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Abstract. In X-ray tomography, the structure of a three dimensional body is
reconstructed from a collection of projection images of the body. Medical CT
imaging does this using an extensive set of projections from all around the body.
However, in many practical imaging situations only a small number of truncated
projections is available from a limited angle of view. Three dimensional imaging
using such data is complicated for two reasons: (i) Typically, sparse projection
data does not contain sufficient information to completely describe the 3-D body,
and (ii) Traditional CT reconstruction algorithms, such as filtered backprojection,
do not work well when applied to few irregularly spaced projections. Concerning
(i), existing results about the information content of sparse projection data are
reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion
methods can be used to incorporate a priori information into the reconstruction
method, leading to improved image quality over traditional methods. Based on
the discussion, a low-dose three-dimensional X-ray imaging modality is described.
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1. Introduction

Three-dimensional X-ray imaging is based on acquiring several projection images of
a body from different directions. If projection images are available from all around
a two dimensional slice of the body, the classical work of Radon [80] shows that the
inner structure of the slice can be determined. This result was reinvented by Cormack
and Hounsfield and commercialized in the 1970’s as Computerized Tomography (CT)
imaging technology which is widely used in medicine today [11, 12, 90].

We consider clinical imaging situations where three dimensional information is
helpful but a complete CT-type projection data is not available. For instance, in
mammography the breast is compressed against a fixed detector and it is possible
to move the X-ray source keeping the breast immobilized. However, the detector-
beam angle should be relatively small and if the detector plane cannot be rotated,
the projections can be obtained only from a relatively narrow aperture. The resulting
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reconstruction problem‡ is an example of limited-angle tomography. Another type of
situation occurs in extraoral dental imaging where some teeth are imaged with X-
rays passing through other teeth and skull. The region of interest is surrounded by
uninteresting tissue which is not attempted to be imaged. This situation is called local
tomography. Apart from geometric restrictions, keeping the number of radiographs as
small as possible to minimize radiation dose to the patient leads to sparse distribution
of projection directions. We call the above type of data sparse projection data as
opposed to traditional CT data.

Three-dimensional medical X-ray imaging using sparse projection data can be
viewed as an imaging modality of its own, made feasible by the digital revolution in
X-ray imaging technology. It is suited for situations in which the sought-for diagnostic
information can not be retrieved from any single projection image and a CT scan is
not feasible due to low resolution, high radiation dose or cost of equipment. By its
information content, this kind of imaging is obviously superior to studying a single
radiograph. However, it differs significantly from CT imaging since sparse projection
data does not contain enough information to completely describe a 3-D body. Instead,
only certain features of the body can be reliably reconstructed. What these features
are depends both on data and available a priori information.

It is well-known that traditional CT reconstruction algorithms do not produce
satisfactory reconstructions when applied to sparse projection data, see Ranggayyan,
Dhawan and Gordon [83], Natterer [71], Hanson [40], and references therein. In this
paper we present and review results suggesting that statistical inversion methods can
be succesfully used for reconstruction. The statistical inversion approach has the
following benefits:

• Any collection of projection data can be used for tomographic reconstruction.
In particular, cone beam geometry and truncated projections are not more
complicated to work with than parallel beam geometry and full projections.

• Application-dependent a priori information on the target can be used in a natural
and systematic way to recast the classically ill-posed problem in a well-posed
stochastic form. With a well constructed prior model one can obtain improved
image quality over traditional methods.

Part I of this paper is a review paper. It brings together results from physics,
mathematics and medical imaging in a way that is not usually considered in the field
of CT imaging. The rest of this part is organized as follows. In section 2, we give
a review of the mathematical results on the information content of sparse projection
data. In section 3, we discuss the theory of statistical inversion, the prior models and
the computation of posterior statistics on rather general level. The likelihood model
for the collection of projection data is also discussed. In section 4, we describe a
three dimensional X-ray imaging modality based on sparse projection data and give a
review of statistical inversion approaches to X-ray tomography. In section 5, we give
conclusions. In part II of this paper we apply the general results to practical problems
in dental radiology using experimental data.

‡ For historical reasons, we use occasionally the term reconstruction to mean any procedure to acquire
information on the inner structures from X-ray measurements, although this term is quite inprecise,
in particular from the point of view of statistical inference.
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2. Information content of sparse projection data

Geometrical arrangements of the X-ray source and digital sensor vary according to
the diagnostic task and equipment. We illustrate here the types of tomographic data
resulting from different imaging situations. For clarity we present two-dimensional
examples, but similar situations can be considered in 3-D as well.

We separate two cases according to whether the whole object is fully visible in
each projection or not, see Figure 1. The case on the right in Figure 1 is called local
tomography.

X−ray source

X−ray detector

Object ROI

X−ray source

X−ray detector

Figure 1. Illustration of cone beam measurement geometry for transmission
tomography. Left: Global tomography. Right: Local tomography. The region of
interest in denoted by ROI.

In traditional CT imaging, projections are taken from all around the object. We
sample the angular variable more sparsely in order to lower the radiation dose and due
to geometrical limitations, see Figure 2. In each of these four cases shown in Figure
2, we might additionally have the local tomography situation.

Object

Full angle data Limited angle data Sparse full angle data Sparse limited angle data

Figure 2. Illustration of four different choices for data collection in transmission
tomography. The black dots denote the locations of the X-ray source for the set
of projection data. For each such location, the detector is thought to be located
opposite to the X-ray source as in Figure 1.

The types of data described above cover a large range of specific imaging tasks.
The choice of data collection dictates what kind of features and details we can hope
to reconstruct reliably from the data without a priori information on the body.
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It is well-known that reconstruction from the collection of complete projection data
is numerically stable (or mildly ill-posed), see e.g. Natterer [71] and references therein.
This makes it possible to obtain numerical reconstructions with such algorithms as
the filtered back-projection that do not use a priori information on the tissue. Careful
analysis of collections of X-ray source locations in 3-D space giving complete enough
projection data for stable recovery has been given by Orlov [76], Tuy [100] and Finch
[24]. By the term stable it is meant here that the reconstruction from such data can
be expected to represent the 3-D object reliably. This situation falls outside the scope
of this paper.

The information content of sparse projection data depends on the type of sparsity.
We discuss the effect of limited-angle and local tomography settings and the effect of
reducing the number of radiographs.

2.1. Limited-angle tomography

Perfect reconstruction from (an infinite set of) limited angle tomographic data is
possible in principle, as discussed by Smith, Solmon and Wagner [93] and Natterer
[71]. However, the reconstruction problem is extremely ill-posed, or sensitive to
measurement noise, as shown by Davison [14], Louis [63] and Finch [24]. Thus, a
high quality reconstruction is not possible in practice without a priori information on
the target.

What features of the target can be reliably reconstructed using only the limited-
angle data? A precise answer to this question is given by Quinto [79]. One simple
consequence of his results is that a sharp discontinuity, or jump along a curve, is
reliably recoverable if and only if some X-ray in some of the projections is tangent to
the curve. Otherwise the curve cannot be reconstructed by any algorithm from the
projection data alone. We give examples of parts of boundary and cracks that are
visible or indetectable in the reconstruction, see Figure 3.

Visible edge Indetectable edge Visible crack Indetectable crack

Figure 3. Illustration of discontinuties that can and cannot be recovered based
on limited angle projection data. The black dots denote the locations of the X-
ray source in the acquisition of the projection data. For each such location, the
detector is thought to be located opposite to the X-ray source as in Figure 1.

2.2. Local tomography

In local tomography the region of interest is surrounded by tissue that is not
reconstructed. This is often the consequence of small detector size forcing truncation of
projections, or intentional minimization of radiation dose outside the region of interest.
Local tomography was introduced by Smith and Keinert [91] and Vainberg, Kazak and
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Kurczaev [101]. In this problem class the goal is to reconstruct the region of interest
using only X-rays passing through it. It turns out that the actual attenuation function
cannot be reconstructed but, instead, another function preserving sharp features can
be recovered. This so-called lambda tomography was refined by Faridani, Finch,
Ritman and Smith [21, 22].

In the above works on local tomography the 3-D body is imaged from full view
angle. The combination of local and limited-angle tomography is considered by
Kuchment, Lancaster and Mogilevskaya [55] and Katsevich [50]. The numerical
examples in [55] are very illuminating. See also the book by Ramm and Katsevich
[82], especially the images on pages 254–257. The results are similar to limited-angle
global tomography: Certain parts of singularity curves in the region of interest can be
stably reconstructed. The parts are exactly those that have some measured X-rays as
tangents.

2.3. Few radiographs

Most of the above results on reconstructable features from limited data assume that the
data is available from a curve or other continuum of X-ray source positions. In practice
data sets are finite, and the number and directions of radiographs have an effect to
the information content of the data set. As noted by Smith, Solmon and Wagner
[93, Thm 4.2], a finite number of projections tells nothing at all about the volume
since an almost arbitrary function can be added to the attenuation coefficient without
changing the projections. Information content of projections has been studied further
by Logan and Shepp [62], Grünbaum [34], Hamaker and Solmon [35], Kazantsev [51],
and Saksman, Nygrén and Markkanen [88]. The analysis in the above references
implies that problems caused by incomplete information content of a finite data set
can be removed or greatly reduced by using a priori knowledge on the 3-D body to
exclude erroneous (oscillatory) features from the reconstruction.

2.4. Conclusion

The discussion in this section suggests that high-quality tomographic reconstruction
from sparse projection data is not possible without the use of a priori information.
Note also that the above theoretical results concerning the reconstructable features in
limited-angle and local tomography do not imply that any given practical tomographic
algorithm is able to recover those features.

In this paper we discuss how statistical inversion facilitates a systematic and
natural way of incorporating a priori knowledge in tomographic reconstruction from
sparse projection data, leading to improved reconstruction quality over traditional
reconstruction methods.

3. Statistical inversion

The following review papers provide more detailed analysis of several issues in
statistical inversion approach that is given in this paper: Hanson [40], Tamminen
[96], Mosegaard and Sambridge [69], Evans and Stark [20] and Kaipio et al [48]. See
also the work of Lehtinen [58, 59, 46].
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3.1. Basic definitions

The success in solving ill-posed inverse problems depends heavily on how well one
is able to make use of a priori information on the target. Particularly useful is
information that is complementary to that extracted from the measurement. Such
additional prior information is usually available: The practitioner has often a relatively
good overall idea of what a typical target of the measurement should look like.
The actual measurement is needed for additional specific information to distinguish
from the general. From the computational point of view, this prior information
may be rather qualitative in nature and work has to be done to translate it in a
computationally useful quantitative form. The statistical inversion approach is a
systematic and flexible way of incorporating in the inversion process extra infomation
of the target of interest.

The main idea in statistical inversion approach is to consider the inverse problem
as a problem of Bayesian inference. All variables are redefined to be random variables.
The randomness reflects our uncertainty of their actual values and the degree of
uncertainty is coded in the probability distributions of these random variables.

To keep the discussion tractable we consider linear measurement models with
additive Gaussian errors:

m = Ax+ ε, (1)

where the variables m ∈ RN , x ∈ RM and ε ∈ RN are vector valued random variables
§ and A is the deterministic system matrix modelling the measurement. See section
3.2 for an interpretation of tomographic X-ray measurements in the form of (1). When
ε is Gaussian with zero mean and covariance matrix Γnoise, denoted ε ∼ N (0,Γnoise),
we have

pnoise(ε) ∼ exp

(
− 1

2
εTΓ−1

noiseε

)
. (2)

Let us mention that the statistical formulation does not depend on the Gaussian
approximation. For an exposition of how to handle Poisson distributed observation
models in inverse problems, see e.g. [104]. Further, observe that if the noiseless model
would be badly known, we could also model A by a random matrix.

We assume here that the image vector x and the noise are independent. In terms
of probability densities, this implies that their joint probability density is of the form

p(x, ε) = ppr(x)pnoise(ε). (3)

Here, pnoise is the probability distribution of the noise that can be approximated by
analyzing X-ray images from well-known phantom targets. The probability density
ppr is called the prior density of the image. It is designed to contain all possible
information that we have of the target prior to the measurement. It is crucial, in
contrast to classical regularization methods, that the choice of the prior distribution
should not be based on the data m. The proper design of the prior is an essential
part of the statistical inversion procedure. The rule of thumb is that typical image
vectors (say, of some existing library) should have high prior probability (density)
while atypical or impossible ones should have low or negligible probability. Prior
models are discussed in more detail in Section 3.3.

§ For notational convenience, we use the same lowercase notation for both, the random vector and
its values.
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Having the joint probability of x and ε, we may write the conditional probability
of m, given x and ε formally as

p(m | x, ε) = δ(m−Ax− ε). (4)

Here, δ is the Dirac delta, i.e., if x and ε were given, m would be completely determined.
The joint probability distribution of x and m is then obtained as

p(x,m) =

∫

RN
p(m | x, ε)p(x, ε)dε = ppr(x)pnoise(m−Ax) (5)

by straightforward substitution. Finally, the conditional probability distribution of x
given the measurement m, or posterior density of x is given by the well-known Bayes’
formula

p(x | m) =
p(x,m)

p(m)
=
ppr(x)p(m |x)

p(m)
, (6)

where p(m) is the marginal density of m and plays the role of a normalization constant.
The density p(m | x) is called the likelihood density and is in this case

p(m | x) = pnoise(m−Ax). (7)

It turns out that the density p(m) is in non-Gaussian posterior cases actually
difficult to determine. Fortunately, it also turns out that the most important
estimation methods that are based on the posterior distribution do not necessitate
the determination of p(m). Thus the posterior density is usually considered in the
non-normalized form

p(x | m) ∝ ppr(x)pnoise(m−Ax) (8)

that is, the product of the prior and likelihood densities.
In the framework of Bayesian inversion theory, the posterior distribution (6)

represents the complete solution of the inverse problem, since it expresses our belief
of the distribution of x based on all prior information and the measurement. Because
the posterior distribution is a probability density in a large-dimensional space, we
must have efficient tools to explore it. To produce an image of the target based on
the posterior, several alternatives exist. The most common ones are the maximum a
posteriori estimate (MAP) and conditional mean estimate (CM). They are defined by
the formulas

p(xMAP | m) = max p(x | m), (9)

and

xCM =

∫

RM
xp(x | m)dx. (10)

Observe that the MAP estimate is not necessarily unique, while the CM estimate
is unique, provided that the integral converges. Finding the MAP estimate is an
optimization problem while finding the CM estimate is a problem of integration.

In addition to computing point estimates, the statistical inversion approach
strongly suggests the computation of interval and uncertainty estimates as well as the
marginal posterior densities of the variables themselves. An example of an interval
estimate is the credibility interval, defined for a given 0 < τ < 1 as [ak, bk] ⊂ R where
the endpoints ak and bk are determined by

∫ bk

ak

pk(xk) dxk = τ, pk(ak) = pk(bk), (11)



Statistical inversion for X-ray tomography with few radiographs I 8

Ω

X−ray source

Detector

Figure 4. Left: Schematic illustration of the pencil beam attenuation model for
X-ray transmission tomography. Right: In the discretization the domain Ω under
investigation is discretized into a lattice of M pixels Ωi.

where pk is the marginal posterior density

pk(xk) =

∫

RM−1

p(x | m) dx1 · · · dxk−1dxk+1 · · · dxM . (12)

Note that the credibility interval is not always well-defined.
The most common uncertainty estimate is the posterior covariance

Γx|m =

∫

RM
(x− xCM)(x− xCM)Tp(x | m) dx (13)

In the case of non-Gaussian posterior these estimates can usually obtained only with
the aid of sampling methods. Details of how these can be computed are discussed in
Section 3.6 and a practical illustration of their significance is given in part II of this
paper.

3.2. Likelihood distribution for X-ray imaging

In this section, we discuss in more detail the likelihood model we use for X-ray imaging
in this paper.

In X-ray imaging, an almost pointlike X-ray source is placed on one side of an
object under imaging. Radiation passes through the object and is detected on the
other side, see Figure 4. Usually the radiation is detected with X-ray film or a digital
sensor that can be thought of as 2-D arrays of almost pointlike detectors.

The domain under imaging is modelled by a bounded subset Ω ⊂ R3 (or Ω ⊂ R2

in 2D problems) together with a nonnegative attenuation coefficient x : Ω → [0,∞).
The value x(s) gives the relative intensity loss of the X-ray travelling at s ∈ Ω within
a small distance ds:

dI

I
= −x(s)ds.

The X-ray has initial intensity I0 when entering Ω and a smaller intensity I1 when
exiting Ω. We write

∫

L

x(s)ds = −
∫ 1

0

I ′(s)ds
I(s)

= log I0 − log I1, (14)

where I0 is known by calibration and I1 from the corresponding point value in a
projection image. Thus the measured data is the integral of x(s) along the line L.

The discretization of the attenuation model involves dividing the domain Ω into
a lattice of M disjoint 3D-voxels Ωi (or 2D-pixels), see Figure 4, and measuring the
length of the X-ray inside each voxel (or pixel).
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Assuming that the attenuation x is constant within each voxel (or pixel) Ωi, the
attenuation map can be approximated in the form

x ≈
M∑

i=1

xiχi, (15)

where χi is the characteristic function of voxel (or pixel) Ωi in the lattice. Within
the discretization (15), the attenuation map is identified by the coefficient vector
x = (x1, x2, . . . , xM )T ∈ RM . Using the approximation (15), the line integrals through
the domain can be approximated by weighted sum of voxel (or pixel) values, that is,

∫

Lj

x(s)ds ≈
M∑

i=1

xi |Ωi ∩ Lj | , (16)

where the subindex j denotes the measurement index. Arranging the set of projection
data into a vector m = (m1,m2, . . . ,mN )T ∈ RN , we get the equation

m = Ax, (17)

where matrix A implements the approximation (16) for the set of projection data. We
note that the model (17) can be implemented for any data collection geometry.

In the above model, we neglect scattering phenomena and effects of non-
monochromatic radiation, such as beam hardening. See [89, 1] for the former and
[95] for the latter.

The model (17) is assumed here to represent the noiseless observations. In practice,
however, the measurement is corrupted by (at least) two noise types:

• The detector is a photon counter, implying that the attenuated signal at each
detector is a counting process with expectation ni = Ii ∈ N, 1 ≤ i ≤ N .

• The photon count of each detector is amplified electronically, causing electronic
noise.

The amplification noise of the counting process can reasonably be assumed to be
multiplicative. Bearing in mind that the projection data (17) involves a logarithm of
the counting data, a reasonable model for the electronic noise is additive noise. A
feasible model for the count vector n is to assume that each count ni is independent
of the remaining ones and that ni has Poisson distribution with expectation λi.
Therefore, we may write

p(n | x) =

N∏

i=1

pPoisson(ni, λi) (18)

=

N∏

i=1

1

ni!
λnii exp(−λi), λi = λ0I0exp

(
− (Ax)i

)
,

where λ0 is the probability that a photon is absorbed to the detector. However, in
X-ray imaging a relatively large number of photons is usually detected at each pixel.
In such case, the value of the likelihood density (18) can be well approximated with
the value of a Gaussian approximation for the attenuation data of form (14) [7, 87]. A
detailed discussion on this approximation is given in Appendix A. An approximation
for the distribution of the electronic noise can be determined by careful analysis of the
measurement electronics. However, this falls outside the scope of this paper.

Assuming Gaussian distributions for the logarithms of both noise variables, the
overall model for noise becomes the sum of two additive Gaussian random variables.
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The distribution of this new variable is convolution of two Gaussian distributions,
which is again a Gaussian distribution. Thus, in this work we consider Gaussian noise
models. Therefore, assume that ε ∼ N (0,Γnoise), i.e., the overall measurement noise
is normally distributed with zero mean and covariance matrix Γnoise that is assumed
to be invertible. The likelihood distribution is then

p(m |x) = exp(−1

2
(m−Ax)TΓ−1

noise(m−Ax)).

3.3. Prior models

The most crucial task in statistical inversion is the determination of a feasible prior.
In particular, the translation of qualitative prior information into the language of
probability densities is often a challenging problem.

The general goal in designing priors is to assign a distribution ppr(x) with the
following property. If E is a collection of expectable images and U is a collection of
unexpectable images, we should have

ppr(x)� ppr(x
′) when x ∈ E, x′ ∈ U .

Thus, the prior probability distribution should be concentrated on expectable images
and give them a clearly higher prior probability to occur than to those we do not
expect to see.

In many cases it turns out that certain expectable features can be formulated in
the form of probability densities relatively easily while others may be very tricky if
not impossible. A typical example of an easy task is when the image is expected to be
smooth. In this case, one can use what is later called a smoothness prior. However, if
we expect that in addition, the image contains infrequently occurring small anomalies
that we would like to locate, the problem becomes more complicated. Indeed, using a
smoothess prior we are very likely to fail detecting the anomaly since its occurrence
probability with respect to that prior is extremely low.

In the following we discuss briefly some of the methods for constructing prior
models. The emphasis is on finding a qualitative description of these prior models.

In the following, it must be understood that when one talks about an image it
is assumed that the pixel values (i.e., values of the X-ray attenuation coefficient) are
non-negative. This requirement means that the prior is proportional to the cut-off
function,

ppr(x) ∝ p+(x) =
M∏

k=1

θ(xk), (19)

where θ is the Heaviside function. This cut-off function is not written out explicitly
in the sequel.

3.3.1. Generic Gaussian priors. The most widely used prior models are the Gaussian
white noise and smoothness priors. Gaussian densities in finite dimensional spaces are
generally of the form

ppr(x) ∝ exp
(
−(x− x∗)TΓ−1

pr (x− x∗)
)

(20)

where x∗ is the mean vector and Γpr is the covariance matrix. The simplest one is
undoubtedly the Gaussian white noise prior,

ppr(x) ∝ exp

(
− 1

2σ2
‖x− x∗‖22

)
, (21)
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i.e., the covariance is assumed to be diagonal matrix Γpr = σ2I. This prior is by far
the most commonly used implicit choice for prior model in the Tikhonov regularization
approach for inverse problems (cf. formula (27)). The notion “white noise” is naturally
related to the diagonal covariance structure which means that all image pixels are
assumed to be uncorrelated. The standard deviation of each pixel around the assumed
mean value x∗ is given by σ. No structure of the image is assumed a priori.

The smoothness priors in 2D and 3D are typically functions of associated directional
derivatives. Perhaps the most commonly used smoothness prior for a 2D pixel image
in an equilateral P × P = M square mesh is given by

ppr(x) ∝ exp
(
− α

∑

k∈M

∑

`∈Nk
|xk − x`|2

)
, (22)

where α is a scaling parameter, M is the set of non-boundary pixels in the lattice
(i.e., M = {Ωi|Ωi ∩ ∂Ω = ∅}) and Nk is the index set of four nearest pixels for the
(non-boundary) pixel k (i.e., Nk = {k − 1, k + 1, k − P, k + P}). The realization of
the smoothness prior for higher orders and for non-regular meshes such as arbitrary
triangular meshes may turn out to be more tedious. It also depends on the basis in
which x is represented, see [47] for an example in which x is represented in piecewise
linear rather than piecewise constant basis.

A particular class of smoothness priors are anisotropic priors. These priors can
be viewed as structural priors as they reflect structural information on the target.
Therefore, we discuss them separately below.

3.3.2. Impulse noise priors It is easy to generate prior densities based on pixel
presentation of the images. It is a less obvious task to describe what sort of qualitative
properties they represent as an image. An important class of priors are the impulse
noise priors. In some applications, we expect to see a low-contrast image with few
outstanding pixels as outliers. Such images appear e.g. in astronomy, where the sky is
a nearly black object with bright stars. We mention here three of such priors. These
are the L1–prior

ppr(x) ∝ exp

(
− α

M∑

k=1

|xk|
)

= exp (−α‖x‖1) , (23)

the maximum entropy prior

ppr(x) ∝ exp

(
M∑

k=1

xk log

(
xk
x0

))
, (24)

and the Cauchy distribution prior,

ppr(x) ∝
M∏

k=1

1

1 + λx2
k

. (25)

In all of these priors, the pixels are uncorrelated. The performance of the maximum
entropy prior and the L1–prior in recovering nearly black objects has been studied in
the article [19].
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3.3.3. Reparametrized priors. In many cases the pixelwise parametrization of the
image does not allow easily the coding of the prior information in form of a prior
density. An illustrative example is that we know that the target contains a possibly
unknown number of subregions in which the material parameters are constant. We
may also know that the boundaries of these subregions are smooth. In this case it
is then possible to parametrize the unknown variable for example with the aid of the
material parameters inside all subdomains as well as the coefficients of the truncated
Fourier series of the boundary curves. For an example in relation with optical
tomography, see [52, 53, 54], and in relation to X-ray imaging, see [37, 38, 67, 66].

Also in the case of very fine meshes it may turn out that the covariance matrix
becomes almost singular. It is then advisable to consider lower dimensional (subspace)
representations of the variable. In addition to making the overall estimation problem
smaller dimensional, this may also increase the overall computational stability of the
problem, since one often has to work also with the inverse of the covariance matrix.

3.3.4. Sample-based priors. In some cases one has access to a more or less
representative ensemble of samples/images of the actual variable. One might for
example have an ensemble of thoracical topographies of organs based on more extensive
measurements (e.g., anatomical atlases), or an ensemble of full angle reconstructions of
teeth. In such cases, it is feasible to assume that the ensemble is distributed according
to the prior. The problem is to find a prior that would produce ensembles similar
to the one at hand if samples were randomly drawn from the prior. This problem is
recognized as a kernel estimation problem. As a general reference on kernel estimation
methods we give [97].

A particularly simple and computationally light special case is when the prior
distribution underlying the ensemble can be approximated by a Gaussian distribution.
One can then use the ensemble average as the prior mean and a low rank approximation
for the inverse of the covariance matrix. In some cases it may also be possible to
construct the ensemble artificially, see [102, 103] for examples of this approach.

3.3.5. Structural priors. In medical imaging, the overall structure of the target
is often well understood based either on anatomical information or on information
from other imaging modalities. Different modalities carry information related to
different physical parameters such as mass absorbtion coefficient, conductivity and
thermal parameters. While there seldom are any simple relationships between these
parameters, we can usually expect that certain features are correlated. One such
feature is related to detected organ boundaries: It is reasonable to assume that there
are jumps with respect to all parameters through the organ boundaries. Hence, if one
imaging modality is able to reconstruct an organ boundary, this information could also
be used as prior information for other modalities. The procedure how to construct
the actual prior density from this information is based on the idea that pixel values
of a physical parameter within one type of tissue are strongly correlated while the
correlation across the boundaries is low or negligible. In practice, these requirements
are met by anisotropic priors: Different directions close to the boundaries need to
be distinguished from each other. These priors are called structural priors. The
construction of structural priors is often slightly tedious, starting from the need of
powerful image segmentation methods. The good news is that Gaussian structural
priors may turn out to be adequate which in turn means that in the case of Gaussian
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likelihoods most estimates have closed form solutions [47].

3.3.6. Anomaly priors. As noted above, one of the main problems in the construction
of prior models and densities is that the prior density should be high for such targets
that are common or expectable. However, we are often most interested in certain
deviations from the usual, cancers being the most obvious examples. This leads to an
obvious dichotomy: A good prior distribution for the normal tissue tends to exclude
the presence of the anomalous feature and the information could be lost. There is a
cure to this problem: It is possible to consider the parameters describing the normal
and the anomalous tissues as separate random variables and to assign different prior
distributions to them. The statistical inverse problem is then to estimate these two
variables separately. Of course, this procedure increases the number of unknowns
which may be a computational problem. However, it has the significant virtue that
one does not have to discern the cancerous tissue from the normal tissue visually since
the estimate for the anomalous part has been computed separately. See [49] for the
treatment of this topic.

3.3.7. Markov Random Field priors. The smoothness priors discussed above are a
special class of Markov random fields (MRF). Let N = {Ni | 1 ≤ i ≤ M} denote
a neighbourhood system, i.e., Ni ⊂ {1, 2, . . . ,M} is a list of neighbours of xi. We
require that i /∈ Ni and i ∈ Nj ⇔ j ∈ Ni. Consider now the conditional probability
distribution of a single component xj . We say that x = (x1, . . . , xM )T is a MRF with
respect to the neighbourhood system N if it holds that

pxj (xj | x1, . . . , xj−1, xj+1, . . . xM ) = pxj (xj | xk, k ∈ Nj).
In other words, the value of xj depends on the values of the remaining components
only through its neighbours. The probability distributions of MRF’s are of a particular
form. The well-known Hammersley–Clifford theorem (see e.g. [5]) states that the
probability density of a MRF is necessarily of the form

p(x) ∝ exp


−

M∑

j=1

Vj(x)


 ,

where the functions Vj may depend only on those components xk of x for which
k ∈ Nj . In particular, we have then

pxj (xj | x1, . . . , xj−1, xj+1, . . . xM ) ∝ exp


−

∑

j∈Nk
Vk(x)


 .

A typical example of a MRF prior is the total variation prior. Consider again a
rectangular pixel image, and define the neighbourhood system in a natural way, i.e.,
the neighbouring pixels are those that share a common edge. The total variation of
the image is defined as

TV(x) =

M∑

i=1

∑

j∈Ni
lij |xi − xj |,

where i and j are neighbours with common edge and lij denotes the length of their
common edge (i.e., lij = |∂Ωi ∩ ∂Ωj |). It turns out that the total variation prior,

ppr(x) ∝ exp(−αTV(x)),
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is a prior that is concentrated on images that are “blocky”, i.e., the pixels are clustered
in blocks with almost equal value and short boundary [17, 18]. To demostrate this fact,
we have plotted three simple images in Figure 5. The values of the pixels are 0 (black),
1 (gray) or 2 (white). The total variations of these images are, from left to right, 18,
28 and 40, respectively. Often, one may also have relatively good understanding about
the distributions of possible values of x within the different blocks in the target. For
total variation type MRF-priors in such cases, see [26, 73].

Figure 5. Images having total variations (from left to right) 18, 28 and 40.

The MRF priors are very useful for designing structural priors. As an example,
consider a medical imaging problem where we know a priori (at least approximately)
the location of organ boundaries. This information can be based on anatomical data
or on data coming from diffrent modalities (CT, MRI, for instance). In medical
applications, this information is expressed by saying that we have a segmented image,
i.e., to each pixel we may assign an index indicating to which tissue type the pixel
belongs to. Assume that T (i) ∈ {1, 2, . . . ,K} is the type of the pixel xi. Now we can
define a neighbourhood system N in such a way that

T (j) 6= T (i)⇒ j /∈ Ni,
i.e., pixels of different type are never neighbours. This means that the pixels are
divided into cliques according to their type. As a consequence, for a MRF with this
type of neighbourhood systems, pixels in different cliques are uncorrelated, i.e., the
prior allows jumps in the parameter values across the organ boundaries, while within
one tissue type, the values may be strongly correlated.

3.4. Visualization of prior models

An enlightening possibility that is very worthwhile but seldom realized, is to draw
samples from the prior distribution in order to verify the qualitative nature of the
prior. This procedure allows one to get a qualitative understanding of which are
actually the features that we assume the target has. The problem in drawing samples
from the prior distribution is that the prior is very often not proper (integrable) and
the task is impossible as such. However, it is possible to consider certain conditional
prior distributions that are proper and can be sampled. With non-Gaussian priors one
has to resort to MCMC methods for drawing these samples, see Section 3.6 below. In
Figure 6 random draws from the Gaussian white noise prior, second order (isotropic)
smoothness prior, L1-impulse prior and total variation prior are shown. For the
smoothness and total variation priors the samples are from conditional priors such
that the values of the boundary pixels were fixed to zero. The samples that are shown
in Fig. 6 are the three most probable realisations from the set of the samples drawn
from each prior.
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Figure 6. Columns from left to right: three random draws from the Gaussian
white noise prior, second order (isotropic) smoothness prior, L1-impulse prior and
total variation prior, respectively. All priors except the smoothness prior include
positivity constraint.

In addition to drawing samples from the prior, it is also advisable to visualize
the prior covariance. In Gaussian prior cases we naturally have to construct the
covariance anyway but in non-Gaussian cases the covariance can again be estimated
based on MCMC runs. Non-proper priors can be handled as in the case of drawing
samples from the priors. The visualization is carried out simply by fixing a pixel, say
xj , and plotting the covariances cov (x1, xj), . . . , cov (xM , xj) in the same mesh as the
target itself, see [47] for details and examples.

We also note that most interesting and feasible priors are nonintegrable or
uninformative in the sense that they do not represent proper probability distributions.
This means among other things that their covariance matrices may not exist, which
again loosely speaking means that the variances of x in certain directions are infinite.
More rigidly, let v ∈ RM , ‖v‖ = 1. It is possible that the scalar-valued random
variable xv = (xTv) has infinite variance.

3.5. Computation of the MAP estimate

Unless the noise and prior densities are Gaussian, finding the MAP estimate requires
iterative optimization methods. If the mapping x 7→ p(x | m) is smooth, Newton-
Raphson type methods can be used in mildly large dimensional cases, while very large
dimensional cases typically require gradient-based methods. Observe that when the



Statistical inversion for X-ray tomography with few radiographs I 16

prior probability density is of the Gibbs type,

ppr(x) ∼ exp
(
− αG(x)

)
, (26)

the search for the MAP estimate in the case of Gaussian additive noise is tantamount
to the minimization problem

xMAP = arg min

(
1

2
(m−Ax)TΓ−1

noise(m−Ax) + αG(x)

)
, (27)

i.e., a regularized weighted output least squares problem. We see that in the language
of traditional inverse problem literature, the function G, called potential or penalty
function, plays the role of Tikhonov regularization functional.

3.6. Computation of the CM estimate

Analytic evaluation of the conditional mean is practically impossible unless the
posterior is Gaussian. When the dimensionality of the problem is high, no traditional
quadrature rule for computing the integral in (10) is feasible simply because the
number of the quadrature points would be unreasonably large. Furthermore, the factor
p(m) in (6) should also be computed by integration. The evaluation of this factor is
a problem of the same magnitude as the evaluation of the conditional mean itself.
Consequently, the integration requires the use of Monte Carlo integration methods.

Markov chain Monte Carlo (MCMC) methods provide a tool for the approximation
of high-dimensional posterior integrals. MCMC methods create a set of random
samples {x(t) ∈ RM} from the density p(x | m) and approximate the conditional
mean with the sample mean [30]. The key idea in the sample generation is to create a
Markov process which has p(x | m) as the stationary distribution. Once the simulation
of the process has been run long enough, say r iterations, the process will produce a
set of samples {x(t) | t = r + 1, . . . , S} whose distribution is close to p(x | m). The
most popular algorithms for the sample generation are the Gibbs sampler and the
Metropolis-Hastings algorithm [30, 41, 29].

3.6.1. Metropolis-Hastings algorithm. In the Metropolis-Hastings algorithm the
states of the Markov chain are generated as follows: Given the state x(t) of the chain, a
candidate xc for the next state is drawn from the proposal density q(xc|x(t)). Loosely
speaking, q(xc|x(t)) is the probability of the move from x(t) to xc. The candidate is
not accepted automatically. To understand the acceptance rule, assume first that the
proposal density is symmetric, i.e., q(x|y) = q(y|x) for all x, y. It can be interpreted
by saying that the probability for moving from y to x equals the probability of moving
from x to y. In this particular case, the acceptance rule is simple: If the proposed state
xc has higher probability than the previous state x(t), the candidate is automatically
accepted. However, if it has a lower probability, it is accepted only by a probability
that is proportional to the ratio of the probabilities. Hence, the acceptance probability
γ of the candidate is simply

γ = min

{
1,

p(xc|m)

p(x(t) | m)

}
. (28)

If q(x|y) 6= q(y|x), a modification of (28) is needed to compensate the asymmetry:

γ = min

{
1,

p(xc|m) q(x(t)|xc)

p(x(t)|m) q(xc|x(t))

}
. (29)
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If the candidate is accepted, the next state is x(t+1) = xc. Otherwise, x(t+1) = x(t).
The distribution of the samples converges asymptotically to p(x | m). In practice
the acceptance is carried out so that one first draws a sample from the proposal
distribution and computes γ. Then a random number from the uniform distribution
Uni (0, 1) is drawn and compared with γ.

As it can be seen from the equations (28) and (29), the normalisation constant
p(m) is cancelled out in the computation of the acceptance probability and therefore
it is sufficient to know the posterior density up to the normalisation constant only.
This is a very important feature since the computation of p(m) is a formidable task.

If an arbitrary initial draw x(0) is used, the first subsequent draws do not describe
the posterior distribution. Therefore a burn-in period {x(t), t = 0, . . . , r} of the
generated Markov Chain is usually discarded in the computation of the conditional
mean, and thus, the conditional mean is obtained as

x̂CM ≈
1

S − r
S∑

i=r+1

x(i). (30)

On the other hand, if the MAP esimate has been computed and used as the initial
draw, there is no burn-in and the first samples can be used. Correspondingly, an
estimate for the posterior covariance can be obtained as

Γ̂CM ≈
1

S − r − 1

S∑

i=r+1

(
x(i) − x̂CM

)(
x(i) − x̂CM

)
T. (31)

The convergence of the simulation can be monitored e.g. by computing credibility
intervals for the point estimates by using multiple parallel simulations with different
starting points x(0) (30). For more detailed information about the MCMC methods
and the convergence properties see e.g. [30, 41, 28, 92, 98, 85]. The marginal
posterior densities of individual components xk are obtained simply by using any

kernel estimation method for the scalar draws {x(t)
k , t = r + 1, . . . , S}.

The key problem in the Metropolis-Hastings method is to find effective proposal
distribution. This is especially crucial in case of large dimensional problems. If the
proposal distribution is not feasible, γ ≈ 0 for almost all draws and very few of the
candidates get accepted. On the other hand, the proposal distribution has to be one
from which we can perform the draws. In many cases a Gaussian approximation is
a feasible choice and at least the one which is tried first. Write the posterior in the
form p(x | m) ∝ exp(−g(x | m)). In the case of twice differentiable g, the Gaussian
approximation for the posterior density can be written at point x∗ by determining a
Taylor’s approximation for the exponent term g(x | m) of the posterior density

g(x | m) ≈ g(x∗|m) +∇g(x∗ | m)(x− x∗) +

1

2
(x− x∗)T∇2g(x∗ | m)(x− x∗). (32)

Typically, the MAP-estimate is used as the linearization point x∗. Thus, an
approximative Gaussian distribution is obtained with covariance

ΓA =
(
−∇2g(x∗ | m)

)−1
. (33)

In many cases the proposal density associated with the exponent (32) is not used as
such. Instead, in the proposal density the previous state is used as the expectation
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while the covariance (33) is retained. A procedure of this kind is often referred to as
the random-walk Metropolis algorithm [30]. Thus the proposal density takes the form

q(xc|x(t)) = N (x(t), βΓA). (34)

In equation (34), β is a scaling factor which is used for tuning the mixing properties
of the algorithm. The tuning parameter β has to be chosen carefully. If it is too large,
almost all candidates xc will be rejected. On the other hand, if β is too small almost
all candidates xc will be accepted but the algorithm is again very inefficient due to
the fact that the jumps become very small. The draws are very correlated in both
extreme cases.

One possible way to choose the value of β is to monitor the empirical acceptance
rate. There is theoretical justification for aiming at acceptance rates between
[0.15, 0.5], for more details see [30] and the references therein.

In the case of a Gaussian proposal density the candidates xc can be drawn as
follows. Let βΓA = USUT denote the singular value decomposition of the covariance
matrix of the proposal distribution (34). If we now define a multivariate random
variable ϕ ∼ N (0, I), we can generate the candidates using the formula

xc = U
√
Sϕ+ x(t) . (35)

A visualization of the convergence of Metropolis-Hastings algorithm when x ∈ R2

is given in Figure 7. Note the relevance of the adjustment of the scaling factor γ.
The acceptance rate is in the range [0.15, 0.5] for cases c) and d).

3.6.2. Gibbs sampler. Together with the Metropolis-Hastings algorithm and its
variants, Gibbs sampler constitutes a popular method of generating samples with
a prescribed distribution [29]. Rather than using a proposal distribution as in the
Metropolis-Hastings scheme, one uses directly the posterior distribution but in a
sequential manner. The so-called single component Gibbs sampler proceeds as follows:

(i) Fix the initial draw x(0) = (x
(0)
1 , . . . , x

(0)
M )T and set j = 1.

(ii) Generate x(j) a single variable at a time:

Draw x
(j)
1 from the density t 7→ p(t, x

(j−1)
2 , . . . , x

(j−1)
M |m),

draw x
(j)
2 from the density t 7→ p(x

(j)
1 , t, x

(j−1)
3 , . . . , x

(j−1)
M |m),

...

draw x
(j)
M from the density t 7→ p(x

(j)
1 , . . . , x

(j)
M−1, t|m).

(iii) Set j ← j + 1 and go to (ii).

The determination of the so-called full conditional densities of a single component xk
while the remaining ones are fixed can in some cases be carried out analytically, at least
with respect to some variables, but since they are functions of a single variable only,
it is relatively straightforward to approximate the associated distribution functions
non-parametrically and then employ the well know golden rule to draw the samples.
Compared to the Metropolis-Hastings method, the virtue of the Gibbs sampler is
the absence of the problems related to the choice of the proposal distribution as
well as questions related to the acceptance rule. The significant drawback is that it
becomes easily slow when the number of the components is large as it is in real X-ray
tomography problems.

A visualization of componentwise updatings with the density of the previous
example is given in Figure 8.
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Figure 7. Samples generated by the Random walk Metropolis-Hastings -
algorithm. The boomerang shaped lines are equipotential lines of the posterior
distribution. The initial estimate x(0) is in the lower right hand corner of the
figures. The scaling factors γ were a: γ = 0.01, b: γ = 0.05, c: γ = 0.3 and d:
γ = 1. “Number of moves” refers to how many of the 100000 samples (candidates)
have been accepted. Only the accepted samples from the first 1000 candidates
are shown.
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Figure 8. Illustration of the componentwise sampling with the Gibbs sampler.
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4. X-ray tomography from sparse projection data

4.1. Applications to medical imaging

Three-dimensional information is crucial for many radiological tasks. Some examples
are

• A dentist wants to know whether the roots of a certain tooth are close to the
inferior dental canal (a tunnel for nerves inside the jaw bone). Answer to
this question is not necessarily present in a single intraoral radiograph due to
overlapping of structures. In such case, the dentist can use his regular equipment
to take a couple of extra images from such angles that the roots and the canal
have clear disparity. Tomographic reconstruction from these images is likely to
yield the desired information.

• A radiologist suspects breast cancer after examining a screening mammogram.
In further study of the finding, seven radiographs are taken of the breast with an
opening angle of ±15 degrees. The reconstructed volume shows three dimensional
distribution of microcalcifications, which helps in making the decision of sending
the patient to biopsy.

• A surgeon is mounting a screw to bone and wants to check whether the tip of the
screw is already close to the surface of the bone. A C-arm unit is used to take
an X-ray image. However, the direction of this image has to be carefully chosen
to capture the desired information. Instead, several images can be taken from
a collection of directions bracketed around the most probably correct direction,
making sure that the position of the screw can be reliably seen in the three-
dimensional reconstruction.

The above procedures are examples of a novel three-dimensional medical imaging
modality. It is intermediate between studying a single radiograph and a CT scan.
The radiation dose of the novel modality is equal to the dose of a few radiographs,
much lower than the dose of CT. Also, the cost and resources required by the imaging
equipment are condiserably smaller than those of a CT scanner. Such low dose imaging
modalities with applications to dental radiology and mammography have previously
been suggested by Webber et al [105, 106, 81] and McCauley et al [68].

As mentioned in the introduction, three-dimensional reconstruction from sparse
projection data is not as straightforward than from the comprehensive data set
provided by CT. In section 4.2 we discuss TACT, a traditional approach using
tomosynthesis, or unfiltered backprojection, as reconstruction method. In section
4.3 we discuss how to use the statistical techniques of section 3 to improve the image
quality of TACT.

4.2. Tuned Aperture Computed Tomography (TACT)

The Tuned Aperture Computed Tomography (TACT) method was suggested by
Webber [105]. In TACT imaging the directions of the projection images are calibrated
from a reference object in the image. The reconstruction method in TACT is
tomosynthesis (unfiltered backprojection). Tomosynthesis was first presented by
Ziedses des Plantes [110] and later promoted by Grant [32].

The quality of tomosynthetic reconstructions suffer from the blur that is primarily
due to the overlapping of structures in the reconstruction due to the poor information
content of the projection data in the depth direction. Several deblurring methods
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have been suggested. Ruttimann, Groenhuis and Webber [86] present an iterative
enhancement scheme, and Persons [77] uses Fourier transform methods.

Despite these limitations, TACT imaging has been found useful for many clinical
applications, see e.g. [106, 107, 108, 81, 60]. We note that the proofs of many theorems
about the structures that are reconstructible from sparse projection data are based on
the analysis of unfiltered backprojection and ideal noise free data. Thus, the analysis
in section 2 explains the limits for what one can expect to see in TACT reconstructions.
So choosing the projection directions is crucial for successful TACT imaging.

4.3. Properties of statistical reconstruction

Statistical inversion can improve the quality of reconstruction over traditional methods
(such as TACT) with careful modelling of a priori information. It is in principle
possible to recover even such features of the target that are not stably reconstructable
in the sense of section 2.

Reconstruction algorithms based on statistical inversion are modular because the
prior information and the measurement model are separate:

• If different types of tissue are imaged with the same measurement setting (same
X-ray device and same projection directions), only the prior distribution needs to
be changed in the computation.

• If the measurement setup changes, only the likelihood distribution needs to be
changed. This change is accomplished by (i) computing matrix A in equation
(17) for the new geometry and (ii) approximating the noise characteristics for the
new imaging equipment or imaging parameters.

Statistical inversion can provide more information than just reconstruction. In
addition to presenting a single estimate (typically MAP-estimate) as final image
of the target, statistical inversion gives natural means to obtain more extensive
information on the solution by computing different statistics and confidence limits from
the posterior. In case of non-Gaussian posteriors this can be done by sampling the
posterior using MCMC methods. Statistical inference from the posterior is conducted
using MCMC methods by Hanson et al in [37, 38]. They verify the prior for the
deformable boundaries by samples from the prior in [38]. In part II of this paper we
show marginal distributions and credibility intervals for reconstructed pixel values.

Applying statistical inversion to realistic three-dimensional medical imaging leads
to large-scale optimization or integration problems. Thus, powerful computers and
clever numerical algorithms are required to shorten reconstruction time to acceptable
limits.

In part II of this paper we show how statistical inversion with a feasible prior can
improve reconstruction quality over tomosynthesis and other traditional reconstruction
methods in dental imaging. We acquire our tomographic data with a commercial
medical X-ray device using in vitro human phantoms. The examples are computed
with realistic resolution.

4.4. Review of statistical inversion approaches to tomography from sparse projection
data

In this section we review earlier work on statistical inversion for reconstruction from
sparse projection data.
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• Persson, Bone and Elmqvist [78] and Delaney and Bresler [15] compute MAP
estimates with total variation prior using simulated limited angle projection data.
Improved image quality is reported in comparison to filtered backprojection.

• Hanson and his collaborators have worked on Bayesian methods for sparse data
transmission tomography for a long time. In the pioneering 1983 work [39],
Hanson and Wecksung applied Bayesian inversion to limited-angle tomography
using a Gaussian prior. In later works they used shape parametrization of the
problem together with Bayesian inversion methods [37, 38, 3, 4].

• Shape parametrization and Bayesian approach to limited angle problem has also
been studied by Mohammad-Djafari et al , see [94, 66, 67]. See also the discussion
about prior models for X-ray imaging in [66].

• Sauer et al consider the Bayesian approach to transmission tomography in
nondestructive testing [89]. Their data consists of few radiographs collected from
full angle, and they compare Markov random field (MRF) priors with different
smoothness properties. They also consider binary MRF-priors (i.e., possible
values of attenuation are known a priori). MAP estimates are computed. This
work is extended to real measurement data (and modelling of uncertain source
locations) in Sachs and Sauer [87]. In [8] they present an iterative pixelwise
coordinate descent algorithm for the computation of the MAP estimate. See also
[7]. Similar work has been conducted by Hsiao et al [45] with simulated non-sparse
data.

• Nygrén et al [74] apply Bayesian approach to ionospheric radiotomography. They
use Gaussian priors for reconstructions with simulated and real data. This work
is the continuation of the work of Lehtinen [58, 59, 46].

• Anisotropic total variation regularization has been considered by Bleuet,
Guillemaud and Magnin [6]. This approach cannot be interpreted as Bayesian
in the strict sense since the regularizing penalty functional depends on the
measurement geometry, whereas prior distributions should be independent of the
measurements.

• Yu et al [23] consider structural MRF-priors. In their (conditional) MRF-prior,
the weighting field for the jumps between neighboring pixels is based on level-
set representation of the organ boundaries in the current estimate. Their model
contain a hyperprior that prefers relatively short and smooth organ boundaries. A
minimization scheme in which the pixel values and organ boundaries are updated
in alternating manner is used for the computation of MAP estimates.

• Bayesian methods have been used widely and succesfully in emission tomography
modalities (SPECT and PET), see e.g. [13, 10, 2, 42, 61, 33, 43, 56, 31, 70, 57, 9].
Typically, Markov random field (MRF) priors are used as prior model for the
image and MAP estimates are computed as final images from the posterior. In
most cases Poisson model is used for the statistics of the emission data. This
can give significant improvement over Gaussian noise models when emission data
contains very low counts, which is often the case, especially in PET. Many of the
articles give detailed discussions on the optimization routines that are used to
compute MAP-estimates. The resolution of the reconstructions in SPECT and
PET are not expected to be as high as in X-ray tomography. Thus, the numbers
of unknowns for these problems remain much lower than in X-ray imaging.
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5. Conclusions

In this paper, the application of statistical inversion methods to X-ray tomography
with sparse projection data was reviewed and discussed. The main focus was given
to the theory of statistical inversion and to the prior models. The discussion included
an example on the analysis and visualization of the prior models. We also discussed
the likelihood model we use for X-ray tomography and the computation of the point
estimates from the posterior. A review of mathematical results on the information
content of sparse projection data was also given. Based on the presented theory, a
novel statistical model for three dimensional imaging of dentomaxillofacial structures
is proposed in part II of this paper. Results are given with experimental projection
data from in vitro dental phantoms.
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Appendix A. Gaussian approximation for the likelihood

Let nmeas
i denote the value of the detected photon count for the ith observation in the

set of projection data. For it we define the value of the attenuation measurement

mmeas
i = − log

nmeas
i

λ0I0
, (A.1)

modelling the fact that

Ii = I0 exp(−m0,i), m0,i = (Ax)i

is the error-less intensity measured on the detector pixel. The photon counts ni are
assumed to be independent and have distributions ni ∼Poisson (λi), λi = λ0Ii. This
models the fact that each photon is absorbed to the detector with probablity λ0.

Next, we would like to approximate the observation errors with a Gaussian
distribution. Unfortunately, since the attenuation data is a logarithm of a Poisson
distributed quantity this kind of approximation can not be justified directly. Instead
of that, we will consider in detail the likelihood function, that is, the probability
mass function of n = (n1, . . . , nN )T with condition that x is given. At point
u = (u1, . . . , uN )T it is

p(n = u | x) =

N∏

i=1

e−λi
λuii
ui!

=

N∏

i=1

exp [ui log(λ0I0 exp(−m0,i))− λ0I0 exp(−m0,i)− log(ui!)] .

where m0,i = (Ax)i. Taking logarithm of this expression, we get

log p(n = u | x) =

N∑

i=1

[−uim0,i − λ0I0 exp(−m0,i)] + c(u), (A.2)



Statistical inversion for X-ray tomography with few radiographs I 24

where the constant c(u) is independent of x. Following Sauer and Bouman, [7] we
write

log p(n = u | x) = c(u) +

N∑

i=1

h(m0,i, ui),

where function h is of the form

h(t, ui) = −uit− λ0I0 exp(−t).
Now, we write Taylor approximations for functions t 7→ h(t, ui) at point t̂i = t̂i(ui)
where ∂th(t̂i, ui) = 0. This gives

log p(n = u | x) ≈ c(u) +

N∑

i=1

h(t̂i) +
1

2

N∑

i=1

∂2
t h(t̂i)(m0,i − t̂i)2. (A.3)

Solving equation ∂th(t̂i, ui) = 0 yields

t̂i(ui) = − log
ui
λ0I0

, ∂2
t h(t̂i, ui) = −ui. (A.4)

Denoting t̂(u) = (t̂1(u1), . . . , t̂N (uN ))T and recalling m0,i = (Ax)i we obtain

p(n = u | x) ≈ ec1(u) exp(−1

2
(t̂(u)−Ax)TD(u)(t̂(u)−Ax)), (A.5)

where c1(u) is a constant and D is a diagonal matrix with elements Dii = ui.
Now, if the values of ui are the measured photon counts nmeas

i and

mmeas
i = − log

nmeas
i

λ0I0
,

we see that t̂(nmeas
i ) = mmeas

i . Thus

p(n = nmeas | x) ≈ ec1(mmeas) exp(−1

2
(mmeas −Ax)TD(mmeas −Ax)), (A.6)

Thus the value of the likelihood function p(n = nmeas | x) is approximately the same
that we would obtain using an additive Gaussian error model for m0,i such that the
inverse of the noise covariance matrix is D.

The matrix D depends on m0,i. In practice, D can be approximated, for example,
by using the values of mi as the diagonal elements or by D ≈ σ−2I. The latter
approximation can be considered reasonably good whenever the photon counts at
each detector pixel are approximately of same magnitude.
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[46] Hämäläinen M, Haario H and Lehtinen M 1987 Inferences about the sources of neuromagnetic
fields using Bayesian statistics, REPORT TKK-F-A260, TKK offset, Helsinki University of
Technology, Low Temperature Laboratory, Helsinki 1987

[47] Kaipio J P, Kolehmainen V, Vauhkonen M and Somersalo E 1999 Inverse problems with
structural prior information. Inverse Problems 15 713–729

[48] Kaipio J, Kolehmainen V, Somersalo E and Vauhkonen M 2000 Statistical inversion and Monte
Carlo sampling methods in electrical impedance tomography Inverse Problems 16 1487-1522.

[49] Kaipio J P and Somersalo E 2002 Estimating anomalies from indirect observations. Journal of
Computational Physics, 181:398–406.

[50] Katsevich A 1997 Local tomography for the limited-angle problem. Journal of mathematical
analysis and applications 213 160–82

[51] Kazantsev I G 1991 Information content of projections. Inverse Problems 7 887–898
[52] Kolehmainen V 2001 Novel Approaches to Image Reconstruction in Diffusion Tomography.

PhD Thesis, University of Kuopio, Kuopio, Finland.
[53] Kolehmainen V, Arridge S R, Vauhkonen M and Kaipio J P 2000 Simultaneous reconstruction

of internal tissue region boundaries and coefficients in optical diffusion tomography. Physics
in Medicine and Biology 15 1375–1391

[54] Kolehmainen V, Vauhkonen M, Kaipio J P and Arridge S R 2000 Recovery of piecewise constant
coefficients in optical diffusion tomography. Optical Epress 7(13) 468–480

[55] Kuchment P, Lancaster K, and Mogilevskaya L 1995 On local tomography. Inverse Problems
11 571–89

[56] Lalush D S and Tsui B M W 1992 Simulation evaluation of Gibbs prior distributions for use
in maximum a posteriori SPECT reconstructions. IEEE transactions on Medical Imaging,
11(2) 267–275

[57] Lee S-J, Rangarajan A, Gindi G 1995 Bayesian image reconstruction in SPECT using higher
order mechanical models as priors. IEEE transactions on Medical Imaging, 14(4), 669–680

[58] Lehtinen M 1985 On statistical inversion theory, in Theory and applications of inverse problems,
Proceedings of the Fourth National Meeting of Physics in Industry, Helsinki, September 4.-6.
1985, editor: H Haario. ISBN 951-45-4084-0. ( Longman Scientific & Technical, Longman
Group UK Ltd.)

[59] Lehtinen M 1986 Statistical theory of incoherent scatter measurements, EISCAT Technical



Statistical inversion for X-ray tomography with few radiographs I 27

Note 86/45. ISBN 951-99743-2-6. (PhD thesis, University of Helsinki)
[60] Lehtimki M, Pamilo M, Raulisto L, Roiha M, Kalke M, Siltanen S and Ihamki T, ”Diagnostic

Clinical Benefit of Digital Spot and Digital 3D Mammography on Analysis of Screening
Findings”, To appear in SPIE’s conference on Medical Imaging in San Diego, 15-20 February,
2003.

[61] Liang Z, Jaszczak R and Greer K 1989 On Bayesian image reconstruction from projections:
uniform and nonuniform a priori source information. IEEE transactions on Medical Imaging,
8(3) 227–235

[62] Logan B F and Shepp L A 1975 Optimal reconstruction of a function from its projections. Duke
Math. J. 42 645–59

[63] Louis A K 1986 Incomplete Data Problems in X-Ray Computerized Tomography I. Singular
Value Decomposition of the Limited Angle Transform. Numer. Math. 48 251–262

[64] Ludwig D 1966 The Radon transform on Euclidean space. Comm. Pure Appl. Math. 69 49–81
[65] Luo D S and Yagle A E 1996 A Kalman Filtering Approach to Stochastic Global and Region-

of-Interest Tomography. IEEE Trans Image Proc. 5(3), 471–479
[66] Mohammad-Djafari A and Sauer K 1997 Shape reconstruction in x-ray tomography from a

small number of projections using deformable models. The 17th International Workshop on
Maximum Entropy and Bayesian Methods (MaxEnt97), Boise, Idaho, USA, Aug. 4-8, 1997.

[67] Mohammad-Djafari A and Soussen C (1999) Reconstruction of Compact Homogeneous
3D Objects from their Projections. Chapter 14 in Discrete Tomography — Foundations,
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[70] Mumcuoglu E Ü, Leahy R, Cherry S R and Zhou Z 1994 Fast gradient-based methods for
Bayesian reconstruction of transmission and emission PET images. IEEE transactions on
Medical Imaging, 13, 687–701

[71] Natterer F 1986 The Mathematics of Computerized Tomography. John Wiley & Sons,
Chichester, U.S.A., and B. G. Teubner, Stuttgart, Germany
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