will also give an illustrative example
of more complete statistical inference from the posterior distribution using Markov
chain Monte Carlo (MCMC) methods.

For data type (B) we consider also two examples. The first example is a model
problem using full-angle sparse projection data from the tooth phantom. MAP
estimates are represented as images of the target and reconstructions with the widely
used filtered backprojection (FBP) method are shown as reference images. The second
test case for (B) is full-angle reconstruction from sparse projection data with truncated
projections from a jaw phantom. MAP estimates are represented as images of the
target. Backprojection and Λ-tomography reconstructions are shown as reference
images.

Application of Bayesian inversion to dental radiology appears to be new. Statistical
methods has been used for data type (B) in [30], however, only likelihood distribution
is used for the reconstruction. With the model introduced in this paper it is possible
to further improve [30] with simultaneous reduction in radiation dose.

This paper is organized as follows. In section 2 we discuss the transformation of
digital radiographs to tomographic data. We also discuss the experimental imaging
geometries used in the examples. In section 3.1 we discuss the statistical model that
is used in this paper. The discussion is mainly based on the theory and models that
were presented in part I of this paper. We also discuss the computation of the point
estimates. A gradient based optimization approach is given for the computation of
the MAP estimate, and then computation of other usual statistics that necessitate
integration is discussed. Results with the experimental data are given in section 4 and
in section 5 we give conclusions.

2. From digital radiographs to tomographic data

The projection radiographs of the targets were acquired using a commercial intraoral
X-ray detector Sigma and a dental X-ray source Focus‡. As explained in section 3.2,
part I of this article, the input data of tomographic algorithms is a collection of line
integrals of the unknown attenuation coefficient function. For each pixel value in each
projection image we need to (a) determine the path of the detected X-ray through
the pixel/voxel grid and (b) the amount of attenuation of the X-ray through that

‡ Sigma and Focus are registered trademarks of Instrumentarium Corp. Imaging Division
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path. We discuss the transformation of the projection data in section 2.1 and the
measurement geometries for the experiments in sections 2.2–2.4.

2.1. From detected pixel values to attenuation measurements

The Sigma detector is based on charge coupled device (CCD) technology and it is
capable of sensing roughly 2000 gray levels. Size of the active imaging area is 34×26mm
and the resolution is 872 × 664 pixels. After exposure, each pixel contains a positive
integer which is directly proportional to the number of X-ray quanta that hit the
pixel’s area.

A detected pixel value p is transformed to tomographic attenuation measurement
P as follows. Let M be the logarithm of the maximum pixel value over all detector
pixels. We define the tomographic data as

P = M − log(p). (1)

What kind of error is introduced by this transformation? The ideal tomographic data
should be the integral of the attenuation coefficient x(s) along the X-ray path L:

P ′ =

∫

L

x(s)ds = log I0 − log I1.

The pixel value p is directly proportional to the final intensity: p = aI1. If the detector
is partly illuminated by direct radiation, we have M ≈ log(aI0) = log a+ log I0. Then

P = M − log(p) ≈ log a+ log I0 − log(a)− log(I1) = P ′.

Thus, the above transformation is a feasible choice for problems in which the distance
and angle of the X-ray source are fixed with respect to the detector and every
projection contains some “air only” observations. Without such observations, log(I0)
needs to be calibrated from imaging parameters.

2.2. Experimental setup for the tooth phantom model problem

In order to get full-angle reconstructions as a reference for the limited angle
reconstructions in the model problem with the tooth phantom, we used the
conventional cone beam CT-geometry, which is shown schematically in Figure 1, for
our laboratory experiments.

The experiments were carried out as follows. The Sigma CCD-detector and the
Focus X-ray source were attached into fixed positions such that the source direction is
normal to the detector array. The distance from the focal spot to the detector array
was 840mm. The tooth phantom, which was a third mandibular molar removed from
a female patient of age 25, was placed on a rotating platform, so that projections
from different angles can be obtained. The distance from the center of rotation to
the detector was 56mm. Left image in Figure 2 shows one raw 872 × 664 projection
image from the experiments, the middle image shows one row (i.e., raw data for one
two-dimensional slice) from the projection image and the right image shows the same
row in form of tomographic data. We note that the white triangles in the lower corners
of the projection image in Figure 1 do not correspond to detected radiation. They
result from the rounded corners of the intraoral detector.

The purpose of the wires that are seen in the lower part of the left image in
Figure 2 is to give information about the location and alignment of the rotation axis
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X−ray source

CCD detector array

Tooth

Figure 1. Cone beam imaging geometry for full angle tomography. This
geometry was used in the experiments with the tooth phantom. Circles denote
the source locations for the full-angle data (23 projections from total view-angle
of 187◦). The projections that were used in limited angle computations (9
projections from view-angle of 68◦) are denoted by black dots within the circles.
For clarity, the location and alignment of the detector with respect to the source
is depicted only for one source location.

in the projection images. In the sum image of all projections, the wires appear as
a sandglass shaped object. The node of this sandglass gives rotation axis for one
slice and the inclination angle of the rotation axis can be obtained by computing the
normal direction to the path in sum image that is drawn by the upper end of the
longer wire. The projection angles were read from a millimeter scale paper that was
attached around the rotating platform of the tooth phantom.

1 664
1863

3287

1 664
0

1.02

Figure 2. Left: 872× 664 projection radiograph from the tooth phantom. Note
that the image is shown with inverted colormap (i.e., black correspond to high
photon counts). Middle: Pixel values of the 200th row from the raw projection
radiograph. Right: Same row in form of tomographic attenuation data.

We note that this experimental geometry corresponds to the case in which the
source and detector array move on a horizontal circle. Thus, the projection directions
are restricted onto a circular arc. Also, the source to detector distance is relatively long
with respect to the physical size of the Sigma detector. These allow us to approximate
the 3D reconstruction problem by a stack of two-dimensional problems with reasonably
good accuracy. The development of purely 3D methods is left to future studies.

Finally, the transpose of each of the transformed projection images correspond to
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one block of the tomographic data for the 3D experiment. As an example, the left
image in Figure 3 shows one column (i.e., line integral data from all projections for one
two-dimensional slice) of this block matrix for the data from the tooth in traditional
sinogram form. The data was collected by taking 23 projections with total 187◦ angle
of view. Referring forward to the first model problem, which is the limited angle
reconstruction from sparse projection data, the right image in Figure 3 shows the part
of sinogram (nine projections with 68◦ angle of view) that was used in the limited
angle reconstructions.

Figure 3. Sinogram for the 200th slice of the projection data from the tooth
phantom. Left: Projections used in this sinogram were collected from 187◦ angle
of view (23 projections with 8.5◦ projection interval). Right: The 68◦ part of the
sinogram that was used for the limited angle reconstructions.

2.3. Measurement geometry for intraoral imaging

In intraoral dental X-ray imaging, the measurement geometry is such that the detector
is in fixed position inside the patient’s mouth and the dentist can move the X-ray
source, which is mounted on a foldable arm, with respect to the intraoral detector.
This geometry is illustrated schematically in Figure 4.

Dental arc

Intraoral sensor

X−ray source positions

Figure 4. Imaging geometry for intraoral measurements. The detector is in fixed
position inside the patient’s mouth. This geometry was used in the test case with
the head phantom.

In this study, this geometry was used for the limited angle experiments with the
realistic head phantom. In the experiments, the Sigma detector was placed in a fixed
position inside the mouth of the head phantom such that it was right behind the teeth
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to be imaged. The X-ray source was mounted on a foldable arm which was used to
move the source on a approximately circular arc with distance of ∼ 590mm from the
detector.

2.4. Measurement geometry for extraoral imaging

In extraoral imaging, the region of interest (ROI) is imaged from different directions
through the head. Typical geometry for extraoral imaging is illustrated in Figure 5.
The patient is kept in fixed position. The source and the detector array are mounted
onto a rotating platform that can be used to move the source and detector array to
different projection angles. There are some dedicated devices for such measurements
[21, 30]. We note that extraoral imaging (as depicted in Figure 5) leads to local
tomography problem.

ROI

X−ray source

CCD detector array

Jawbone

Figure 5. Cone beam imaging geometry for local tomography. This geometry
was used in the last test case with the jaw bone phantom. The source positions for
the experiments (23 projections from view-angle of 187◦) are denoted by circles.
The region of interest (ROI) is denoted by thin line. For clarity, the location
and alignment of the detector with respect to the source is depicted only for one
source location.

Our last test case is extraoral imaging with sparse projection data from a jaw
bone phantom. There the experimental setup was implemented similarly to the setup
explained in section 2.2: The phantom was placed on the rotating platform and
the Sigma detector and X-ray source were mounted into fixed positions. With the
exception of different source to detector distance (1292mm) and center of rotation to
detector distance (88mm), the geometrical details of the experimental setup were the
same as in section 2.2.

3. Statistical inversion in 3D dental imaging

3.1. Statistical model for dental imaging

In this section we discuss the application of the statistical inversion approach to three
dimensional dental imaging. As it was discussed previously, we approximate the 3D
problem by a stack of j = 1, 2, . . . , Nsli two-dimensional problems.
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Let

x(j) =

M∑

i=1

x
(j)
i χi, (2)

where χi is the characteristic function of pixel Ωi in the two-dimensional pixel lattice,
denote the discrete representation of the jth slice in the stack of two-dimensional
slices. In the sequel, we will identify the function (2) by the coefficient vector

x(j) = (x
(j)
1 , x

(j)
2 , . . . , x

(j)
M )T ∈ RM . Further, let

m(j) = Ax(j) + ε(j) (3)

denote the observation model for the jth 2D-problem. In equation (3), m(j) =

(m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
N )T ∈ RN is the vector of tomographic data for jth two dimensional

slice and ε(j) ∈ RN denotes the observation noise. It should be noted that with our
experimental setup, the model matrix is not the same for each 2D slice due to the
possible displacement of the rotation axis between different slices m(j) of the projection
data. Also, the size of the data vector m(j) may vary due to the rounded corners
of the Sigma detector, see Figure 2. However, due to notational simplicity, we use
the notation A

.
= A(j) for the model matrix and N

.
= Nj for the dimension of the

projection data vector in the sequel.
The statistical model we use for dental imaging was introduced in sections 3.1–3.2,

part I of this paper. As the prior model for the two-dimensional slices x(j) of the
dental structures we use the total variation (TV) prior. Within the discretization (2)
of the 2D-attenuation coefficient function, the total variation can be written as

TV(x(j)) =

Ne∑

k=1

lk|∆T
k x

(j)|, (4)

where lk is the length of the edge between the adjacent pixels Ωik1
and Ωik2 , ∆k ∈ RM

is the vector

(ik1) (ik2)
∆k = (0, . . . , 1, 0, . . . , 0, −1, 0, . . . , 0)T,

and Ne is the number of edges (s.t. lk = |∂Ωik1
⋂
∂Ωik2 | > 0) connecting two adjacent

pixels in the 2D lattice.
The total variation prior density for the 2D attenuation coefficient x(j) is defined

as

pTV(x(j)) ∼ e−αTV(x(j)), (5)

where the total variation is calculated using equation (4). The total variation prior can
be considered as a feasible model for dental structures, since it has high probability
density for level set type images which consist of a few (almost) constant attenuation
levels which are bounded by short, well defined boundary lines. The use of TV prior
for the regularization of inverse problems has been discussed for example in [31, 17, 24]
and the use of TV constraints for image enhancement in [4, 5, 6].

To take the three dimensional structure of the target into account in the stack of
two-dimensional reconstructions, we use a (conditional) L1-prior between the slices
x(j) and x(j−1). Let x̂(j−1) denote an estimate for the slice x(j−1) (with initialisation
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x̂(0) = 0). Within the discrete framework, this coupling prior density can be written
in the form

pL1(x(j)|x̂(j−1)) ∼ exp
(
−γ‖x(j) − x̂(j−1)‖L1

)

= exp

(
−γ

M∑

k=1

|Ωk||x(j)
k − x̂

(j−1)
k |

)
. (6)

The L1-prior is concentrated around images x(j) which are close to x̂(j−1) but may
have a few large deviations with small support. For an extensive discussion on this
feature, see the article [7]. We chose the model (6) based on the assumption that
the cross-section of dental structures does not change much between two consecutive
slices.

Taking into account the positivity prior p+(x(j)) for the attenuation coefficient,
equation (19) in part I of this paper, and using equations (5) and (6), the overall
(conditional) prior density for slice x(j) assumes the form

p(x(j)|x̂(j−1)) ∼ p+(x(j)) exp
(
−αTV(x(j))− γ‖x(j) − x̂(j−1)‖L1

)
. (7)

For the observation errors ε(j) we make the assumption that they are Gaussian with
zero-mean (ε(j) ∼ N (0,Γnoise)) and are independent of the attenuation parameters
x(j). Using the theory and the likelihood model that were given in sections 3.1-3.2,
part I of this paper, the posterior density for the jth two-dimensional problem assumes
the form

p(x(j)|m(j), x̂(j−1)) ∼ p+(x(j)) exp
(
−F (x(j), x̂(j−1))

)
, (8)

where

F (x(j), x̂(j−1)) =
1

2
‖m(j) −Ax(j)‖2

Γ−1
noise

+ αTV(x(j)) + γ‖x(j) − x̂(j−1)‖L1 . (9)

As it was explained in section 3.1, part I of this paper, the posterior density
constitutes the complete solution of the inverse problem in the statistical sense. To
summarize and visualise the statistical solution of the inverse problem one needs to
compute different statistics from the posterior distribution. Most common choices
include the maximum a posteriori (MAP) and conditional mean (CM) estimates,
covariance/correlation matrices and marginal densities together with confidence
intervals [12, 14, 17]. In the following, we explain the computation of the MAP
estimate and then the computation of other, integration based posterior statistics
using MCMC methods is briefly discussed.

3.2. Computation of the MAP-estimate

The most usual estimate from the posterior is the maximum a posteriori (MAP)
estimate which is defined through the relation

p(x
(j)
MAP|m(j), x̂(j−1)) = max(p(x(j)|m(j), x̂(j−1))).

As discussed in section 3.5, part I of this paper, the computation of the MAP-estimate
from the posterior density in equation (8) amounts to finding the parameter vector
that satisfy

x
(j)
MAP = arg min

x(j)≥0
F (x(j), x̂(j−1)),
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where F (x(j), x̂(j−1)) is as in equation (9). We intend to find the estimate x
(j)
MAP by

applying gradient based optimization methods. However, here we face two difficulties.
First, the total variation and L1-prior functionals are non–differentiable, due to the
presence of the absolute value function. To overcome this problem, we use the smooth
approximation

|t| ≈ hβ(t) =
1

β
log(cosh(βt)), (10)

where β > 0 is a parameter adjusting the accuracy of the approximation. The
approximation hβ(t) with the value β = 200 (that is used in this study) and the
absolute value function |t| are shown between the interval t ∈ [−0.1 0.1] in Figure 6.

−0.1 0 0.1
0

0.1

Figure 6. Absolute value function |t| (solid line) and the approximation hβ(t)
(dashed line), equation (10), of the absolute value function in the interval
t ∈ [−0.1, 0.1]. In the approximation hβ(t), value β = 200 was used.

Using the approximation (10), the approximate total variation is obtained as

TVβ(x(j)) =

Ne∑

k=1

lkhβ(∆T
k x

(j)) (11)

and the approximate L1-norm, which we denote by L1
β(·), is obtained as

L1
β(x(j) − x̂(j−1)) =

M∑

k=1

|Ωk|hβ(x
(j)
k − x̂

(j−1)
k ). (12)

Using these approximations for TV and L1-functionals, the objective functional (9) is
approximated by a differentiable functional of the form

Fβ(x(j), x̂(j−1)) =
1

2
‖m(j) −Ax(j)‖2

Γ−1
noise

+ αTVβ(x(j)) + γL1
β(x(j) − x̂(j−1)). (13)

Referring to the results about singularities that are reconstructible from limited angle
data [26] (see also the review in section 2, part I of this paper), we show in Appendix B
that the MAP-estimate with the TVβ-prior does not destroy any of these singularities.
In other words, one can expect to see in the MAP-estimate with the TVβ-prior at least
the same singularities that are seen in backprojection reconstruction.

The second problem in the computation of the MAP-estimate comes from the
positivity constraint which is due to the positivity prior p+(x(j)). To take the positivity
prior into account, we use use an exterior point search [11]. In the exterior point search,
the original constrained problem is approximated by a sequence of unconstrained
problems

x
(j,t)
MAP = arg min

{
Fβ(x(j), x̂(j−1)) + Υ(t)(x(j))

}
, (14)
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where Υ(t)(x(j)) is a penalty functional that is used to penalize the negative
components of the solution x(j) and the superindex x(·,t) refers to the tth problem
in the sequence of {t = 1, . . . , P} unconstrained problems. Using a suitably chosen
sequence of penalty functionals {Υ(t)(x(j)), t = 1, . . . , P}, the exterior point method

forces the sequence of solutions {x(j,t)
MAP, t = 1, . . . , P} (asymptotically) to the feasible

region x(j) ≥ 0. Then, the solution of the constrained problem is approximated by

x
(j)
MAP ≈ x

(j,P )
MAP.

In this paper we use a penalty functional Υ(t) of the form

Υ(t)(x(j)) =
M∑

k=1

φ(t)(x
(j)
k ), (15)

where

φ(t)(x
(j)
k ) =

{
ςt(x

(j)
k )2 , x

(j)
k < 0

0 , x
(j)
k ≥ 0

, (16)

and {ςt, t = 1, 2, . . . , P} is a sequence of increasing positive numbers.
In this study the MAP-estimates (14) are computed using the gradient-based

Barzilai-Borwein method [1].

3.3. The gradient descent method of Barzilai and Borwein

We briefly describe here the gradient-based method for unconstrained large-scale
optimization introduced by Barzilai and Borwein [1]. We chose this method based
on the facts that i) the inversion of Hessian matrix is excessively heavy task due to
the large dimension (M) of the problem and ii) the computation of the gradient for
the objective functional (14) is relatively cheap, enabling relatively fast computation
of multiple iterations. Further, gradient based methods are advantageous also in the
sense that a more accurate approximation (larger β) for absolute value function can
be used. This is due to the fact that we do not need to invert matrices that contain
second derivatives of hβ(t).

In the sequel, we use the notation x(j,t,`) to denote the `th iterate for the tth

problem in the sequence of unconstrained problems for the jth slice.
For the problem (14), the Barzilai-Borwein iteration can be written as

x(j,t,`+1) = x(j,t,`) − a−1
` d(j,t,`), (17)

where the search direction is of the form

d(j,t,`) = ∇Fβ(x(j,t,`)) +∇Υ(t)(x(j,t,`)) (18)

and the step-length parameter a` is computed as

a` =
(x(j,t,`) − x(j,t,`−1))T(d(j,t,`) − d(j,t,`−1))

(x(j,t,`) − x(j,t,`−1))T(x(j,t,`) − x(j,t,`−1))
. (19)

The vector ∇Fβ(x(j)) in equation (18) is of the form

∇Fβ(x(j,t,`)) = −ATΓ−1
noise(m(j) −Ax(j,t,`))

+ α∇TVβ(x(j,t,`)) + γ∇L1
β(x(j,t,`) − x̂(j−1)), (20)

where the elements of the vector ∇TVβ ∈ RM are obtained as

(
∇TVβ(x(j,t,`))

)
m

=

Ne∑

k=1

lkh
′
β(∆kx

(j,t,`))∆k,m (21)
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and the elements of the vector ∇L1
β ∈ RM are obtained as

(
∇L1

β(x(j))
)
m

= h′β(x(j,t,`)
m − x̂(j−1)

m )|Ωm|. (22)

In equations (21)-(22) h
′
β(·) denotes the first derivative of hβ(·). The entries of the

vector ∇Υ(t)(x(j,t,`)) are of the form
(
∇Υ(t)(x(j,t,`))

)
m

= 2ςt(x
(j,t,`)
m )I(x(j,t,`)

m < 0) (23)

where I(x
(j,t,`)
m < 0) denotes the indicator function for the event x

(j,t,`)
m < 0.

3.4. Markov chain Monte Carlo methods

Whereas the computation of the MAP-estimate is an optimization problem, the
computation of other usual posterior statistics are problems of integration over a
high dimensional parameter space. As discussed in part I of this paper, these tasks
necessitate the use of Monte Carlo integration techniques in the case of non-Gaussian
posterior density, such as the density function given in equations (8-9).

The basic idea in Monte Carlo integration is to generate a large, representative
ensemble {x(j,`), ` = 1, 2, . . . , S} ⊂ RM of random ”sample images” from the posterior
density p(x(j)|m(j), x̂(j−1)) and then approximate the integral of function f(x(j)) with
respect the posterior distribution by the sample mean, that is,

∫

RM
f(x(j))p(x(j)|m(j), x̂(j−1))dx(j) ≈ 1

S

S∑

`=1

f(x(j,`)). (24)

Often the posterior models for inverse problems, such as the model given by equations
(8-9), are such that direct drawing of independent sample images is impossible.
In Markov chain Monte Carlo (MCMC) methods the representative ensemble of
(dependent) sample images are obtained by generating a realisation of a Markov chain
which has its stationary distribution defined by the given posterior density [14, 12].
A more detailed discussion on MCMC methods is given in section 3.6, part I of this
paper.

In case of X-ray tomography the large dimension (M > 104 for a 2D slice)
of the parameter space RM makes the MCMC-sampling computationally a very
demanding task. However, in order to give an illustrative example of more ”complete”
statistical inference from the posterior distribution, we carry out MCMC analysis for
the posterior distribution of one two-dimensional problem (i.e., for one slice x(j)) in the
first test case, which is the limited angle problem with data from the tooth phantom.
The development of efficient MCMC schemes that can be used to carry out inference
for 3D reconstruction problems, are left to future studies.

4. Results

4.1. Limited angle tomography from sparse projection data of a tooth

As the first example of data type (A), see section 1, we consider the model problem of
limited angle tomography with sparse projection data (9 projections from view-angle
of 68◦) from a tooth phantom. As it was discussed in section 2.2, the projection images
from the tooth phantom were collected using the conventional CT geometry instead
of using the fixed detector geometry, which is more typical geometry in clinical dental
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studies. However, the results for limited angle tomography in these two geometries
are qualitatively very similar. We chose to use the conventional CT geometry in
order to get full angle reconstructions as the “ground truth” for the limited angle
reconstructions in this test problem. The experimental setup is explained in detail in
section 2.2.

Results are shown in Figures 7 and 8. The left colum in Figure 7 shows MAP-

estimates x
(j)
MAP for four slices with full-angle data that was collected from view angle

of 187◦ with projection intervals of 8.5◦ (23 projections). With this set of projection
images the size of the data vector m(j) for each two dimensional problem is N = 15272.
Figure 3 shows one slice m(j) of this data in traditional sinogram form. It should be
noted that if the vector m(j) contain values that correspond to the rounded corners
of the detector, these values are neglected simply by removing respective rows from
m(j) and A.

The domain Ω in the computation of the two dimensional images shown in Figure
7 was a 26× 26mm2 square which was divided into a regular M = 166× 166 = 27556
pixel lattice, leading to pixel size of ∼ 0.16× 0.16mm2.

The left column of Figure 8 shows four vertical slices of the (approximate)
three dimensional reconstruction with the full-angle data. The three dimensional
reconstruction was obtained as a stack of Nsli = 600 two-dimensional reconstructions.
Each of the two-dimensional slices represent 0.045mm thick slice of the three
dimensional data, leading to vertical size of 26.1mm for the images in Figure 8. The
horizontal size of the images in Figure 8 is the same as in Figure 7, that is, 26mm.
Note that the first and fourth slice in Figure 8 are chosen approximately from the
front and back surfaces of the tooth.

The MAP-estimates with the full-angle data, left columns of Figures 7-8, are based
on the statistical model described in section 3.1. For the covariance matrix Γnoise of
the observation errors we used the trivial choice Γnoise = σ2

nI, i.e., we assumed that the
noise is statistically independent Gaussian noise with equal variance in each direction.
The noise variance σ2

n was estimated from the projection data. This was achieved by
taking one approximately homogeneous ”air-only” sample (100 × 50 detector pixels)
from one transformed projection image, and then computing estimate for σ2

n based
on this sample. As the result, we had value σ2

n = 0.0004. In practice, a better
estimate for the noise statistics can be obtained from a repeated set of phantom
measurements and/or careful analysis of the measurement system. The determination
of the accurate noise statistics for the Sigma sensor and the assessment to which extent
the reconstruction results improve using a better noise model, are left to future study.
The analysis given in section 3.2, part I of this paper suggests, however, that the
Gaussian approximation is acceptable.

The prior parameters were chosen by visual inspection from a set of reconstructions
with different parameters. With the full-angle data we used α = 1250, γ = 1250 and
{ςt, t = 1, 2, . . . , 5} was a linearly increasing sequence from 12500 to 3.75 · 105. The
parameter β in the approximation (10) for the absolute value function was β = 200.
The MAP-estimates were computed using the Barzilai-Borwein method. We computed
6 iteration steps for each problem in the sequence of 5 unconstrained problems and
then result from the 5th unconstrained problem was used as an approximation for the

MAP-estimate x
(j)
MAP.

The second column in Figures 7-8 show respective slices of an approximate 3D
reconstruction with limited angle data that was collected from view angle of 68◦
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Figure 7. Left column shows horizontal slices (MAP-estimates) from full angle
data with the TVβ-prior. The full-angle data consisted of 23 projections from total
view-angle of 187◦ (projection interval 8.5◦). The other two columns show MAP-
estimates with the TVβ-prior (center column) and tomosynthetic reconstructions
(right column) from limited-angle data. In the limited angle case, nine projections
from view-angle of 68◦ were used.

with projection intervals of 8.5◦ (9 projections). The size of the data vector m(j) for
each slice was N = 5976. The right image in Figure 3 shows this 68◦ part of the
data, that was used in limited angle computations, for one slice in sinogram form.
The prior parameters in the limited angle case were the same as in the full-angle
reconstruction. The right columns in Figures 7-8 show the respective slices for a
tomosynthetic (backprojection) reconstruction from the same limited angle data with
view angle of 68◦. For details of the tomosynthesis, see [32, 15, 36].

As can be seen from Figures 7-8, the limited angle MAP-estimates with our
statistical model are good in this test problem. Further, the statistical reconstructions
are sharper and clearer than the traditional tomosynthetic reconstructions. This is
especially evident in the depth direction where the information content of the limited
angle projection data is poor. This clear difference in the images gives an illustration
for the effect of well chosen prior model in limited angle tomography. Also, note that
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Figure 8. Left column shows four vertical slices of the (approximate) 3D
reconstruction from full angle data (23 projections from view-angle of 187◦)
with the TVβ-prior. The other two columns show 3D reconstruction with the
TVβ-prior (center column) and tomosynthetic reconstruction (right column) from
limited angle data. In the limited angle case, nine projections from view-angle of
68◦ were used.

the tomosynthetic reconstructions give an experimental illustration for the analysis
about features that are reconstructible based on limited angle projection data in [26].
A brief review of this analysis is given in section 2, part I of this paper. Given Figure
7, see also Figure 3 in part I of this paper.

We note that the test case in Figures 7-8 is unrealistic (from the clinical point
of view) in the sense that the tooth phantom had no surrounding tissue whereas
in practical situations this is always the case. However, the purpose of this example
was to test the performance of our statistical model for limited-angle tomography with
sparse projections without the added complications coming from the local tomography
geometry. We consider a more realistic and complicated case in section 4.3, in which
we consider reconstruction from limited angle data that was collected from a head
phantom.
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4.2. Example of MCMC-analysis for the tooth data

To give an illustrative example of more complete Bayesian inference, we conducted
MCMC-analysis for one slice x(j) of the limited angle data that was used in section
4.1. Since the MCMC-analysis was conducted for only one slice, the coupling prior
density pL1

(x(j)|x̂(j−1)) was not included in the posterior model.

The MAP-estimate x
(j)
MAP for the chosen slice with the approximate TVβ-prior

is shown in the left image in Figure 9. The MAP estimate was computed using
the Barzilai-Borwein method. The parameters α,σ2

n of the posterior density, the
smoothing parameter β for the approximation of absolute value function and the
extrior point search parameter sequence {ςt} were the same that were used in the
previous section.

Using the (approximate) MAP-estimate as the initial state in the simulation, we
generated an ensemble of 15000 sample images using the Gibbs sampler [13]. For more
detailed discussion on Gibbs sampling, see section 3.6, part I of this paper. It should be
noted that the Gibbs sampler algorithm samples the original posterior model without
any approximations to the TV and positivity priors. Detailed description of a similar
algorithm that was applied to electrical impedance tomography problem can be found
in [17, 19].

The image on the right in Figure 9 shows the conditional mean estimate x
(j)
CM

computed as ergodic average based on the simulated Markov chain, see equation (24).
The left image in the top row of Figure 10 shows the estimated variances for each pixel,
that is, the diagonal entries of the posterior covariance matrix. Notice that the largest
uncertainty in the posterior is in the directions corresponding to the pixels located at
the boundaries of the tooth. The other plots in Figure 10 show the marginal posterior
densities of single pixels marked in the variance image.

Figure 9. Statistical inference from the posterior distribution for one slice of
the tooth data. Nine projections from view angle of 68◦ was used as the data.
Left: MAP-estimate with the (smooth) TVβ-prior. Right: CM-estimate with the
original TV-prior.

The proper interpretation of the results in Figures 9-10 require care. For example,
given a set of 100 realisations of the projection data from the same model, one would
be tempted to say that (roughly) in 90 cases the 90% confidence limits would include
the true value of the X-ray attenuation coefficient.

However, this interpretation would be incorrect. The key point here is that the
posterior distribution reflects our uncertainty based on the i) projection data and ii)
the prior information. The pitfall here is that the true attenuation coefficient may have
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Figure 10. Statistical inference from the posterior distribution for one slice of
the tooth data. Nine projections from view angle of 68◦ was used as the data.
Top left: Estimated posterior variance for each pixel (i.e., the diagonal entries
of the posterior covariance matrix). Top right and bottom : Marginal densities
of single pixels, which are marked in the variance image. Solid line denotes the
conditional expectation, dashed lines the 90% confidence limits and the dotted line
the initial value (approximate MAP-value found by the Barzilai-Borwein method
with TVβ-prior).

small probability with respect to the postulated prior model. The ill–posedness of the
problem with sparse tomographic data necessitates that the priors are informative
with respect to certain subspaces from which the likelihood (i.e. the projection data)
carries only little information. This problem is reflected in the fact that the results
are usually sensitive to the selection of the prior. Summarizing, the confidence limits
are reliable only in relation to our confidence in the chosen prior. Thus, the choice
and construction of the prior model is a crucial step in statistical inversion. See also
the discussion about visualization of priors in section 3.4, part I of this paper.

4.3. Limited angle reconstruction of the head phantom

As the second test problem for limited angle tomography for data type (A), we consider
reconstruction based on sparse truncated projection data from a head phantom. Using
the measurement setup that is explained in section 2.3, seven projection images were
taken with approximately equal projection intervals from total view angle of 59.7◦.
This represents roughly the maximum view angle that can be used in practice. Left
image in Figure 11 shows one raw projection image from this data set, the middle
image shows one row of detected pixel values from the projection image and the right
image shows one slice m(j) of the transformed data in sinogram form. The size of the
vector m(j) is N = 6104. The projection images were transformed to line integral data
with the approximation explained in section 2.1. With the fixed detector geometry
used in this example this means that the possible angular dependency of the efficiency
of the Sigma detector is neglected.
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Projection angles were computed based on the images of the reference ball that
was attached in front of teeth with distance of 14mm from the detector array. This
metal ball is seen above the middle tooth in left image in Figure 11. The shift of the
ball in the projection images was measured, and using this information and known
ball-detector distance the angles were obtained by simple trigonometric relations.

Note that in this more realistic example, all the teeth that are imaged are not visible
in all projection images. This is also evident from the sinogram which is truncated
from the lower side (i.e, it does not go to zero in the lower side). Thus, in addition of
being a limited angle case, the problem contains features of local tomography problem.

1 872
2101

3604

Figure 11. Left: Raw 664×872 projection image from the head phantom (black
correspond to high counts). Middle: Detected pixel values for the 300th row of
the projection image. Right: Sinogram for the 300th horizontal slice. The data
consisted of 7 projections that were collected from 59.7◦ angle of view. Note that
the sinogram does not go to zero from the lower side. This reflects the fact that
the problem has features of local tomography.

The results for the head phantom case are shown in Figure 12. The left column
shows four vertical slices of a tomosynthetic reconstruction and the right column shows
respective slices of an approximate 3D reconstruction that was obtained as stack of
Nsli = 664 two-dimensional MAP estimates with the TVβ-prior. In the computation
of the 2D slices, the width of the two dimensional rectangular domain Ω ⊂ R2 was
61.25mm and the depth was 25mm, respectively. The domain Ω was divided into
a M = 400 × 160 = 64000 pixel grid, leading to pixel size of 0.153 × 0.156mm2

(width×depth). The MAP-estimates were computed using the methods described in
section 3. The posterior parameters were the same as in section 4.1.

As can be seen, the statistical approach with the TVβ-prior yields good
reconstructions in this more realistic and difficult test case. The effect of well
chosen prior is also seen clearly in Figure 12: Statistical inversion can capture
relatively accurately the three dimensional structure of the teeth despite the poor
depth information content of the limited angle projection data. Further, slices from
the statistical reconstruction are sharper than tomosynthetic slices.

4.4. Full-angle tomography with sparse projection data

As the first test problem for data type (B) we consider full-angle global tomography
problem with sparse projection data. The data was collected with same imaging
geometry that is explained in section 2.2 and from the same tooth phantom that was
used in section 4.1.

The results for this example are shown in Figure 13. Each image is a reconstruction
of the same two-dimensional slice. The domain Ω and the number of pixels in the
images are the same as in Figure 7, that is, the domain is 26×26mm2 and the number
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Figure 12. The left column shows four vertical slices of a tomosynthetic, or
backprojected, reconstruction from limited angle data (seven projections from
59.7◦ view-angle). The right column shows respective slices of an approximate
3D reconstruction with the TVβ-prior from the same data.

of pixels is 166× 166 with pixel size 0.16× 0.16mm2. The data that was used for the
reconstructions in the first column of Figure 13 was collected from a view-angle of 204◦

with regularly spaced projection intervals of 8.5◦ (total 25 projections, size of data
vector m(j) is N = 16600). In the second column, the total view-angle was the same
but only 13 regularly spaced projections were used, leading to a projection interval
of 17◦ (N = 8632). In the third column number of projections was 7 with projection
interval of 34◦ (N = 4648) and in the fourth column the number of projections was 5
with projection interval of 51◦ (N = 3320).

The top row shows reconstructions with the filtered back projection (FBP)
algorithm and the bottom row MAP estimates with the same statistical model that
was explained in section 3 and used in Figures 7-8. The noise covariance and prior
parameters for the statistical method were the same that were used in Figures 7-8.

For the FBP-reconstructions, the 664 element projection data vectors for each
slice were averaged into bins of four data points, leading to data vector of 166
elements in each projection. With this operation, the pixel size for the FBP
reconstruction becomes the same that was used in the statistical approach. Further,
this operation improves the signal to noise ratio in the data for FBP, leading to less
noisy reconstructions with the cost of reduced resolution. To de-emphasize the effects
of (high-frequency) observation noise, Hanning-window was applied to the filtering of
the projections in the frequency domain. Nearest neighbour interpolation was used
in the backprojection process. For details on theory and implementations of FBP-
methods, see e.g. [18, 23] and references therein.

As can be seen from Figure 13, the statistical approach provides good
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Figure 13. Full-angle (204◦) reconstructions using different amount of
projections. Columns from left to right: 25 projections (projection interval
8.5◦), 13 projections (17◦), 7 projections (34◦) and 5 projections (51◦). Top
row: Filtered back projection. Bottom row: MAP-estimates with the TVβ-prior.

reconstructions of the tooth. The MAP-estimate in the second column with projection
interval 17◦ is almost as good the first one with projection interval of 8.5◦. Whereas the
MAP-estimate in the third column (projection interval 34◦) provide useful information
about the shape and size of the tooth, the fourth one (angular projection interval 51◦)
gives only a crude approximation for the size and shape of the target. Also, it can
be seen that the MAP-estimates with the statistical model are less noisy than the
reconstructions with the FBP-method. It is evident from Figure 13 that the statistical
approach is more robust against large projection interval than the FBP method.

4.5. Local tomography from sparse projection data

As the last test case we consider a realistic example of extra-oral imaging using full-
angle sparse projection data from a jaw bone phantom. This is an example of data
type (B) with truncated projections. The cone beam measurement geometry for these
experiments is illustrated in Figure 5. Using the experimental setup explained in
section 2.4, we took 23 equally spaced projection images with total view angle of
187◦ (projection interval 8.5◦) from the jaw bone phantom. Three of these projection
images are shown in Figure 14. Referring forward to the results in Figure15, the
projection image on left in Figure 14 was taken from the direction of positive x-axis
(i.e, from right to left) with respect the reconstructed slice. The other two projections
images in Figure 14 are from angles of 76.5◦ and 153◦ to counterclockwise direction
with respect the positive x-axis in the reconstructed slice, respectively.

The left image on bottom row in Figure 14 shows one slice of this projection data
in sinogram form. In the sinogram that is shown in the right image on the bottom
row, only 12 projections with projection interval of 17◦ were used. As can be seen
from Figure 14, this test case leads to local tomography problem with full-angle sparse
projection data.

The results for this example are shown in Figures 15-16.
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Figure 14. Top row: Three 872× 664 projection images from the jaw phantom.
The images are (approximately) from orthogonal directions. Bottom Row:
Sinograms for one slice of the jaw phantom data with projection intervals of 8.5◦

(left) and 17◦ (right). The projection images and the sinograms reveal clearly the
local tomography nature of the reconstruction problem.

In Figure 15 each image is a reconstruction of the same two-dimensional slice. The
domain Ω ⊂ R2 in the images is 78× 78mm2 square which was divided into a regular
498× 498 = 248004 pixel lattice with pixel size 0.156× 0.156mm2. The data that was
used for the reconstructions in the top row of Figure 15 was collected from a view-
angle of 187◦ with regularly spaced projection intervals of 8.5◦ (total 23 projections,
number of data N = 15272). In the bottom row, the total view-angle was the same
but only 12 regularly spaced projections were used, leading to a projection interval of
17◦ (N = 7968).

The left column shows reconstruction with the Λ-tomography, middle column the
tomosynthetic (backprojection) reconstructions and the right column MAP estimates
with the statistical model that was explained in section 3 and used in earlier test cases.
The parameters for the statistical method were the same that were used in Figures
7-8. The idea of Λ-tomography is discussed briefly in Appendix A.

Figure 16 shows the central part (166 × 166 pixels) that includes the region of
interest (ROI) for the respective reconstructions in Figure 15.

As can be seen from Figures 15-16, the MAP-estimates with the TVβ-prior are
relatively good also in this difficult test problem of extraoral imaging. When using
all the 23 projections, the structure of the teeth that are located in the region of
interest was recovered with good accuracy. In the case of using only 12 projections
with projection interval of 17◦, the structure of the same teeth was recovered with
almost as good accuracy. A notable and typical local tomography feature in the
reconstructions are the “back projection artifact” type details outside the region of
interest. These are evidently due to tissues that are visible possibly only in one or
two projection images. Also, as can be seen from Figures 15-16 the images that
are based on the statistical approach are better than the traditional backprojection
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Figure 15. Reconstructions from local sparse projection data (total view-angle
of 187◦) from the jaw bone phantom. Top row: 23 projections with projection
interval of 8.5◦. Bottom row: 12 projections with projection interval of 17◦.
Columns from left to right: Λ-tomography, tomosynthesis (backprojection) and
MAP-estimates with the TVβ-prior.

Figure 16. Regions of interest (ROI) from the local tomography reconstructions
in Figure 15. Rows and columns are as in Figure 15.

reconstructions or the Λ-tomography reconstructions. Based on Figures 15-16, it seems
that the statistical model would be useful in clinical studies of extraoral imaging.

5. Conclusions

Consider the following example of three-dimensional X-ray imaging. A dentist wants
to know whether the roots of a certain tooth are close to the inferior dental canal.
This is related to the risk of damaging nerves when removing the tooth. Often a single
intraoral radiograph is not enough for answering this question due to overlapping of
structures. So he takes, say, five digital intraoral projection radiographs using a X-ray
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source and a digital intraoral X-ray sensor choosing the directions of the images so
that the images of the roots and the nerve canal are clearly separate in some of the
images. The projection images together with knowledge of imaging geometry are given
as input to a reconstruction algorithm. Resulting three-dimensional reconstruction is
examined on computer screen and the diagnostic question answered.

The above type of three-dimensional imaging is not standard practice today. One
reason for this is the lack of a flexible, fast, high-quality reconstruction algorithm for
such imaging. It is evident from part I of this paper that such an algorithm should
be able to use a priori information of the tissue to compensate for the incomplete
information provided by few radiographs.

In this paper, we proposed a novel statistical model to three dimensional dental
X-ray imaging with sparse projection data. In the model, the three dimensional
reconstruction problem is approximated with a stack of two dimensional problems.
Our model for a priori information includes total variation and positivity priors
for each two dimensional slice, and the three dimensional nature of the problem
is taken into account through a coupling L1-prior between consecutive slices. A
gradient-based optimization method was implemented for the computation of the
MAP-estimates and a MCMC-algorithm for the computation of point estimates that
necessitate integration. The performance of the model was evaluated based on in vitro
projection data that was collected using a X-ray source and intraoral CCD-detector
from a dentist’s regular equipment. Reconstructions with traditional reconstruction
methods were given as reference for the estimates with the statistical model. Four
different test cases with sparse projection data were considered. It was seen that the
statistical approach gave good results in all test cases. Furthermore, the statistical
model gave improvement over traditional methods in all cases. Thus, the proposed
statistical model seems promising for 3D imaging of dentomaxillofacial structures with
sparse projection data.

In this study, the approximation of the three dimensional problem by a stack of
two dimensional problems was made due to heavy computational demands of purely
three dimensional case. The computation of the approximate 3D reconstructions that
are shown in Figures 7-8 took approximately 6 hours using MatLab (version 5) on
a PC computer with a 1GHz Pentium processor (number of unknowns for each 2D
slice M = 27556). For the approximate 3D reconstruction in Figure 12 the respective
time was approximately 8 hours (number of unknowns for each 2D slice M = 64000).
However, it is our belief that these computational times can be reduced to class of a
few minutes with an optimized implementation on a more basic level programming
platform.

The computation of the purely three dimensional reconstructions (number of
unknowns M � 106) with our current implementation and devices is not possible
due to the excessive memory requirement of matrix A. However, the extension of the
methods to purely 3D reconstruction is one of the main topics in the future work.
This work is under way.

The development of more effective MCMC-codes is also a topic of future work.
These are more likely to be realizable in cases in which the prior model and structure
of the tissue can be well described in a lower dimensional parametric basis. The
approximations of different tissues by low dimensional parametric models is one topic
of future work.

We also wish to start in vivo tests with the proposed approach in near future. In
addition to dental imaging, we believe that the proposed statistical model can also
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prove to be useful in other applications with “level set” type targets.
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Appendix A. Λ-tomography

A traditional reconstruction method that has been developed for local tomography
is the so-called Λ-tomography. As in the main body of this paper, let s ∈ Ω ⊂ R2

denote the position vector and x : Ω 7→ [0,∞) denote the X-ray attenuation coefficient
function. The idea of Λ-tomography is based on the result that it is possible to recover
Λx, where Λ is a Calderón operator, instead of the attenuation coefficient x itself from
continuous local full-angle data [29, 20, 9, 10].

The Calderón operator Λ is defined using the Fourier transform as

Λ̂x(ξ) = |ξ|x̂(ξ),

where x̂(ξ) =
∫
R2 exp(−is · ξ)x(s)ds for any ξ ∈ R2. This is satisfactory since Λ acts

very much like a differential operator and enhances jumps (edges) of x. Further, it does
not introduce sharp artifacts, only blurred ones. However, values of the attenuation
coefficient x cannot be read from Λx, only the jumps are faithfully recovered.

Based on the article [29], Kenrick Bingham [2, Formula (3.33)] wrote the
reconstruction formula as

e ∗ (Λx) = C

∫ 2π

0

∫ 2π

0

∆Pθe(Eθ(s− a))(Dax(θ) +Dax(−θ))|a · ~θ|dφdθ, (A.1)

where a = a(φ) = R(cosφ, sinφ) is the location of the X-ray source, C is a constant,
e is a smooth point spread function that approximates the Dirac delta function, ∆
is the Laplace operator, Pθ is the parallel beam tomographic data (i.e., transformed

projection radiograph), angle θ defines a unit vector ~θ = (cos(θ), sin(θ)) which in turn
specifies the propagation direction of the X-rays (travelling from point a to direction

θ̂), Da is the divergent beam (or fan-beam) tomographic data, ~θ is a unit vector

parametrized by angle θ, Eθ is orthogonal projection onto ~θ⊥ and ∗ denotes two-
dimensional convolution.

The use of the point spread function e eliminates infinite values of Λf . Let
e : R2 → R be the radial function defined by

e(r) =

{
π
5 (r + 1)4(r − 1)4 for 0 ≤ r ≤ 1,
0 for 1 < r.

(A.2)

Note that
∫
e = 1. The function ∆Pθe can be computed explicitly.

Appendix B. Reconstruction of singularities with the TVβ-prior

In this appendix we consider singularities appearing in the MAP-estimate with the
TVβ-prior. The purpose is to show that the TVβ-prior does not destroy any of the
singularities that are reconstructible based on the limited angle data alone.
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We consider the continuous model, where x = x(s) is the attenuation function
defined in domain Ω ⊂ R3 and the measured data corresponds to the line integrals

m(L) = Ax(L) + ε(L), Ax(L) =

∫

L

x(s)ds.

Here the variable L is a line connecting a source to detector D, where D is assumed
to be a subset of a plane. We denote by G the set of lines L along which we can
do measurements and introduce coordinates on G by using the point (s1, s2, s3) ∈ D
where L intersect D and two angles (α1, α2) related to the direction of the line L.
Then A defines a continuous operator A : L2(Ω) → L2(G) where G has a measure
µ = ds1ds2ds3dα1dα2. This operator has adjoint A∗ : L2(G) → L2(Ω). The
composition of these operators defines the unfiltered backprojection operator A∗A:
Indeed, using unfiltered backprojection algorithm with limited angle data m = Ax
corresponds to computation of A∗Ax [23].

It is well known that certain singularities of x can be seen in backprojection
algorithm [26], see also the review in section 2, part I of this paper. For instance,
assume that function x has a jump across surface S. If some line L ∈ G is tangent to
the surface S at point s, then the backprojection reconstruction A∗Ax is also singular
at point s (in fact, the singularity is not so strong as the original singularity).

Mathematically speaking, we say that the pair of a point s and a direction ξ is in
the wave-front set of function x if the function x is singular at point s in direction ξ.
This is denoted by (s, ξ) ∈ WF (x) (for presice definition, see [16]). For instance, if x
is a piecewise smooth function that jumps across a surface S, then wave front set of
x consist of pairs (s, ξ) where s ∈ S and ξ is normal vector of S at s. The points s
which do not have a neighborhood where x is infinitely differentiable are called singular
points and their set is called singular support of x and denoted by singsupp(x).

Let now H ⊂ Ω be set of those points s for which there is (s, ξ) ∈ WF (x) such
that ξ is orthogonal to some line L ∈ G. In other words, H ⊂ singsupp(x) is set of
those points where some measurement line is tangent to a “jump” of function x. We
call H the set of the observable singularities.

It is known that the backprojection algorithm can reconstruct observable
singularities,

H ⊂ singsupp(A∗Ax),

see e.g. [26]. Next we show that the same property is true for MAP-reconstruction
with TVβ-prior. Assume that we have obtained (virtually errorless) measurements
from an attenuation function x0 ∈ L2(Ω). This means that we are given m = Ax0.

We recall that the MAP estimate is obtained from the minimization problem

min
x
F (x)

where x is compactly supported function in Ω ⊂ R3 and

F (x) =

∫

G

(Ax(L)−m(L))2 µ(dL) +

3∑

j=1

∫

Ω

hβ(∂jx(s)) ds

where ∂jx = ∂x
∂sj

are partial derivatives of x(s) and hβ is defined by equation (10).

Let x be the function which minimizes F (x). Then the first variation of F , which we
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next compute, must vanish at x. Let v be a function which vanish in ∂Ω. Then using
integration by parts,

lim
t→0

F (x+ tv)− F (x)

t

=

∫

G

2(Ax−m)(L)· Av(L)µ(dL) +

3∑

j=1

∫

Ω

h′β(∂jx(s))∂jv(s) ds

=

∫

Ω


2A∗(Ax−m)(s)−

3∑

j=1

∂j(h
′
β(∂jx(s)))


 v(s) ds

where h′β is the derivative of the function hβ : R → R. Since x minimizes F (x), the
above integral has to vanish for any function v. Thus we see that minimizer x satisfies

2A∗Ax(s)−
3∑

j=1

∂j
(
h′β(∂jx(s))

)
= 2A∗m(s) = 2A∗Ax0(s).

Assume that s ∈ H. Then the right hand side A∗Ax0 is not smooth. Thus, if the
minimizer x would be smooth at s, we see that the left hand side should be smooth
which would be a contradiction. This shows that s ∈ H implies also s ∈ singsupp(x),
that is,

H ⊂ singsupp(x).

In other words, at least all the discontinuities that are seen with the standard
backprojection method can be seen with approximative TV priors. Note that above
computation does not say anything about possible artifact singularities that may
appear.
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