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ABSTRACT. In 1995 Tataru proved a Carleman-type estimate for linear op-
erators with partially analytic coefficients that is generally used to prove the
unique continuation of those operators. In this paper we use this inequality
to study the stability of the unique continuation in the case of the wave
equation with coefficients independent of time. We prove a logarithmic es-
timate in a ball whose radius has an explicit dependence on the C*-norm of
the coefficients and on the other geometric properties of the operator.
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1. INTRODUCTION

We consider the wave operator in R+,

(11)  P(y,D)==D5+ Y ¢*(x)D;Dy+ Y W (2)D; + q(x),

jk=1 j=1
where y = (t,z) € R xR" are the time-space variables, Dy = —i0;, D; = —i0,,.
The coefficients ¢/ € C*(R™) are real and independent of time, and [¢*] is a
symmetric positive-definite matrix. The coefficients b/, q € L>°(R") are com-
plex valued and independent of time.
An operator P(y, D) is said to have the unique continuation property if for any
solution u to Pu = 0 in a connected open set  C R"! and vanishing on an
open subset B C (), it follows that u vanishes in €.
In the paper [20] Tataru proved for the first time the unique continuation prop-
erty for (1.1) across every non-characteristic C%-hypersurface with no limitation
to the normal direction. The result is valid for a larger class of linear operators
where the pseudo-convexity condition across a surface is fulfilled for the cotan-
gent vectors with £ = 0 and it has been extended to the case of coefficients
analytic in time [6, 17, 21]. The key point of these results is a Carleman-type
estimate involving an exponential pseudo-differential operator.
Much is known about the consequences of this property on the uniqueness of
a corresponding Cauchy problem. Actually the unique continuation property
has proved to be instructive in many areas of mathematics, e.g. in studying
the uniqueness for linear and nonlinear PDEs together with their blow up or
traveling wave solutions [5], in studying the Anderson localization [3], in control
theory to get controllability results [22], in inverse problems to obtain unique-
ness and stability estimates [11].
Concerning the continuous dependence of the unique continuation property,
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that is its stability, less results are available. The elliptic and the parabolic
cases have been studied in several settings by using either Carleman estimates
or some versions of the three ball theorem (see [1], for a review of the results).
To our knowledge the hyperbolic case like (1.1) is still open for arbitrary do-
mains and arbitrary matrix valued coefficients ¢/*(z), while there exist results
for particular coefficients or domains (see [18]). This is maybe related to the
difficulty of using the standard Carleman estimates for hyperbolic operators in
order to prove the unique continuation close to the characteristic directions,
that is the reason why Tataru’s work was so important in this field.

The aim of the present work is then to prove a stability estimate for the unique
continuation of the operator P(y, D). We will focus on the local case, and we
formulate an explicit stability estimate for the inhomogeneous operator Pu = f,
that can be alternatively reformulated in terms of a boundary value problem.
Let © C R™! be a connected open set and consider a non-characteristic ori-
ented hypersurface S written as the level set of the function ¢ : Q@ — R,
S ={y € Q9Y(y) = 0}. Assume Pu = f, in a ball ; := B(yo,2R). More-
over, let supp(u) C Qs = {y € QY(y) < 0} with [Jul|gr(o,) < C1, and let
|| fll2(2y) < €1 for some small €; > 0. The stable unique continuation is based
upon an estimate like

(1.2) |1l L2 q) < T(Ch,er),

for some ball Q3 := B(yo,r) contained in €y, where the right hand side goes to
zero as €; — 0. Our aim is to prove (1.2) with a function Y that has an explicit
form depending on the constants related to geometrical properties of €23, €2y,
and Q and the norm of the coefficients ¢’ in C'(€2). In this paper we consider
the case where the domains €2; and 23 are balls centred in yy € 2 and we find
a logarithmic function T dependent on their size R and r and on the norms of
g% W, q and 1. In a forthcoming paper we will use the local stability estimate
to prove (1.2) for quite general domains.

Like in the elliptic case, many possible applications can be derived out of it.
In particular we plan to use inequality (1.2) to obtain an explicit modulus of
continuity for the inverse problem for the wave operator on manifolds. This
would improve the existing inverse stability results for Riemannian manifolds,
which are currently based either on compactness-type arguments, see [2, 14],
or on very strong geometrical conditions for the coefficients, e.g. in [4, 12, 13].
In the unpublished manuscript [19], Tataru suggested the possibility of ob-
taining a stability estimate, by using Gevrey-class localizers to improve the
estimates of u for low temporal frequencies.

Here we develop that idea by employing properties of subharmonic functions
(see Lemma 2.7) and by performing the explicit estimate of the radii » and R
and the constants. Of fundamental importance is the possibility of linking the
positive lower bound for r to the geometric parameters of the domain, in order
to assure that the estimate can work close to the characteristic surfaces of the
operator.

We first introduce some assumptions.
Assumption Al. Let Q be a connected open subset of R x R". Let P(y, D)
be the wave operator (1.1), with ¢*(z) € C1(Q), hi,q € L>®(Q). Let S =
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{y € Q9¢(y) = 0} be a C*P-smooth oriented hypersurface, which is non-
characteristic in 2, for some fixed p € (0,1). We assume that v € H'(Q)
is supported in {y;¢(y) <0} N, and P(y, D)u € L*(Q).

Assumption A2. We define A(Dy) to be a pseudo-differential operator with
symbol a(&p), 0 < a < 1, where a € C§°(R) is a smooth localizer supported in

€| < 2, equal to one in [§| < 1. Furthermore let a € G(l]/a(]R) for a fixed

a € (0,1). Here G(l)/ “ is the set of Gevrey functions of class 1/a with compact
support, defined in Definition 4.1. The also define the smooth localizer b(y),
supported in |y| < 2,0 < b <1 and equal to one in |y| < 1.

The main results of the paper are the following 2 Theorems.
The first one is a stability estimate of exponential type for the low temporal
frequencies.

Theorem 1.1. Under the Assumptions A1-A2, let yo € S with ' (yo) # 0, and

letb e G(I)/a1 (R™Y) be a Gevrey functions of class 1/ay with compact support,
such that 0 < o < o < 1.

Then, there exist two constants R,r with R > 2r > 0 and two balls centred in
yo of radii v and 2R, B(yo,r) C B(yo,2R) C Q, such that for > 1 there are
constants cya9, C131, C132 for which,

if
lull gty = 1, 1Pullizygy < 1, [IA(Do/1)b((y — o)/ R) Pullo < e,
then,

| A(Do/w)b((y — yo)/r)ullm < croge™ 22 Vw < u®/(3c131).

The radii v and R are defined in Table (3.10), while the coefficients ¢y are
computed in the proof of the Theorem.

a-aq

The second result is a log-stability estimate in a ball, valid for all the temporal
frequencies (see Figure 1 for the construction).

Theorem 1.2. Under the conditions of Assumption A1 we obtain that, for each
yo € S, with ¥'(yo) # 0, there exist two constants R,r with R > 2r > 0 and
two balls centred in yo of radii v and 2R, B(yo,r) C B(yo,2R) C Q, for which
the following stability estimate holds:

[ull(Byo,2R))
In (1 + —””u”HWB(yo,zR)) >

Pullp2(p(yg,2r))

lull L2(Beyor)) < Ci11

The radii r and R and the coefficient c111 are defined in Table (3.10). Moreover,
for any m € (0,1] we get

[ull 5. (B(yo2m))
In (1 + _”H"“H%B(yo,m» ))m

Pullp2(p(yg,2r))

]| z-m (Byor)) < Cﬁl(

As a consequence, one can find in a domain Q5 C € a uniform radius rg > 0
such that » > ry, and where rq = ro(\w’\cl,p(go), \gjklcl(go),minyego Ip(y, ¥,
mingeaq, [vo — )

Theorems 1.1 and 1.2 will be proved in Section 2. In Section 3 we will compute
the related parameters R,r, ¢, that are dependent upon the constants of the
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FIGURE 1. The domains of the stability estimate

=0
supp u
s
BQR
Y >0 Y <0

Carleman estimate of Theorem 2.1 and upon a particular geometric construc-
tion. The Appendix is devoted to the main definitions used in the article. We
finally observe that even if we deal with the wave equation, the same method can
be generalized to ultrahyperbolic operators of the type —|D,|* + ¢?*(x},) Dy.D;;,
where the variable y = (z,, ;) has a different splitting and where x, corre-
sponds to the conormal direction for the pseudo-convexity condition.

2. PROOF OF THE STABILITY ESTIMATE

Notations. We start by introducing some notations and definitions used in
the rest of the article: first we consider y = (t,z) € R x R™ the time-space

variable and call £ = (&, §) its Fourier dual variable. We remind that the expo-
nential pseudodifferential operator in Theorem 2.1 is defined as e~<lPol*/2ry —
Fe Lte*“'ég/ T Foev, with F and F~! representing respectively the Fourier
transform and its inverse. Then e <1P0//27 is an integral operator with kernel
(ﬁ)lme*ﬂt/*ths. We also define A(Dy) to be a pseudo-differential operator
with symbol a(&), 0 < a < 1, where a € C§{°(R) is a smooth localizer sup-
ported in || < 2, equal to one in |&| < 1. Hence we can write A(S|Dy|/w)v =
Fe,Lpa(Bléo] /w) Fuoe,v and the integral kernel is (ﬁ)lﬂa(%). We will of-
ten work under the Assumption A2, where the symbol a is of Gevrey class. The
smooth localizer b(y) is supported in |y| < 2 and equal to one in |y| < 1.

The norm of the Sobolev space H? is defined as ||ul|s., = ||(|€[*+7%)2F, -eul 12,
and the space H® corresponds to the case 7 = 1.

According to our notations the positive coefficients denoted by ¢, with x > 100
are defined just once, independently on the variables p, 7, and they are com-
puted explicitly in terms of the coefficients of the operator (1.1) and the geo-
metric parameters. This is essential to finally recover the value of ¢;1; and the
radii R,r in Theorem 1.2.
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We then introduce the Tataru inequality proved in [20] in the version pre-
sented by Hormander [6] and adapted to the wave operator.

In the Appendix one can find the definition of conormally strongly pseudocon-
vex function or surface, and Gevrey function. According to Definition 4.5 and
the splitting y = (¢, ), the conormal bundle in R"*! with respect to the folia-
tion  =const is defined as _

N*F = {(y,€) € T*R"™; with £ = (§,¢) and & = 0}, and its fibre in yp is
r

Yo-

Theorem 2.1. Let Q be an open subset of R x R™. Let P(y, D) be the wave
operator (1.1), with ¢’*(x) € C*(Q), hW,q € L*(Q). Let yo € Q and ¢ €
C*P(Q) be real valued, for some fized p € (0,1), such that '(yy) # 0 and
S ={y;¢(y) = 0} being an oriented hypersurface non-characteristic in yq.
Consequently there is X > 1 such that ¢(y) = exp(\Y) is a conormally strongly
pseudoconvex function with respect to P at .

Then there is a real valued quadratic polynomial f defined in (3.3) with proper
o > 0, and a ball Bg,(yo) such that f(y) < ¢(y) when y € Br, — {yo} and
f(yo) = o(yo); and f being a conormally strongly pseudoconvez function with
respect to P in Bg,. This implies that there exist €y, Ty, 1,7, co1, R, such that,
for each small enough € < €y and large enough T > 19, we have

||€_€|D0|2/2T6Tfu||177 < cir 7_—1/2||€—e\Do\2/2freTfP(y’ D)UHO + 627T6_TR§/46||eTfu||177—.

Here u € H. (), with P(y, D)u € L*(Q) and supp(u) C Br(yo)-

loc

Remark 2.2. We note that the explicit estimate for the involved coefficients
€0, T, C1,T, C2,1, 0, [T, R and their dependence upon the parameters of the prob-
lem have never been found. In this paper we provide proper estimates, which
are summarized in Table (3.10) of Section 3.1.

Notice that this is possible under the condition that ¢ € C*?(Q) instead of the
usual ¢ € C?(Q). Furthermore we assume that S is not characteristic in yo and
consequently in a domain €2y C 2. Actually this assumption is not required in
20, 6] where only the strongly pseudoconvexity of S in 'y, is assumed. In Re-
mark 3.1 we will underline such difference with an alternative condition on .
Anyway for the practical computations of the values in Table (3.10) we prefer
to work in the stronger setting of Theorem 2.1. Our wave operator can be seen
in 2 ways: (H) an hyperbolic operator with constant in time and real valued
coefficients for the principal part, or (E) an operator whose principal symbol is
elliptic in the set I'qg C N*F. In the latter case Tataru inequality is sharper (see
[20]). Here we prefer to consider just the case (H). Finally, some improvements
to the assumption on the coefficients of (1.1) may be done, for example taking
2, C R"™ the smooth domain of definition of ¢(z) we can assume g € L"(£2,)
forn >3, g € L**(Q,) for n =2, ¢ € L=(Q,) for n = 1.

We now proceed with the detailed proof of Theorems 1.1 and 1.2.
A first step is the following lemma, introducing a property often used in this
section.

Lemma 2.3. Let A(Dq) be a pseudo-differential operator with symbol a(&),
where a € C§°(R) is a smooth localizer supported in & < 2 and equal one
in |&| < 1. Assume that f(y) € C(R™) N GYRY), where 0 < o < 1.
Then, for every u >0, 31 > 2, v € L2(R™™) there are two constants cios, C1o7
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independent of . such that
a) [[A(BiDo/ 1) f(y)(1 — A(Do/p))vllo < crore™ 1" [[v]]o -
Moreover, if h € C(R"™) is a function such that h =1 on supp(f), then
b) [A(B1Do/p) fhvllo < || fllocl A(Do/ ) R(y)vllo + crore™ 0" || hv]o .
If v € H™(R™), m > 1, then the estimate above holds also in H™(R™1),
under the additional condition D' f(y) € G(l)/a(R,}):
c) [[A(BDo/p) f(1 = A(Do/11))v]lm < crose™ [0l -

Proof. a) On the set supp[(1 — a(&/p))a(1&)/1)] one obtains |&} — &|* >
(u — 2u/51)* and the assumption f(t,.) € G(l)/a(]Rt) implies, uniformly in x
on a compact set K C R™ and for some ¢3 = c3(a, K), c117 = c117(a, K) and
cro6 = cur(l —2/61)% /4,

Foog—en [F (', 2)]] < cgemenmlom@ol® < ggem2eion® g menrléo—6ol®/2,

We then estimate in the Fourier space the operator A(51Dq/p) f(-)(1—A(Dq/p)),
0B /1) Fomgy (£, ) (Fi o (0 — a6/ ) Frose o) )

= a2 ([ 0= )P0 P ] ) I

1
1 €o 515(1) —2c106p® ,—c117/65—E0|* /2 2
<oy | dedgy( [ (1 a(3))a(P0)em 2 w81 2 F L 1](6, )| dEo
R7+1 R K K
< drdedl (1 = @ ﬁlgé —2c1061” p—c117/€5—€0l* /2|2 2
< g | dad§l|(1—a(=))a(——)e € 122 o) [ F -0 [0] (€0, 2) |22 o)
R7+1 2 w
< st (1 — a0 )a( Dyt 1P 6
=3 [ L2(déodeb) 1Y t—E0 05 L2(d€odzx)
< clore > olfg,
with ci97 = (@%F(é) a(c1117)1/a( 1)11))1/2 and where we apply at the last
Qc106) ¢~

step the inequalities
—c 1_ ¢ |a 8 1 1
101 = alo/mYa(Brs /e P ) < 2T (L) s

and /Leftllow‘l < ;1
" (acio6) @1

b) To prove the inequality we observe that

[A(BLDo/p) fhollo < |A(BLDo/p) fA(Do/ ) hollo +
|A(B1Do/p) f(1 — A(Do/ 1)) hvlo

where we can apply the estimate a) to the second term at the right hand side,
and where the first term is bounded by || f||co|[A(Do/ 1) (y)v||o-

¢) The extension to H™ of a) follows from

DEF(1 = Ao/ =3 (5 ) (D50 F) (0= Ao /) (D) ).
v:v<(

By hypothesis any derivative D¢~? f belongs to G(l)/ “(R;); hence we consider all
of them as a new function g, having the same Gevrey-parameters cs, ci17 as f.
Then we apply A(51Dy/p) and repeat the computations of step a), replacing v
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with DVv. The coefficient c¢193 = ¢,,C107 is a proper multiple in m of ¢qo7.
0
Another technical Lemma is the following result.

Lemma 2.4. Let p(y) be a second order polynomial in y = (t,x) € R x R™.
If x(s) € GJ™(R), for ar € (0,1), then e?Wx(p(y)) € GV (R™). If
supp(x) = [—86,0] and b((y — vo)/(2R)) € Gé/al(R"H) is a cut-off function,

then there are constants ci99, C103, such that

Frco O (0(u)b((y — 90)/2R))]| < cazge™ sl

Proof. By assumption both ¢(y) and e™ are analytic functions (i.e. in G*)

while x € G&/*'(R). Since G* C G'/*1 and they are both rings by Proposition

8.4.1 of [7], we deduce that the product e™x(s) is in G'/**(R). Moreover this
product has compact support, since y is compact supported. Let us write y as
X(s) = x1(s/d) where x; has the properties in Definition 4.3, with associated
coefficient ¢;x. By assumption we have, for z € C, E =supp(yx)=[—8,4],
C119 = 5C1)(<C¥1>, B = (SalClx(Oél), and HE' as in Definition 41,

|[(Famzx(5))] < cnno exp(Hp(Im z) — Bl Re 2|™).
Consequently, for £ € R,
Fone (€7X(8)) = Fonserir (X(5)),
and for 7 > 0
[ Famse (€7X(8))] < crrg exp(Hp(r) — BI¢|™) = c1ig exp(0T — BIE[™).

Hence we can estimate the derivatives:

57X (s)| = | / (16 (Fue € x(s)) (€)de]

o s 1 k41
< /0119|§|kexp(57 — B€|*)dE = 2mey19e™ BT o1 —T(
R

(€51 aq

)

E+1 -ap) = k41 a
( ;—1 - 1) all }< ;1 N 1> 1 S C]f;rlleq—(skk/aly

_ (k+1)
a1

2
< T eT‘sF(Q) max {B
aq k

(l—ag) (1-ay)
1— - 1 Qg
where ¢199 = (( al)) a1 BT elmBT ey = 27:5—119F(2)(a%) c120 and

a1 ln B
k+1 k+1 k+1 k+1 k+1  \a!
r() = G ) (o) (G ) <t (S -1)
Qi ai a1 Q1 Qi
withp = [ka—Jﬂ —1. We now recall that the composition of a Gevrey function with

an analytic map is still a Gevrey function, therefore we get e™x(p(y)) € G/,
Since ¢(y) is a second order polynomial, for & = 0, 1, 2 we have |9} p(y)|co(pp) <
c118(R) and, without restriction of generality we take ¢115 > 1. Considering the
composition with ¢ we obtain by induction, calling m(s) = e™x(s), for any
k>0,
k! D2\ k—r
otm(ew)) = X e = et G (557)

reJ
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where J ={r>0: 2r >k >r}, and

k _1o(y) k+1_76 r+1. r/a
|0 e x(p(y))| < cis'e ;2’“7“27“— I (k — ),0118T '

|
k+1 76 k+1 k " r/a § k41 k+1\ok1.k/a
< g €700y ( >—2k r(2r — k;)‘r fer < (e™ciay cirg )27k /e )

reJ

Wlth k),r’"/ a1 < ke for r admissible. For the product we get, applying
(4.1) and calling ci99 = max{401180121, c1x/ R},

0;b((y — o)/ (2R)) < R Fery kMo,
9 Im(p(y)b((y — yo)/(2R))] < ety kb,
Consider the partial Fourier transform F;_,¢, in time of 97 (e x (¢)b((y—v0)/(2R));
from the estimate above it follows that
[€ol* | Fimes (€7 X (0)b((y — 10)/ (2R)))| < €7ty K.
This implies that

k/aq

k _ _ o
[Fiseole™x(9)]] < ey |€ol* < C1a0eT 7 < epppeT e

where for each & we choose k as the largest integer such that cio|&| ™ kY1 <
el Since k > [e7ten|éol]® — 1, we get the result once we choose cio3 =

(66122)_a1 .0

In Theorem 2.1 we referred to the radius R, that is defined in Table (3.10)
~1/2

as R := gqRy; with ¢ = i(l6 + %) , and where Ry in the same table is

computed in terms of the pseudoconvexity constants introduced in subsection

3.1. By using those quantities one can introduce the geometric construction of

figure 2. Let f(y) be the second order polynomial defined in Theorem 2.1, with

¢ = e and yp € Q. Recall that f(yo) = ¢ (o).

Proposition 2.5. Let § be a positive constant such that

(2.1) 0 <8< n|d"|cong? RTS8,

and

(22) o(y) == f(y) = flw) = D (0°8)(wo) (y — v0)"/v! — oly — wol*-
0<|v|<2

Then, {y € B(yo, R2); ¢ < ¢(v0)} N {y € Blyo, Ra); w(y) > —83} C B(yo, R).

In addition, let r be a positive constant such that

0@ |00.0(5,)0” Ry
= 2/¢'|00(Br,) + 100]¢"|cor(p,) Ry
Then the ball B(yo,2r) C {y; lp(y)| < d}.

(2.3)

We postpone the proof of the proposition till the end of section 3.

In the following Lemma we show how an exponential decay for the L?-norm
of a proper localization of Pu is transmitted to the right hand side of Tataru
inequality.
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Lemma 2.6. Under the Assumptions A1, let yo € 2 and ¢ be the quadratic
polynomial (2.2). Let 0 < a, ay < 1 and x(s) € Gé/al(]R) be a localizer sup-
ported in [—89, 8] and equal 1 in [=78,6/2]. Let u > 0, 6 > 0, be given constants,
be C&(R™) and a € C§°(R). Let A(Dy) be a pseudodifferential operator with
symbol a and p, = min{pu®, u®1}. If

[l =1, 1Pullizmn <1, [[A(Do/m)b((y — yo)/R)Pullo < e,
then for each T > 0, there are constants c119, c109 Such that

[e=1P/27 e () Py, DYully < exnge®™ s

Proof. Define a,/3(s) := a(3s/p), hence supp(l — a,/3()) C {|&| > n1/3}-
Then, we get:

le= PR e x (0) Py, Dyullo = lle™/ @7 Fisg, (€7 x () P(y, D)u)lo
< (1= aus(&o))e 9D Fr, (€7 X(0) Py, D)u) o
Hlans(éo)e™ S/ O Fy, (€7X(9) Py, DY)l =: I + L.

By our construction we have that b((y — yo)/R) = 1 on supp(x(y)Pu), hence

we can write x () P(y, D)u = x(¢)b((y — yo)/R)P(y, D)u.
The first integral can be estimated for 7 < cjo7p4 as follows, where cio7 =

V€/(369),
I eSO F, e (€7 x (@) Py, D)u)llo < e/ 08D e™x (0) P(y, D)ul)o
e~ M/ ABTIRTO N () P(y, D)ullo < =2 ||b((y — yo)/R)P(y, D)ullo,

where we have —eu?/(187) + 78 < —ci970p. Notice that the estimate for I;
holds only for 7 < cy97p. If instead 7 > c1970 then
le= PP 2m e x (0) Py, D)ullo < e l|x(¢) Py, D)ullo
<X b((y — yo) /R) Py, D)ullo

<
<

6T

since €97 = 297797 < 20712791 For the second integral we get

Iy = [|e /D q, 5(&0) Fiosey (€7 X (0)b((y — o) /R)P(y, D)u) o
< [ Auss(Do)e™x(@)b((y — yo)/R)P(y, D)ullo
< [ Aus(Do)e™ x(0)b((y — yo) /(2R)) Au(Do)b((y — yo)/ R)P(y, D)ullo +
[ Au/3(Do)e™ x(0)b((y — yo)/(2R)) (1 = Au(Do))b((y — yo)/R)P(y, D)ullo
= [3 —+ [4 .
To estimate I3 we apply the assumption and we obtain:
[ABDo/m)e™ x(9)b((y — yo)/ (2R))A(Do/p)b((y — yo)/R) Pullo
< e[| A(Do/i)b((y — yo)/R)Pullo < €™~

To estimate I, we apply Lemma 2.3 and Lemma 2.4. By the estimates for f(y)
at its derivatives in Step 3 of section 3.1 we deduce for £ =0, 1,2

07 ()] < ens(9) = 1416 |o(1+ Ra) +5n]¢" o, B +[¢"o(1+ B3) +0(2+ R3).
Lemma 2.4 and the properties of e™?x () imply that

Frser-e[OX@) (I, 2)D((Y = y0)/ (2R))]| < crppe™em a2k ™/ CIM meraslfo ol /2,



10 ROBERTA BOSI, YAROSLAV KURYLEV, MATTI LASSAS

FIGURE 2. Geometric construction around g

supp

) Bor

¢ < é(vo)

since {5 — &l > p— 2/3 = p1/3 on supp|(1 — a(&o/n))a(3& /1)].
To estimate I, we then apply Lemma 2.3.a) and using the fact that f =
e™?x(p)b((y — yo)/(2R)) and recomputing the constants, we get

IABDo/)e™ x(2)b((y — yo)/(2R))(1 — A(Do/1))b((y — yo)/R) Pull;
< 03106275%128#“1 Hb((y - yo)/R)Pqu )

Wlth C198 = 30%26123 and C110 = (0122(8/3)F(1/a1)/[alc}é§‘1 (0116128)1/(01171)])1/2.
Calling ¢109 = min(1/€6/36, c128/2, 1) we finally get the result. O

We now prove Theorem 1.1, stating an estimate of inverse exponential type for
the temporal frequencies || < 2w.

Proof of Theorem 1.1.

If yo € S is as in the Assumption A1, then by Theorem 2.1 there exists A > 1
such that ¢(y) = exp(A) is a conormally strongly pseudoconvex function with
respect to P in €. Then we introduce the function ¢ defined in (2.2) as the
second order polynomial approximation of the conormally pseudoconvex func-
tion ¢ — ¢(yo) around vy, translated by —ol|y — yo|? .

In Table (3.10) we found o independent of y, so that ¢ also satisfies the conor-
mally pseudoconvexity condition w.r.t. P in the ball B(yo, Ry). In Proposition
2.5 we also computed a ¢ independent of 3y so that

{y: ¢ < o(wo)} N{y; ¢ > =86} C Blyo, R).
Given 0, we found r > 0 so that B(yo,2r) C {y; |¢(y)| < d}.

Let x1 € Gé/al(R) be a smooth cutoff function which is 0 on (—oo0, —8]U[1, c0),
1in [=7,1/2] and 0 < x; < 1. Define its scaled version x(s) := x1(s/d). Then,

Px(e)u = x(¢)Pu+ [P, x(p)u
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where, since u is supported in {y; ¢ < ¢(yo)}, it follows from Proposition 2.5
that

supp(x(#)u) C {y; o(y) < dyo)} N{y; =85 < p(y) <0} N{y; |y — wol < R},
and [P, x(¢)] is a partial differential operator of order one and satisfies

supp([P, x(»)]u(y)) C {y; =80 < p(y) < —T70}.
We now apply the estimate of Theorem 2.1 to yu to obtain, for all 7 > 7y,

—€ 2 T T —€ 2 T T
7llem Pl 2T eToN (p)ull} , < & plle PP Tem x (o) Pull
—€ 2 T T T —
i plle” P [Py (0)ull§ + & 7llem P Dx (o)l
where d = R%/(4¢). We refer to Table (3.10) for all the involved parameters.
According to our construction, ¢ is chosen such that d > 85. To estimate the

first term at the right hand side we apply Lemma 2.6.
The second term can be bounded by

e plle Pl 2eme [Py (@)]ulld < crvae ™ |ull3 5,00

with ci1a = ¢f p|g18a [X11Ge (LH¢'[ 6o /00" |20 /02), since X' () = x1(9/8)(#'/9)
and x"(¢) = X{(p/0)(¢" - ¢)/0% + xi(p/0)(¢"[0). .
Applying [[x(@)ullf < (1+[x1[20/0) 1wl 5,y the third term is such that

with c1i5 = (¢ [20 + 1)(3%72/6%)(1 + |x|[20/0%). Since 75 > 1 so that
(14 7)/2 <7, we get

1+7'0)
2

(2.0

ErrllerOx(@)ull, < (I o + Ve x(@)ul} < eas e,

||€_E|DO|2/2T€T¢X(@)U||%7T < 61166457(6—20109ua + 6_166T), VT > To,

where ¢j14 1= 3max(ciTc%m, C114,C115). We want to extend the previous esti-
mate to the complex upper half-space. Define, for 7 > 0

1 —€ 2/21 T
N(r) = 51 +m)le PR RTem e x ()ullf

and we get

1 — —e£2/(27 T
N(r) = 5@+ n)l[VIEP + T2 FiseaF el Fegmnie VD Fisgy (7 x(0)u)] I3

1 —e€2 /(27 T
= 51+ n)[lVIEP + 7% WEDF e F e x (@)l

1+ T0 ~ 2 /(27 . — .
= ( - )/Rn+1 d§d§0(|§‘2 —|—7-2)e &/ (2 ).Fy_>§(e “x(p)u)e £5/(2 )}—y_%(ewxw)u).
We first extend the estimate (2.4) to the case 0 < 7 < 79. Define first ¢;15 =
(1+]¢'|20) and
(2.5) cr1s = max{ciig, c11a(1 + 70) (1 + x4 %0 /6%) e ™).

Using that ¢ < 0 on supp(xu), we have
RN < 31-+) [ el X + Vo)

1
R0 m) [ drat (]9, (@)l + e ()l

< cna(1+ 7)) Ix(@)ull? < crize ™™ < czetm (e 7200k 4 o7 16T)
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We now consider z € C with Im(z) > 0 and rewrite the previous expression in
the complex half-space by replacing 7 with —iz:

(2.7) N(—iz) =
5 [ AR+ 1) F el e F ()
=50t [ e I R @ e ()
<50 [ AR e 0P + el (D))
=30+ [ a1Vl + (e (o)
=gt [ (1T -0 () + TP +

+|Z!2\€”“’x(<ﬁ)wlz>

< 50+ wenna (0 + )l + 19,00l

< %(1 +10)enz (1+ |2 [Ix(@)ullf < cns(1+[2%).

In the following we want to apply the properties of subharmonic functions. We
notice that the function U(y, z) := e~9Pol*/(=22)g=i2¢y (o)u(y) is analytic in z
such that Imz > 0, and that N(—iz) is subharmonic in z as integral in one
parameter of the sum of two squares of the absolute values of analytic functions.
Our aim is now to estimate the H' norm of A(Dgy/w)b((y — o)/ R)u)(y) where
w = p*/B, for some 5 > 0 to be determined.

Let n(s) := ni1(s/d), for m; of Gevrey class 1/«o; with support in [—4,1] and
equal to one in [—3,1/2]. Call iz = u® and 1 = Fs_,.n to shorten the notation.
First define F' as

F(y) :== A(BDo/1)(n(¢)u)(y).
Due to the regularity of n we can write the following foliation with respect to
the level sets of ¢:

n(e)(y') = /Rn(s) d(s —p(y')) ds = /ﬁ(z)e‘iw(y/) dz .

R
We remind that, according to our construction, x(¢) = 1 on supp(n(¢)u), and

then 7(p)u = n(e)x(e)u.
Consequently we rewrite [ as:

F(y) = A(BDo/p)(n(e)x(p)u)(y) = /R N(2)(A(BDo/R)e " x(p)u)(y) d= .

We remind that A(SDy/p) is an integral operator with kernel

k(t,t') = ga(%(t’ — t)).

Hence the previous equality is justified by Fubini’s theorem, because for y' =
(t',x) the integrand |7(2)k(t, t")e **W)x(o(y'))u(y’)| is bounded by the func-
tion ce FI" e (¥ 1) € LY(R, x Ry).
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Since n € CF°, then the Fourier-Laplace transform 7)(z) is holomorphic for
z € C, and hence 7)(Z) is also holomorphic. We then need a good estimate for
both 7)(2) and A(BDo/fi) (e=*x(¢)u(y)) in the upper half plane.

From the Gevrey class condition, we compute:

N(2)| = |0m1(62)| < dcrorexp(d  sup  (w, Im z) — c1020"t|Re z|*).
wEsupp (1)

By considering the domain Imz = —Im 2z < 0, we have

7(2)] < Sciprexp(d sup (w, ImZ) — c100*|Rez|™)
we[—4,1]

< deror exp(—40Imz — ¢1020“ | Re z|*)

where ¢191 = ¢101() is a given constant, cip2 = c102(v1, C101)-
We now change path of integration in the upper half plane I'm z > 0:

Fly) = / AEAGBDY (e uta) d:

with 'y = {z ¢ R : |z] > \/Liclggﬁ} and T’y the open rectangle inside the

ball |z| < c¢y30z defined as 'y, = {z € C: Rez = —\%clgoﬁ, 0<Imz<
%0130[7} U {Z e C: |R€Z| S %0130[’1, Imz = %6130/7} U {Z € C: Rez =

I\?Cmoﬁ, 0<Imz< \%0130/7}-
ence,

[ < /F!ﬁ(i)\HA(ﬁDo/ﬁ)(e”“OX(SD)U(?J))HHI |dz|

+ [ 1EIABD/ 1) (e x(@)uly)lm 1dz] = Ir, + Ir,.

1)

Along T'y, with z = Re z, we have both [7)(2)| < dc101 exp(—c1020*t|2]*1), and

IA(BDo/m)e**x()u)llin < lle™*x(@)uy)llin

< 2(]2Pl¢'[éo + DlIx(@)ullz
< (2P + Dews-

The final estimate for I, is

(e.e]

+

]Fl S 250101«/0113/ w/82+16—31025a13a1d8
1
V2

c1300

— do1 1 g oy _ oy oy
< 2eigry/erge 00 B / V52 1 10207151 /2 ¢
R

< 20101\/0113@_01025%(ﬁcm)wmu1 / J(5/6)2 + 1ec1025" /25
R

In I, we multiply and divide by the invertible operator ePol*/(2i2)

I, = | [RG)ABDy/fi)e AP/ i) Dol 2i2) iy () | 11 |d2|
Iy
< bewn / (AT =102 [Re 2l || A (B D /)= Do @) | g
2

—€ 2/(—2iz) —iz
e Pl /2D =0y (Q)uly) || dz).
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In the region I'y C {z : ci301/v2 < |2| < cisofi} the norm in B(H') can be
estimated, independently of 1, via the Fourier symbol of the product

—e€2)(2i2)| _ 6520“;” e(2p)?Im z _ delm z
(/)6 = a(@arPe | < 00 (2T ) = e (g, )

while the latter H'-norm is related to the estimate (2.11) for N(—iz)

N(—iz) < 2cn13(1 + [2]%) o—1061m 2
min{1, %cly/2} ~ min{l, cfs/2}

where we use (¢ +1) < m(lf\z + |z|%) in the first inequality, and

and ;2 > 1 in the second. Hence,

e 2/(=2iz2) —iz
[|e=eIPol/(=202) o =iz0n (o) (1) |2 <

2C113 14 /72C2 1/2 a a

[F2 S 50101( : ( . 130)) 6461mz €1020%1 |Re z|*1 B261306 56Imz’d2,’
min{1, cf3,/2} Iy

~2 .2

< 50101(20113(1 + H C130))1/2/ 6—01025041\Rez|a1 6_61m2/2’d2|
= mln{l, 6130/2} s

where we choose € and 8 such that € < §3%cl;,/8. Actually by our choice of
c130 the inequality can be written as

€< 952 . <€(5 01231’ )
- 247(5 367 4(3)2
The latter relation is satisfied for any € < ¢y and 5 > c;131, where ¢131 =

max{v/2(16)5, (v/2(16)5311\/eyd) /c1a3, ((16)%+/€00)/(3v/2)}, with €y computed
in Table 3.10.
Denoting z = 2’ 4 iy’ we conclude the estimate

_ aq ) _
(5/ e c1020%1 |Re z| 6Imz/2’d2’
)

€130

V2 _ §1 (613()#) 1 V2 _ aq | ey —§E130F
< 25/ e T TR oW 2 gy 4§ e~ 1020 M TOS 0 gy
0 —

=
[}
=
o
(V)=
=

s (e130)71 ~

+oo
_ oy _§C130 7
< 25 €102 (v2)oT I / e_5y//2dy'+5e 0 ﬂu/e—c1026a1|x/|a1dx/
0 R

w0

—c1020°1 (c130)% lﬂ N +o00 2 _§c1s0 _ |/ |21 /
< 2e (V™1 e Vidy +e "2v2 e 2 dy
0 R

Comparing the estimates for Ir, and Ir,, recalling that e~# < ="' and
choosing the largest constants, we obtain the final estimate for F(y)

(2.8) IA(BDo/) ()X (P)u) (W)l ar < erge ™,
with c137 = 5(c1020" C\1/39))al1 + 56130) + $C1020” (2\1/50130)0(1 and

c136 = 2c1011/Cuis fy V/(8/0)? + Lem 1025 Pds ey <%¢J§;}%’> (2 f eV 2dy'+
Jy e da ).

One can prove a similar estimate with n(y) replaced by b((y — yo)/r). By con-
struction we have chosen r so that supp(b((y —yo)/r))Nsuppu C {y; n(p(y)) =
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1)} N'suppu and we write

A2 u) = A A ()l
A= AT outy) = g+

fi r fi
From (2.8), J; has the desired estimate
v ~a
|J1]l1 < cs6 (1 + —| |CO>6_6137“ .
r
due to the fact that A(%)b(@) is a bounded operator. To estimate Jo we
apply Lemma 2.3.c) using the fact that b € G1/*1(R"1):

| J2]l1 < crzqe” 150

1/2 N
) ; C135 = ' Cax

_ 8 1 1 1
Where C134 = (<T01X>3F<a1> 041(7“0‘102)()1/0‘1(a10135)1/(°‘171) 23a1 .

This concludes the proof of Theorem 1.1 by choosing cja9 = max{ciz4, c136},
C132 = Hlin{0135, 0137}-

g

Here we show in details the estimate for the function N applied in the proof of
the previous Lemma.

Lemma 2.7. Let us define Ni(—iz) := N(—iz)/|1 — iz|?, where N(—iz) is

defined in (2.7). For z € CN{Imz > 0}, Ni(—iz) satisfies the inequalities

(2.9) Ny (—iz) < cpyget®mz (e 200t 4 o=160Im2) ) e RU{Rez =0, Imz > 0},
Ni(—iz) < ez, Imz>0.

where cy13 s given in (2.5) and cig9 is defined in Lemma 2.6. Therefore, there
exists some constant ci39 independent of 1, so that

: 1(—22) < 2c113e” y 12 S asop, fmz 2 0,
(2.10) Ny(—iz) <2 0sIm= 12| < eysofi, Imz >0
. 3cig9 1\
th ci30 = —(—> .
W €130 46 \16 _
Consequently, in the region |z| < ciz0pt with Imz > 0,
(2.11) N(—iz) < 2e113(1 + |2|?)e~1000m=,

Proof. Since Ni(—iz) < N(—iz), the estimates (2.9) for N; follow from the
equivalent estimates for N proved in (2.4), (2.6) and (2.7). To show (2.10) we
first consider z = 2/ + i3/ in the region ' > 0,4y’ > 0. Here we define the
analytic function

)

; _R8i(r— (- T(1—E) K
h(Z) _ 6216,26 80i(z—C1 z")

where 2z = |z|e?| 2" = exp(kIn z), with Inz = In |2| + 6, § € [0,7/2], and C] is
a constant to be determined. Taking x = 6/5, so that 1 < k < 2 and close to
1, we write h(z) as
h(z) = exp(26(iz’ —y')) exp(—85[—y + C1i*"|z|" sin(k0)])-
-exp(—8i[z" — C1 " | 2|" cos(k0)]),
and use h and its inverse to estimate N;. Consider
Ni(—iz) = No(—iz)|h " (2)|%,
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where Ny(—iz) is the subharmonic function in the first quadrant given by:

, : h(2)]? | - i ~
tie)= M= HEIF = [ (66 + B ke At o) i
We observe that:

a. On the real axis ¥ = 0 we have |h(z')| = 1, therefore
No(—iz) < Ny(—iz) < 2cq13.
b. On the positive imaginary axis y' > 0, ' = 0,
\h(iy))| = exp(—26y') exp(a(y’)), with a(y’) :=86(y — Cip* " (3/)"s,) .

where we have s, = sin(kmw/2) > 1/2.
Then a(y’) achieves its maximum at ), = 1(C1ks,)" 1% with the value

~ B _ k—1
8op(k — 1) 1 (M) 571 so that we

'Y = . We ch C, >
a(yyy) A(Cares TG e choose C} > s\ e

have —cigoft + a(y),) < 0, and consequently, by the estimates of Ny and |h|?,

Ny(—iz) < <C113645yl(6_261°9‘~"+6_165y/)>e_45y/62“(y’)

= (113
— m / _ ~l—k K
< 6113(62( croofi+a(yn,)) +e 166C1 it~ " 2| s,@) < 2¢113 .

(62(—0109174-@(?!)) T 166y’ +2a(y") )

c. In the region y' > 0, 2’ > 0, we get
|h(2)| = exp (—20%") exp [8]z|(sin @ — Cy it | 2| ! sin(kh))] < e=20 ).

Indeed for any 6 # 0 fixed we can compute the maximum in |z| of that expres-
sion and apply 1/2 < sin(kf)/sinf < k to obtain

_ L ~ 8)(k—1)
1—-x_.k—1 P
max[8dr (sin § — Copi~"r" sin(6))] < e() := R (rCy /2

that implies
NQ(—ZZ) S 01136_46y/€20(ﬁ) .

In order to get rid of the z dependency in this estimate, we apply the Phragmen-
Lindel6f Theorem 4.4 for subharmonic functions in the sector 2’ > 0,3’ > 0 to
obtain

No(—iz) < 2cq13
and we note that cyy3 is independent of ji. To prove (2.10) observe that, for
k = 6/5, we have sin(km/2) > 1/2 and the following inequality is valid in the
region |z| = ci3op with Rez > 0, Imz > 0,

|h™1(2)] = exp (28Im 2) exp (—85Im z + 86C, i* " |2|" sin(k0)) < exp(—53Im 2),

where

L 36109 1\5 < . sin 6 K—1

130 = T <E> - 06%,17?/2] (801 sin(r@@)) '
Indeed we see that 8C1 ' (ci30)" ! sin(kf) < sin 6, proving the derived esti-
mate, and also (2.11) follows consequently.
Next, we observe that the same estimate (2.10) can be obtained in the sector
Rez <0, Imz > 0 by applying the following arguments:
In the region ' < 0, ¥’ > 0, with z = 2’ + iy/, we define w = -2z = —2' 4+ i/,
belonging to the first quadrant, and N3(—iw) := Ny(—i(—2)) and Ny(—iw) :=
Ny (—i(=2))|h(=2)|?>. Notice that h(w) is an antiholomorphic function in w,
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and therefore |h(w)| is subharmonic. Also N3(—iw), Ny(—iw) are subharmonic
and they satisfy the same estimates as Ni(—iz), No(—iz). We then apply the
same procedure as in the first step with Ny, Ny replaced by N3, Ny. O

We now can complete the proof of the logarithmic stability estimate in Theo-
rem 1.2.

Proof of Theorem 1.2. We consider two cases:
Case A. Assume || Pul|r2(,,) > ||ull g1 (Byr)/e- Then the estimate is trivial as

||u||H1(B2R)
1+ (et

PUHLQ(BQR)

lullz2a) < llullaor) < In(1+e)

Case B. Assume now || Pul[z2(p,,) < ||u|lm1(s,n)/¢ and without restriction of
generality take ||u| g1(p,,) = 1. Our aim is to consider separetely estimates
for low and high temporal frequencies. Let A(Dj) be a pseudo-differential
operator with symbol a(&y), where a € G(I)/a(R) with a € (0,1) is a smooth
Gevrey class localizer that is supported in |{y| < 2, equal to one in |£y| < 1 and
0 <a < 1. Then a(8& /) is a scaled version of it, where 1 > 1 is the parameter
to be optimized, and 5 > 0 an adjusting constant. Let b € G(l)/al (R™1) with
0 < a < a; be another localizer supported in Bs, equal to one in B; and
0<b<1.

Observe that according to our geometric construction we have (see Proposition
2.5):

B, C suppb((y — yo)/r) € Bar C Br C suppb((y — vo)/R) € Bag,

and hence [|ul|p2p,) < [[6((y — yo)/r)ull 2.
Then we perform the splitting:

b((y = wo)/r)u = A(BDo/1)b((y — yo)/r)u+ (1 = A(BDo/11))b((y — yo)/r)u.
For high temporal frequencies |£y| > 1/ we estimate as follows:

11 = A(BDo/F)b((y — o) /r)u(y) 7= (1 — a(%)) Fioseo (0((y = y0)/T)u(y))l[72

2
< | e Fea ) ryute, ) s
o|>p "
2 2 b/ 20
< 2o = )/l < 2 (14 22 fulw) B oy

For low temporal frequencies we first choose i such that || Pu||z2(p,,) = e " <
e~!. Then we take u > 1, such that @ = p®. Hence for A and b as above we
get for all ¢ > 0:

(212) [ ACDo/mb((y — y0)/R)Pullo < [ Pulli2(s = 7

For ( = 1 in (2.12) we can apply Theorem 1.1 to obtain

(2.13) IA(BDo/)b((y — yo)/7)ullr2 < crage %™ B> 3.
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By collecting the previous estimates for low and high temporal frequencies we
conclude that, as 1 > 1,

&) V|20 1/2 —eragic1 o C105 C105
oy < 5 (14 557) T+ e < 228 =
() fi r? i —In(|[Pullo)
[[ul| 2 (52

<

B 20105 In (1 -+ —”ullH1<BzR) ) ’

||Pu||L2(B2R)
|b/ 2 1/2
where cjp5 = 6(1 + —£° + c129 and in the last step we apply In(y) >

In(1+y)/2 for y = ||u||g1(Byr)/ || Pl|L2(B,s) > €, and then we return to the
original notation. Defining ¢11; = In(1 + €) 4 2¢195 we obtain the result. [

3. GEOMETRIC CONSTANTS

3.1. Pseudoconvexity constants. In the following we work under the fol-
lowing assumptions, derived from the ones in Theorem 1.2:

A3. We consider the case of the wave operator (1.1) with principal symbol
Py, &) = =& + Doy 97 (@)Ei6k, with 0 < ay 7% < g/ (x) < by 67,
ai, b1 > 0. _ _

Call € = (§,&) € R x R", where [¢]> = Y77, €.

A4. We fix a function ¢ € C*/(R™), for some p € (0,1), such that
p(y, V' (y)) # 0 and ¢'(y) # 0 in a domain 5 C €, containing the
point yo lying on the level set S = {y; ¥(y) = 0}. In particular we
assume that [¢'(y)| > C; in Qq for C; > 0.

Moreover we use Einstein’s convention for the repeated indexes.

To get Tataru inequality we proceed in three Steps. In Table (3.10) are listed

the computed constants.

Step 1 . Given a function ¢ € C??(R"!) fulfilling the assumptions above
in a domain 2y, we find positive constants My, M;, Mp such that the
following inequality holds true

Pl ELIOE 4 it + im0/ ). ' )1

{p(y. £ +im¢'(y)), p(y, € +im' ()}
2T
for every £ € R xR", £ # 0, 7 € R. The previous inequality proves that
the hypersurface S = {y; ¥(y) = 0} is conormally strongly pseudocon-
vex w.r.t. P in €.
Step 2 . For ¢ = e, with yy on the level set ¢(y) = 1, we find A > 0 such
that the following inequality holds true

M, Ip(y, € + itd! (y))|?
min{1, A?¢?(y)} T2+ [¢)?
L A{p(y,§ +it¢'(y)), py,§ +1i7¢'(y))}
Ao (y) 21T

for every £ € RxR", £ # 0, 7 € R. The previous inequality proves that
the function ¢ is conormally strongly pseudoconvex w.r.t. P in 2.

(31) Mg+ M1<

+ > Mp(T? + |¢€[%)

(3.2) Mg +

¥ > Mpmin{l, N’¢*(y)} (7> + |¢]*)
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Step 3 . We consider a perturbation of ¢ by the shifted 2nd order polynomial
centred in the point yo,

(3.3) fly) = Z (0°0) (o) (y — 0)* /v! = oly — yol*.

v <2

In a ball B(yo, R1) C Qo where f’ # 0 we define

= min , = max .
%o yeB(yO’Rl)cb(y) Pum yeB(yle)qb(y)

We find ¢ and Ry > 0 small enough such that in the ball B(yq, R2) the
following inequalities hold true:  f(y) < ¢(y) in B(yo, R2)\{vo},
and

(34) M€ +2M, Iy, & +irf W) | {ply. € +imf'(y)). ply, € +imf'(4))}

T e (Aou)2i7
> (7 + |eP).

The previous inequality proves that the function f is conormally strongly
pseudoconvex w.r.t. P in B(yg, Rs).

Proof of STEP 1: We recall that

py, E+ir'(y) = p(y,&) — 7°p(y, ¢') +ir{p, v}
p(y. E+im'(W)P = Ipy,&) — 7°p(y. )] + 7*[{p, ¥}
= Ip(, OF + ' p(y, ¥)* = 27°p(y, Oply, ¥') + 7 {p, ¥}
(Pe(y, E+ it (), V' (y)) = {p, ¥}y, &) +i27p(y,¢")
[Py, € +imd" (), V' (W)I* = Hp, 0}, O +47°(p(y, ¢)°

We have to estimate the quantities

Iy, & + i’ (v))|?

Iy = TP + Dy, € +imd' (y), ' () I,
o iy (y), ply, €+ T (y))
2 2T

= {p.Ap. 3}, &) + 7 {p, {p, ¥} } (., V' (v)),

where the last equality holds for our second order wave operator.
For the second term we get, by setting a®® = —1, a/® = 0, a’* = ¢/%, j, k = 1...n,

B = 3 66 (430 0aa™ +4 3 @00 =2 3 0, e )
1,m=0 4,k=0 4,k=0 4,k=0
+r2 > Y, (4 > d'yhdm 42 aﬂazja’fmw;) > —Cs([¢)* + %)

1,m=0 3,k=0 §,k=0

where Cj5 is defined as follows

s (130 43000, 2 50 2 )
7,k

J.k ik
< 20(1 + n?|g”" [2) | | en (1 + [9'[Go) = Cs.
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For the first term we get

2 2 2
Ly = @O, 72\p(y,w’)\2(4 + T—) 2 p(y, )p(y, )

7+ ¢ 2+ER) T et
2
HE P+ )
Ip(y, ) , 1 1
> Sinep (=) + P P (HeP + 6= D7) o
2
HE P+ )
= m(lp(y,g)ﬁu —w) + 4lp(y, W) PIEPT + Iy, )P (5 — 5)74

+H{p, v} + [€P))

where by Young’s inequality, 2p(y,&)7*p(y, ¢') < wlp(y, > + 57 Ip(y. ),
where we choose w € (0,1) such that (4 >)5— 1 > 0.

We now split the estimate into two parts:

Case 1: If p(y, &) > 0, then

P, Ol =p(y, &) = —& + > d6& > ald] - &,
kj
P, O = (=& + D 9Y&&)" > (alé] — &) (=& + D 968
kj kj

=&+ al€POO " gYa8) — &1 gMas; + ail€?) > & + adl€] — (by + an)|EPER.
kj kj

Our aim is to find Ma, My, Mp such that Ma&2 + M1 g+ Lo > Mp(72+ |£]?).
Hence,

M25§ + Myl g+ Loy > M2§§ — Cs(T* + |€P) +
2

’ 9 9 A 2 1
o [0 1+ O e + (5= 5)77) + 1 1+ o )

! (wa& T EPE) + My (1 — w)[@JEl + € — (ar + b2 +

> -
Z TP
FILIp )[4 + (5 — 1)) - Calr* + gl + 206 )

> Mp(r + [€P).
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To fulfil the last inequality we have to solve the system of 7 inequalities:

(M —w)at =) € = Ml

v

(Mi(1—w)+ M= C3) & > Mg

<M2 — (b1 + a)Mi(1 —w) — 203) €[22 2Mp|E[?€R
<4M1 p(y, v')|* — 203) ¢
(431 lply, v = 205 + M ) 7283
(Milply, )P (5 = ) - Cs) 7

Case 2: If p(y, &) < 0, then
p(y, &) = —p(y, &) = & — ;g’%@ >0 = &> ;g’%@ > ail€]”

v

2Mp7’2|g|2

v

2MpT3E]

v

Mprt.

v

Once again we look for M, My, Mp such that Ms&8 + M11y 4+ Isy > Mp(T% +
€1%):
2 \|2 1
M€ 4 My + I >M[M<4 24 (5= 2)
2§y + Milyy + 1oy > M, FNNTIE ] —l-( w)T
b2 (14 )]+ e (8 + ) — e+ g
’ 72 + |€]? 2\ 2 3

> ﬁ(Ml Ip(y, ¥")|? [4T2|§|2 + (5 — 5)74} — Cs(T* + |€1* + 27%€)?)

2 12
+M2(%0 + —a1|2€| )(7* + |§|2))
> Mp(T? + [¢[).

To get the last inequality we have to solve the system of 3 inequalities:
My .
(4001l ) — 2G5 + =2 minfar, 1}) 7P = 2MprleP
1
(Milply v)(5— =) = Ca) 7t > Mpr

(%min{al,l}—c%,) €t > Ml

From Case 1 and 2 we obtain two systems of inequalities for the coefficients; by
choosing w = 1/2 and solving them, the pseudoconvexity estimate (3.1) holds
with My, M, as in Table (3.10) and with Mp a free parameter to be set in the
following.

Remark 3.1. 1. Notice that the estimate is valid also in the limit 7 — 0.
Indeed, for & # 0

2 _ 2 \p(y,£)|2 2
Mo&s + Myl oy + Iy = Mo&s + Mi(——— + {p,¥}) + {p, {p, ¥}}

NE
Ip(y, )|

> Mgl — Cslef” + le > Mpl¢f.
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2. From the constraint on M; one can understand the reason for the assumption
p(y, ') # 0. Actually, as observed in [6] and by other authors, in the case

(Yo, ¥ (y0)) = 0 the estimate (3.1) is still possible if {p, {p, ¥} }(yo, v’ (v0)) > 0.
Indeed, in that case there are positive constants Cy, Cs such that I, > C572 —

C4|€]?, and one can proceed as above to get (3.1) with different coefficients.
Proof of STEP 2: Let ¢(y) = eM® 7 = 7Aé(y), and recall that

T¢'(y) = TAOWY(y) = Tl (y),  "(y) = Ae(y) (U (y) + M (y) @ U (y),
where ¢'(y) # 0 in Qy. Then for 7 # 0 (see [6], Lemma 4.2)

tply.¢ +ird W) ply, E+irdy))} _ 1 {p(y, € +imd'(y)), p(y, € +ind'(y))}

o) @) =~
Ay, €+ ime (), O ),

where at the right hand side one has first to perform the derivatives and next
to substitute 7, (which consequently must not be seen as a function of y and 7
in the bracket). In the case 7 =0,

{p,Ap, 6}y, )
Ao(y)

Hence by substituting in (3.1) the variables 71, £ and for

= {{p, {p, ¥} } (W, ) + M {PL(y, ), ' () *.

AZM17

we obtain 77 + |£]* > min (1, A2¢?(y)) (7% + |€]?), and finally (3.2).
Proof of STEP 3: For simplicity we now consider A and a domain B(yg, R;)
where ¢ = e™! < ¢(y) < e = ¢y and min (1, )\Zng(y)) = 1. Since |[¢(y) —
()] < [¢/]ov(apy B, then we choose

1
3.5 Ry <min{l, min|yy —y|, ———}, A >e.
& ik L LD

We then rewrite f as

fy) = o(yo) + Z 9i0(yo)(; — x0,5) + Ord(yo)(t — to)

7j=1

Z k¢y0 — xoj) (@ — Tok +Z tébyo — x0,4)(t — to)

]k 1
1
+§8f¢(yo)(t — tD)Q — 0'|.CE — x0|2 — O"t — to‘z

and its derivatives, by identifying 0, with 0y, and calling ., the Kroenecker
symbol,

A = &)+ &(yo)(@n — zon) +

+0}:(yo) (t — to) — 20 ((z; — z0;) (1 — do;) + (t — t0)doy)
f;;n(:g) = ¢;Im(yo) —2008;m, j,me{0,1,...,n}.
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First of all we ask for f' # 0 in the ball |y — yo| < Ry

£l = 18" (o)l — 18" (wo)lly — vol — 20|y — ol
> 16" (yo)| — 0" (yo)|R2 — 20 Ry
> [¢'(y0)]/2
which implies the following constraint on R,
(3.6) 16" (yo)| Rz + 20 Rz < |/ (y0)] /2

In order to pass from (3.2) to (3.4) we compute

p(y, € +itd (y))2 =
p(y, &) — m2p(y, ') + 720y, ') — ply, &))I? + 72 {p, 3+ {p, 0 — DI
< 2[p(y, &) — *ply, /) + 27 p(y, &) — ply, )

+27%[{p, [} + 27%|({p, ¢ — FH)IP
<2p(y. & +irf ()P + 274y, ') — p(y, f)P + 272 ({p, ¢ — [}
<20p(y, & + it f' () * + 27"m + 27 ¢ P
<2lp(y, & +irf ()P + 11+ ¢ [2o + [ f'20) (77 + |€%)?

where 7y, 15 are

p(y, &) — ply, ) = ‘ (}) +ng’f¢> S+ ng’ff fk
Jjk=1 jk=1
<2[f — @12 + 11D +2!Zgﬂ“ (& — F)&), + Fi(—fi + o)
Jjk=1

<AL+t g Eo) (16120 + e f = S e = m

and
{p, o= FIP = [26(f =) +2> "¢ — F
< 8140 Eo)lf = ¢ leolél? = malél.
Next
{p(y, £ +it¢'(y), ply, € +i7¢'(y))}

o = {p.Ap. ¢} (W, &) + 7°{p, {p, 0} }(y, &' (v))

<A{pAp. F1} W, &) + 7 {p. {p. F1}y, [/ W) + {p. {p. ¢ — F}} (v, 6)]
+7{p.{p, o — 1w, &' W) + 7 {p. {p. F}}w. &' (W) — {p.{p. [} } (. /' ()]
<{pAp. F1 W, &) + 7 {p. Ap. F1y, [/ (W) + nslE]* + nar? + 0572

Where 13, 14, 15, are defined as follows

{p.Ap. ¢ — 1w, &) =4}, — f& + > Ezé‘m( Zgjl _ pryghm

I,m=1 j,k=1

+4 Z gjlax]g (¢k fk —2 Z aﬁnglm k](¢ fk))

G k=1 j k=1
< 4l = fleogh + (416" = f"loolg”[2on* + 6197 02,6 con6’ — Fco ) P
<1001+ 0t g 24) (16" = floo + 16 = Fleo) I 1= molé]®.
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Analogously, by setting & = ¢/(y),

{p.Ap, ¢ = 1}y, &) <l |t =1
Then, substituting ¢ — f with f and £ with ¢’ or f’ in the computations for 73,
{p. A, [}, ¢'(v) = {p, {p, [}y, /W) < Alf N co(|¢]co + [ floo)|d" = flco
+ (4147 1colg” zan® + 619" 0r, 6" con® o ) (€'l oo + o)l = Fleo
<10 f'er (14 0| [2) (|6 co + [ f|co) @ = f/loo = ns.
Summing up:

e M 2p(y, § +it [ (W)I> + 2m7* + 2np7?I¢]?
2507 min{1, A2} T2+ €7

{p(y, & +itf'(v), p(y, & +iTf' (y)) }

1
+ —(sl€]* + (s +15)7°)

* (\0)2ir o
> Mpmin{l, N?¢*}(72 + [£]?).
Without restrictions of generality we can take Mp = 1, while on the ball

Br,(yo) C B(yo, R1) we have also that min{1, \>¢3} = 1. Then
Mae? + 21, p(y, € +irf' W)I* | {p(, & +irf'(Y), ply, £ +imf'(v))}

RN OoRi

> (7% +[€") = My (1 + [¢'[co + |f’|?:o)(72+ [€1%) — \él2 (na\¢!co+n5)

> (1 — My (L4 |60 + | f[20) = (1 + |62 + !f !cﬂ(\d) !co +1f \CO)))(TQ +1€1%)
= Mg (7% + |¢]%)

where we used 15 < n3|f'|c1(|¢'|co + | f/|co). Furthermore on o we must set the
constraint f < ¢ for y # yo. Define v(s) = ¢(p(s)), p(s) = yo + s(y — o), then

1
there is a ¢ € (0,1) such that v(1) = v(0) + v'(0) + 51}”((]) . Hence,

+

AP

o(1) = v(O) = 0'(0) = 50"(0) = F|v"(q) — v"(0)]

= | Z . L (0 6(p(a)) — 80(u0)) (4 — 10)°1 < erly — 1l*2.

EOEDS

¢1<2

{(°6)(w0) (y = wo)°| < exly — yol*?, for ep = nmax |0 Gleo .

J\rlH

On the set |y — yo| < Rs, y # Yo, we now consider the inequality

fy) = o(y) < —oly —yol* + erly — yo|™* < —(0 — erRY) |y — yol* < 0.
This is satisfied by taking
(3.7) 0 1= 2cr Ry = 200" 0o (B, (40)) 1T5-

With this choice the constraint (3.6) becomes, since Ry™ < Ry and Cj as in
A2

(3.8) (16”0 + 4n[d"[0,0) B2 < ACi/2.
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Hence, the main quantities can be estimated as follows. If not else specified, the
CY C*,C?%, C% norms of ¢ and ¢ are referred to the given domain B(yo, R1),
while the ones for ¢ and f are referred to the smaller ball |y — yo| < R, with
radius Ry < R; to be determined:

Ao Y| co

Apar (|9 |co + Ay 2o)

16| oo ¥ ] 00w < Adar|t|coa Ry

Aoy o, + Ny 0|0, < Abarlt”|o.p + N2bar|tb]oa |0 [o Ry ”
F20200 9 [t |01 Ry~ + Ndurllo ¢ |2Ry

sup | > (9" (p(@)) — 0% (y0)) (y — vou)| + 20y — ol
J k=0

IN

’¢/‘CO(BR2)

IN

‘¢//‘CO(BR2)

IN

|@lcor(Br,)

IN

|¢// |C0’p(BR2)

|¢, - f,|CO(BR2)

IN

< 1l loply — yol 7 + 201y — yol < 5nl¢”o, Ry
10" — [loosry) < 19" conly = yol” + 20 < (2n + 1)[¢"|cor 1S
|0y < 1@ o + 10" = fleo < [¢]co + 5n|¢" [0, Ry "
| leoBryy < 18"[co + 20 = [¢"|co + 4n|¢”|co.r 5.

We can now end up the estimate above

n < c(lg|co) ¢ — [z
ns < clgler) (197 = f'leo + 19" — f"|co)
ns < sl fler (|6 |co + | f'|co).

Call c190(g) = 10(1 + n4|gjk|%1(B(yO,R1))) the biggest constant entering in the
estimates for n;. Then, for Ry <1

Mp :=1— ci00(g) [W - f/‘QcoM1(1 +¢'[eo0 + ‘f/%o)

1
+(1¢" = fleo + 10" — f”lc*O))\q50 (L4120 + [ ler (1o + |f'|00))]
> 1= cuoolg) | (5m) B3 16 [20,) M (1 + 516/ 20)

1
Ao
In the last step we used the following constraint on Bg,: |f'|co < 2|¢'|co, that

is a consequence of (3.8).
Defining the term |[A)|,q40 as

10" |cow < @ar max( AV o5, N[V]01|¥" 0, A2 |lo1 W [3) = [AY|maz »

we can refine condition (3.8) and add an extra conditions on RS (that is quali-
tatively equivalent to |f”|co < 2|¢”|c0)

+(10nRE|¢" |coe ) (1 + [0 + (210 |co + 16" |co + 4n|¢”|§,pR§)(3l¢’lco))}

(3.9) (Apar (|9 |co + A |Z0) + 4n| A ez ) B2 < AC1/2,
4n|¢" |0, RS < 41| X maa RS < Adar ([0 |co + Al [Z0),
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where we apply the previous estimates to the norms of ¢’, ¢”. By including the
numeric constants into c¢igg, we can then write

My 2 1= cuonl9) Ml B3 ML (1 + A6, F)

+|/\w|mawR 1+ )\2¢?M|¢/|3 + )‘2¢%\4(|¢/|0W”|0 + /\|¢/|g>)] .

a0

We first require that R, is such that:

c100(9) M2, BET ML (1 4 202, [0/ 2 < 1/4,

max

1
ClOO(g)|)‘¢|maJJR§)\T¢O(1 + N0, 1[5 + N0, (1[0 + AlY'[5)) < 1/4.

Then we add the previous two constraints (3.9). The resulting upper bound for
R, is in Table (3.10).

We now collect in the following table all the constants computed in Step 1,
2, 3 and in the following sections. If not else specified, the C°, C',C?, C%°
norms of 1 and ¢’* are referred to the domain B(y, R;), while the ones for
¢ and f are referred to the smaller ball Bg, : |y — yo| < Ry. In case of spe-
cial geometries where 1) is given explicitly, the constraints in the table can be
improved.

(3.10) Table for the constants computed under the assumptions A3, A4
and the notations of Step 1, 2, 3 at the beginning of the section.
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Namd Limit Value
20(1 + n?[g7% 2, c100) 1Y o100 (1 + |90 ()
(Mp + Cs) maxyca, {l ﬁ}

SR
v

£
W

(b1+a1)
M, |> —mln{lal}(MP+C)+ M,
Mp | <1
29" ‘00(90)
p > | max{My,e, }
%o > et
o | <|e
R, < | min{1, MINyea0, lvo — ¥, —,\W\;(Q )}
Q
. /\¢M(|w//‘CO(B(R ))+)‘|w,|20 ) ;
_ c, ] CO(B(RY)) >P
Ry = | {Rl’ (2¢M(|¢”|CO(B(R1))+)‘W2CO<B(R]1>))>’ < 4|\ Plmaz ’
< 1 )m
40100( )‘)‘wlnbale(1+)‘2¢ WJ |CO(B (R1)) ’
1
( Ao ;}
4eroo(g )\Nl’lmaz(lJr)‘?d’ MY 0 per >>+)‘2¢?M(W)/‘CO(B(R1))|w”‘CO(B(RI))+)\|w,|%0(8(R1)))
o > | 2n[@"|co. BRQ)RQ
< | T
€0 = | B Mooy,
o > | max{1, 64 <4M1+4/\¢ ) <‘fu’200(1+n2‘gjkyco)2+n]h]%oo(2—|—2\f"200)—|—
2
2laf3~ )}
1 1) 2

5 S ng% (16+ 11> |¢ |CO p(BRQ)R 2+p

T
2+
n|¢”|COVP(BR2)Z(16+T6) R2 P

1+p
|¢llc()(BR2)+5n‘¢//‘007P(BR2)R2

ﬁ
IN

=T
202t (1644 ) R2*Y

26(“1)/‘00(33 >+5n‘¢”‘covp(BR2)Ré+p>

IN

To

ar |2 \/4<4M1 + (/\%))
cr | 2] (53 +V2M)(1+ —Qbiélfo) + i}_% C133
P
e | 2| In(1+e) +60131( " l > + 2¢129

Here the coefficients cja9, €131, ¢133 are defined and derived: ¢33 in subsection
3.2; c129 and c¢q37 in the proof of Theorem 1.1.

3.2. Tataru inequality for the wave operator. We now go quickly trough
[6] to compute the coefficients of the inequality in Theorem 2.1. We decompose
the wave operator (1.1) into the sum of its principal part P, and the lower order
part Py

Py(y,D) = —Dj+ ¢"*(x)D;Dy
P(y,D) = W(x)D;+q(x)
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We then consider the conjugate operator P(y, D + it f’) and split it into its
principal part P; and the lower order part P,

P(y, D +irf'(y)) = e’WP(y,D)e ™% = Py(y,D,7) + Pi(y, D7)
Py(y,D,7) = Py(y. D) +7°((fo)* = ¢"" f; fi) + 2i7(—foDo + ¢’ f; Dy,)
Pi(y,D.7) = —7(fy = ¢ fji) + Pily, D +irf')

The principal symbol of P(y, D) and P(y, D + i1 f’) are respectively

p(y,&) = =&+ g (@)
ply.&+irf') = py.&) — 7y, f') +ir{p, f}

Since f is a quadratic function and the coefficients g% are time independent we
can write the following expression

e/t Py DYy = e PP/ Py D 4 ir f)e u
= P(y,D —ef"-(Dy,0) + in’)e’6|D°|2/(27)eTfu
Call D= D —ef” - (Dy,0) and & = & — eflo€o, j =0,1,...,n
If € is such that 2ne|f”|co < 1, then we get |&]> < 2|&|? + 22| f |22 and
SEP < €7 < 21¢. R
Since p(y, & +iTf’) is the symbol of Ps(y, D, ), then p(y, & +iTf’) is the symbol

of Py(y, D, 7). Now set ¢ in place of £ into the inequality (3.4), which becomes,
for V- e C§°(B(yo, R2)),

Im(Re(Ps(y, D, 7))V, Im(Ps(y, D, 7))V)

20 || Dol V| + 434 Py(y, B, 1)V, + o

1
> IV,

Observing that |W||2 > 72| W]]%
for 7 > 1 we get

|BW |2 > 2Im{(ReP;)W, (ImPy)W) and

1,7

4M,y 1 Hl 3(y )L ”
3.11 2Mo ||| Dyl V 2 —+ ( —+ ) L 0 > % 2 .
( ) 2H| 0| H 4()\ 0) ” Hl,f

We now estimate the error term E;:
E, = ||P(y, D +irf)V — Py(y, D, 7)V|]2
= | = 7(f = g* £V + Pi(y, D+ it f)V3
27| f" o (1 4 n|g7 |co)V (1§ + 2||W7 DV — el £, DoV |3
+272|[(n|hl | f'|co + lglre)VI[§
< 4(1f" (1 + 0219 |o0)® + Al (2 + 21f20) + 2lalie IV,

Now choose 79 > 1 such that 2 <4M1 + 4A¢ ) < 3lIV]E, and call ¢ =

AM 1
4< 7’01 + 4(>\¢0)
after multiplying by 2 and squaring, for 7 > 7,

P(y, D +irf")V 1
(312) /2M2|||D0’V||0—|—CLT|| (y> \‘/{’;Tf) ||0 > 5

) From (3.11) and ||Py(D)v||? < 2B, + 2||P(D)v|]?, we have

V.-
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Now consider u € H'(B,/4) and define v := e~Po*/@Demly V.= x, (t/(2))v,
with x; asin (4.3) with N =1, By = [—1,1] By = [—2,2]. Hence, supp(V) C
{y; t] < 4n, |2] < K/4} € {y; |y — ol < Ro} with x = (164 %)/’ R,. Due to
Lemma 3.4 in [6] (see also Lemma 2.79 in [10]) the following inequalities hold:
|1P(y, D + itV — x1(t/(2x))e” P/ @D Py Dyul
= IlP(y, D + i7 '), xa(t/(25)]ollo
< cassl| (1= xa(t/8)(V + 7)vllo < cusse ™ /4 e ully,r,

and
D < D 2‘X,1‘CO
11 DoVl < [[|Dolv]lo + " (1= x1(t/k))v|
2KT 2| v
< 2Tl + (1 + 2000 sy,
€ ToK
and

Q‘Xlllcg —7r2/(4€) || Tf
[0l < Ve + 1+ ——=—)e le™ ull1,r,
ToR

for 7 > 70 and cigg = 2(1+n2lg7oo) (2150 4+ DAL (14 oo + ) ). As Tast

TOK?
step we use the above relations to estimate the terms of (3.12) and we notice

that \/QMQz—O"‘ < 71; according to our choice of the parameters. Therefore, for

T > 79, we obtain the Tataru inequality of Theorem 2.1 with coefficients as in
Table 3.10.

Remark 3.2. Observe that, according to the computations above, € cannot be

arbitrarily smaller that €y, since this affects the size of Ry and 7.

3.3. Proof of Proposition 2.5. In the previous subsection we considered u €
~1/2

H'(Bpg) where the radius R is defined as R := qRy with ¢ = i<16 + %) ,

with Ry defined in Table (3.10).
Let us compute 0 such that the region Ip := {y € B(yo, R2); f(y) — &(yo) >

-85} N{y € B(yo, R2); ¢ < ¢(yo)} is inside the ball B(yo, R). By assumption,
in B(yo, R2) — {yo} we have

fy) — oly) < —crRbly — wol*.

Moreover, in Ig we have f(y) — &(yo) < f(y) — o(y).
Hence, the limit case is reached along the boundary {y; |y — yo| = R}, where

fy) — é(yo) < —crq®R3*.
Define d such that —cpg?R3™ < —86, i.e.
§ = cr@®RyT7 /8 = n|¢"|cor®RoT7)8 .

Under this condition, the set I is inside B(yo, R).
In order to compute the smaller radius » we apply a rougher estimate, using
the definition of f. Consider {y; |f — é(yo)| < 0} N{y; |y — yo| < 2r}, then

1f(y) = d(wo)l < |f'lcomry |y — yol <[ f'co2r <6
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Hence the solution is r < , that is guaranteed by
)

Q‘fllCO(BRQ

2+
" |con (B, Ry "

rs / " 1+p
2|¢'|co(Bg,) + 10n[@" | co.p(By,) s

By hypothesis ¢'(yo) # 0, hence the denominator does not vanish.
If we choose A > 2[¢"|co(q,)/C? and apply ¢'(y) > C; we obtain in Bg,

¢"(y) = GAQ" + X' x ¢') > eTINCF /2.
Consequently ¢"(y) # 0 and |¢"|cor(By,) > C), With C, = e IN2C?/2 > 0 we
get an uniform lower bound for r in Bp,

(< Ry/10).

nchQRS-hO

o < / i 14+p°
2|¢/|co(Bry) + 10n[@"|co.r(By,) o
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4. APPENDIX

We recall the results on Gevrey class functions that are used in the article.
The reference is [7, 18].

Definition 4.1. Let Ly be an increasing sequence of positive numbers such
that

Ly = 17 s < Lsa Ls—i—l < CLS7
for some constant C' > 1. We denote by C* the set of all u € C>*(X) (with
X C RY open subset) for which to every compact set K C X there is a constant
C'x such that

]Dcu(x)] < CK(CKLM)K', re K,

for all multi-indices ¢. By Stirling’s formula we could replace ||l by |¢]!.
CH(X) is a ring which is closed under differentiation. If f : Y — X is and
analytic map from the open set ¥ C RY to the open set X C R, then the
composition with f defines the map f*: C*(Y) — C*¥(X), ffu=wuo f.

The class CF(X) with Ly = (s + 1)™ and m > 1 is called the Gevrey class
of order m and denoted by G™(X). If m = 1, then G*(X) is the set of real
analytic functions in X.

We denote by GT*(RY) the set GI*(RY) = G™(RN) N C5°(RY). For m > 1 one
has > 1/k™ < oo, and it follows from Th.1.4.2 in [7] that G} is so large that
one can find cutoff functions there; it is of course an algebra.

In particular, let f,g € G™(RY) and let K C RY be a compact set, then by
calling ¢; y and ¢y, the constants Cy for f and g, we get fg € G™(RY) such
that for cp = max{cy f,c1,}

(4.1) ID*(f(x)g(x))| < 2ep ™ amH, 2 e K.
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Moreover, if E is a compact set in RY, then we define the ’the supporting
function of E’ Hg as ([7], (4.3.1), p. 105)

HE(&) = Slelg<x7€>v 5 € RN'

In the present paper we widely use the Paley-Wiener-Schwartz Theorem for
Gevrey class functions. As reference we give the following statement proved in
8] for a proper subset v (RY) of GF'(RY). The Theorem can also be reformu-
lated for ¢ € G once we substitute the sentence "to every B > 0 there exists
a constant C'g such that” with "there exist positive constants B and C such
that”. The proof is the same.

Theorem 4.2. ([8], Th.12.7.4, p.137) An entire function ®((),( € C¥, is
the Fourier-Laplace transform of a function ¢ € 7 (RN) with support in the
compact convex set K with supporting function Hg if and only if to every B > 0
there exists a constant Cg such that

1®(¢)| < Cpexp(Hg(ImC) — B|Re¢|Y'™), ¢ e CV.

In particular we can introduce the main properties of the Gevrey class localizers
used in the paper.

Definition 4.3. Define y; € GJ*(RY) and xs(v) := x1(v/d) such that x; = 1
in a ball B; C RY, x; = 0 outside a larger ball By, and 0 < y; < 1. Hence,
Foosexs(v) = 0N Fysssexa(v) and

(42) [Di) < SXsMM, v e B,

(4.3)|Fosexi(v)] < erx exp(Hp,(ImC) — cax[Re¢|"'™), ¢ €C,
(4.4) | Fomexs(v)| < 6V e1x exp(0Hp, (Im() — chél/m|ReC|1/m), ¢ € C,

with ¢;x = c1x(m) a given number, and cox = 1/(eNcyx)V/™.

In the following we present the Phragmen-Lindelof Theorem for subharmonic
functions used in Lemma 2.7.

Theorem 4.4. ([15], Ch. 7.5.) Let D be an angle of opening w/\, and let u(z)
be a function subharmonic in this angle, satisfying an asymptotic estimate

u(z) < |z|P, ae., p<A

and bounded by a constant M on the boundary of the angle. Then u(z) < M
inside the full angle D.

We now recall the concept of conormal pseudoconvexity for operators as given
in [20, 21].
If S is a C?-oriented hypersurface, we can represent it as level set surface of a
C?-function:

S = {y; ¥(y) = 0}
where ¢ £ 0 on S.

Definition 4.5. Decompose the coordinates of RY into y = (v/,3").
The conormal bundle of the foliation F' of RY with the surfaces y” =const is
the set

N*F = {(y,€) € T*RY; with ¢ = (¢/,¢") and ¢ = 0}.
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Its reduction to a subset K C RY is

while its fibre in yq is

Ly, = {(%0, &) € N'F}.

Let P(y, D) be a partial differential operator of order m with smooth coeffi-
cients. Denote by p(y, £) its principal symbol.

Definition 4.6. Let S be a smooth oriented hypersurface which is a level surface
of a C? function v, and yy € S, ¥/ (yo) # 0. We say that S is conormally strongly
pseudoconvex with respect P at yq if

(4.5)  Re{p,{p,¢}}(y0,§) >0
on p(yo,&) = {p, v} (y0,&) =0, 0#E €Ty

(4.6)  {p(y, &+ it/ (v)),ply, &+ ity (y))}/(2iT) > 0
ony = yp, such that 0#¢&ely, 7>0,

and p(yo, & +i7¢' (o)) = {p(y, & + i7" (v)), ¥ (y) } (v = yo) = 0.

Definition 4.7. A C? real valued function 1 is conormally strongly pseudocon-
vexr with respect to P at yq if

(47) Re{g‘o, {pjw}}(%,@ >0
on p(yo,§) =0, 0#LeTy;

(4.8)  {p(y, &+ it (y), p(y, € + ity (y))}/ (2i7) > 0
on y = yo, such that p(yo, & + 79 (y9)) =0, 0#Ee€Tl,, 7>0.

Hence, the term ’'conormally strongly pseudoconvex’ means ’strongly pseu-
doconvex in N*F' or in a subset I'x’. Definition 4.6 implies that if )y is a
sufficiently small neighborhood of gy, then there are constants such that an
inequality like (3.1) holds, while Definition 4.7 implies that the inequality (3.2)
holds for the function ¢ = e*¥.

For second order differential operators the definitions above are simpler. In
particular, for the wave operator (1.1) the conditions are void for noncharac-
teristic surfaces 1, as shown in section 3.1, see also Remark 3.1.
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