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Abstract. In 1995 Tataru proved a Carleman-type estimate for linear op-
erators with partially analytic coefficients that is generally used to prove the
unique continuation of those operators. In this paper we use this inequality
to study the stability of the unique continuation in the case of the wave
equation with coefficients independent of time. We prove a logarithmic es-
timate in a ball whose radius has an explicit dependence on the C1-norm of
the coefficients and on the other geometric properties of the operator.
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1. Introduction

We consider the wave operator in Rn+1,

P (y,D) = −D2
0 +

n∑
j,k=1

gjk(x)DjDk +
n∑
j=1

hj(x)Dj + q(x),(1.1)

where y = (t, x) ∈ R×Rn are the time-space variables, D0 = −i∂t, Dj = −i∂xj .
The coefficients gjk ∈ C1(Rn) are real and independent of time, and [gjk] is a
symmetric positive-definite matrix. The coefficients hj, q ∈ L∞(Rn) are com-
plex valued and independent of time.
An operator P (y,D) is said to have the unique continuation property if for any
solution u to Pu = 0 in a connected open set Ω ⊂ Rn+1 and vanishing on an
open subset B ⊂ Ω, it follows that u vanishes in Ω.
In the paper [20] Tataru proved for the first time the unique continuation prop-
erty for (1.1) across every non-characteristic C2-hypersurface with no limitation
to the normal direction. The result is valid for a larger class of linear operators
where the pseudo-convexity condition across a surface is fulfilled for the cotan-
gent vectors with ξ0 = 0 and it has been extended to the case of coefficients
analytic in time [6, 17, 21]. The key point of these results is a Carleman-type
estimate involving an exponential pseudo-differential operator.
Much is known about the consequences of this property on the uniqueness of
a corresponding Cauchy problem. Actually the unique continuation property
has proved to be instructive in many areas of mathematics, e.g. in studying
the uniqueness for linear and nonlinear PDEs together with their blow up or
traveling wave solutions [5], in studying the Anderson localization [3], in control
theory to get controllability results [22], in inverse problems to obtain unique-
ness and stability estimates [11].
Concerning the continuous dependence of the unique continuation property,
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that is its stability, less results are available. The elliptic and the parabolic
cases have been studied in several settings by using either Carleman estimates
or some versions of the three ball theorem (see [1], for a review of the results).
To our knowledge the hyperbolic case like (1.1) is still open for arbitrary do-
mains and arbitrary matrix valued coefficients gjk(x), while there exist results
for particular coefficients or domains (see [18]). This is maybe related to the
difficulty of using the standard Carleman estimates for hyperbolic operators in
order to prove the unique continuation close to the characteristic directions,
that is the reason why Tataru’s work was so important in this field.
The aim of the present work is then to prove a stability estimate for the unique
continuation of the operator P (y,D). We will focus on the local case, and we
formulate an explicit stability estimate for the inhomogeneous operator Pu = f ,
that can be alternatively reformulated in terms of a boundary value problem.
Let Ω ⊂ Rn+1 be a connected open set and consider a non-characteristic ori-
ented hypersurface S written as the level set of the function ψ : Ω → R,
S = {y ∈ Ω;ψ(y) = 0}. Assume Pu = f , in a ball Ω1 := B(y0, 2R). More-
over, let supp(u) ⊂ Ω2 := {y ∈ Ω;ψ(y) ≤ 0} with ∥u∥H1(Ω1) ≤ C1, and let
∥f∥L2(Ω1) ≤ ϵ1 for some small ϵ1 > 0. The stable unique continuation is based
upon an estimate like

(1.2) ∥u∥L2(Ω3) ≤ Υ(C1, ϵ1),

for some ball Ω3 := B(y0, r) contained in Ω1, where the right hand side goes to
zero as ϵ1 → 0. Our aim is to prove (1.2) with a function Υ that has an explicit
form depending on the constants related to geometrical properties of Ω3, Ω1,
and Ω and the norm of the coefficients gjk in C1(Ω). In this paper we consider
the case where the domains Ω1 and Ω3 are balls centred in y0 ∈ Ω and we find
a logarithmic function Υ dependent on their size R and r and on the norms of
gjk, hj, q and ψ. In a forthcoming paper we will use the local stability estimate
to prove (1.2) for quite general domains.
Like in the elliptic case, many possible applications can be derived out of it.
In particular we plan to use inequality (1.2) to obtain an explicit modulus of
continuity for the inverse problem for the wave operator on manifolds. This
would improve the existing inverse stability results for Riemannian manifolds,
which are currently based either on compactness-type arguments, see [2, 14],
or on very strong geometrical conditions for the coefficients, e.g. in [4, 12, 13].
In the unpublished manuscript [19], Tataru suggested the possibility of ob-
taining a stability estimate, by using Gevrey-class localizers to improve the
estimates of u for low temporal frequencies.
Here we develop that idea by employing properties of subharmonic functions
(see Lemma 2.7) and by performing the explicit estimate of the radii r and R
and the constants. Of fundamental importance is the possibility of linking the
positive lower bound for r to the geometric parameters of the domain, in order
to assure that the estimate can work close to the characteristic surfaces of the
operator.

We first introduce some assumptions.
Assumption A1. Let Ω be a connected open subset of R × Rn. Let P (y,D)
be the wave operator (1.1), with gjk(x) ∈ C1(Ω), hj, q ∈ L∞(Ω). Let S =
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{y ∈ Ω;ψ(y) = 0} be a C2,ρ-smooth oriented hypersurface, which is non-
characteristic in Ω, for some fixed ρ ∈ (0, 1). We assume that u ∈ H1(Ω)
is supported in {y;ψ(y) ≤ 0} ∩ Ω, and P (y,D)u ∈ L2(Ω).

Assumption A2. We define A(D0) to be a pseudo-differential operator with
symbol a(ξ0), 0 ≤ a ≤ 1, where a ∈ C∞

0 (R) is a smooth localizer supported in

|ξ0| ≤ 2 , equal to one in |ξ0| ≤ 1. Furthermore let a ∈ G
1/α
0 (R) for a fixed

α ∈ (0, 1). Here G
1/α
0 is the set of Gevrey functions of class 1/α with compact

support, defined in Definition 4.1. The also define the smooth localizer b(y),
supported in |y| ≤ 2, 0 ≤ b ≤ 1 and equal to one in |y| ≤ 1.

The main results of the paper are the following 2 Theorems.
The first one is a stability estimate of exponential type for the low temporal
frequencies.

Theorem 1.1. Under the Assumptions A1-A2, let y0 ∈ S with ψ′(y0) ̸= 0, and

let b ∈ G
1/α1

0 (Rn+1) be a Gevrey functions of class 1/α1 with compact support,
such that 0 < α ≤ α1 < 1.
Then, there exist two constants R, r with R ≥ 2r > 0 and two balls centred in
y0 of radii r and 2R, B(y0, r) ⊂ B(y0, 2R) ⊂ Ω, such that for µ ≥ 1 there are
constants c129, c131, c132 for which,
if

∥u∥H1(B2R) = 1, ∥Pu∥L2(B2R) < 1, ∥A(D0/µ)b((y − y0)/R)Pu∥0 ≤ e−µ
α

,

then,

∥A(D0/ω)b((y − y0)/r)u∥H1 ≤ c129e
−c132µα·α1 , ∀ω ≤ µα/(3c131).

The radii r and R are defined in Table (3.10), while the coefficients ck are
computed in the proof of the Theorem.

The second result is a log-stability estimate in a ball, valid for all the temporal
frequencies (see Figure 1 for the construction).

Theorem 1.2. Under the conditions of Assumption A1 we obtain that, for each
y0 ∈ S, with ψ′(y0) ̸= 0, there exist two constants R, r with R ≥ 2r > 0 and
two balls centred in y0 of radii r and 2R, B(y0, r) ⊂ B(y0, 2R) ⊂ Ω, for which
the following stability estimate holds:

∥u∥L2(B(y0,r)) ≤ c111
∥u∥H1(B(y0,2R))

ln
(
1 +

∥u∥H1(B(y0,2R))

∥Pu∥L2(B(y0,2R))

) .
The radii r and R and the coefficient c111 are defined in Table (3.10). Moreover,
for any m ∈ (0, 1] we get

∥u∥H1−m(B(y0,r)) ≤ cm111
∥u∥H1(B(y0,2R))(

ln
(
1 +

∥u∥H1(B(y0,2R))

∥Pu∥L2(B(y0,2R))

))m .

As a consequence, one can find in a domain Ω0 ⊆ Ω a uniform radius r0 > 0
such that r ≥ r0, and where r0 = r0

(
|ψ′|C1,ρ(Ω0), |gjk|C1(Ω0),miny∈Ω0 |p(y, ψ′)|,

miny∈∂Ω0 |y0 − y|
)
.

Theorems 1.1 and 1.2 will be proved in Section 2. In Section 3 we will compute
the related parameters R, r, ck that are dependent upon the constants of the
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Figure 1. The domains of the stability estimate
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Carleman estimate of Theorem 2.1 and upon a particular geometric construc-
tion. The Appendix is devoted to the main definitions used in the article. We
finally observe that even if we deal with the wave equation, the same method can
be generalized to ultrahyperbolic operators of the type −|Da|2 + gjk(xb)DkDj,
where the variable y = (xa, xb) has a different splitting and where xa corre-
sponds to the conormal direction for the pseudo-convexity condition.

2. Proof of the stability estimate

Notations. We start by introducing some notations and definitions used in
the rest of the article: first we consider y = (t, x) ∈ R × Rn the time-space

variable and call ξ = (ξ0, ξ̃) its Fourier dual variable. We remind that the expo-

nential pseudodifferential operator in Theorem 2.1 is defined as e−ϵ|D0|2/2τv =
F−1
ξ0→te

−ϵξ20/2τFt′→ξ0v, with F and F−1 representing respectively the Fourier

transform and its inverse. Then e−ϵ|D0|2/2τ is an integral operator with kernel
( τ
2πϵ

)1/2e−τ |t
′−t|2/2ϵ. We also define A(D0) to be a pseudo-differential operator

with symbol a(ξ0), 0 ≤ a ≤ 1, where a ∈ C∞
0 (R) is a smooth localizer sup-

ported in |ξ0| ≤ 2 , equal to one in |ξ0| ≤ 1. Hence we can write A(β|D0|/ω)v =

F−1
ξ0→ta(β|ξ0|/ω)Ft′→ξ0v and the integral kernel is ( ω

2πβ
)1/2â(ω|t

′−t|
β

). We will of-

ten work under the Assumption A2, where the symbol a is of Gevrey class. The
smooth localizer b(y) is supported in |y| ≤ 2 and equal to one in |y| ≤ 1.
The norm of the Sobolev spaceHs

τ is defined as ∥u∥s,τ = ∥(|ξ|2+τ 2)s/2Fy→ξu∥L2 ,
and the space Hs corresponds to the case τ = 1.
According to our notations the positive coefficients denoted by cx with x ≥ 100
are defined just once, independently on the variables µ, τ , and they are com-
puted explicitly in terms of the coefficients of the operator (1.1) and the geo-
metric parameters. This is essential to finally recover the value of c111 and the
radii R, r in Theorem 1.2.
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We then introduce the Tataru inequality proved in [20] in the version pre-
sented by Hörmander [6] and adapted to the wave operator.
In the Appendix one can find the definition of conormally strongly pseudocon-
vex function or surface, and Gevrey function. According to Definition 4.5 and
the splitting y = (t, x), the conormal bundle in Rn+1 with respect to the folia-
tion x =const is defined as
N∗F := {(y, ξ) ∈ T ∗Rn+1; with ξ = (ξ0, ξ̃) and ξ0 = 0}, and its fibre in y0 is
Γy0 .

Theorem 2.1. Let Ω be an open subset of R × Rn. Let P (y,D) be the wave
operator (1.1), with gjk(x) ∈ C1(Ω), hj, q ∈ L∞(Ω). Let y0 ∈ Ω and ψ ∈
C2,ρ(Ω) be real valued, for some fixed ρ ∈ (0, 1), such that ψ′(y0) ̸= 0 and
S = {y;ψ(y) = 0} being an oriented hypersurface non-characteristic in y0.
Consequently there is λ > 1 such that ϕ(y) = exp(λψ) is a conormally strongly
pseudoconvex function with respect to P at y0.
Then there is a real valued quadratic polynomial f defined in (3.3) with proper
σ > 0, and a ball BR2(y0) such that f(y) < ϕ(y) when y ∈ BR2 − {y0} and
f(y0) = ϕ(y0); and f being a conormally strongly pseudoconvex function with
respect to P in BR2. This implies that there exist ϵ0, τ0, c1,T , c2,T , R, such that,
for each small enough ϵ < ϵ0 and large enough τ > τ0, we have

∥e−ϵ|D0|2/2τeτfu∥1,τ ≤ c1,T τ
−1/2∥e−ϵ|D0|2/2τeτfP (y,D)u∥0 + c2,T e

−τR2
2/4ϵ∥eτfu∥1,τ .

Here u ∈ H1
loc(Ω), with P (y,D)u ∈ L2(Ω) and supp(u) ⊂ BR(y0).

Remark 2.2. We note that the explicit estimate for the involved coefficients
ϵ0, τ0, c1,T , c2,T , σ, R2, R and their dependence upon the parameters of the prob-
lem have never been found. In this paper we provide proper estimates, which
are summarized in Table (3.10) of Section 3.1.
Notice that this is possible under the condition that ψ ∈ C2,ρ(Ω) instead of the
usual ψ ∈ C2(Ω). Furthermore we assume that S is not characteristic in y0 and
consequently in a domain Ω0 ⊆ Ω. Actually this assumption is not required in
[20, 6] where only the strongly pseudoconvexity of S in Γy0 is assumed. In Re-
mark 3.1 we will underline such difference with an alternative condition on ψ.
Anyway for the practical computations of the values in Table (3.10) we prefer
to work in the stronger setting of Theorem 2.1. Our wave operator can be seen
in 2 ways: (H) an hyperbolic operator with constant in time and real valued
coefficients for the principal part, or (E) an operator whose principal symbol is
elliptic in the set ΓΩ ⊂ N∗F . In the latter case Tataru inequality is sharper (see
[20]). Here we prefer to consider just the case (H). Finally, some improvements
to the assumption on the coefficients of (1.1) may be done, for example taking
Ωx ⊂ Rn the smooth domain of definition of q(x) we can assume q ∈ Ln(Ωx)
for n ≥ 3, q ∈ L2+ϵ(Ωx) for n = 2, q ∈ L∞(Ωx) for n = 1.

We now proceed with the detailed proof of Theorems 1.1 and 1.2.
A first step is the following lemma, introducing a property often used in this
section.

Lemma 2.3. Let A(D0) be a pseudo-differential operator with symbol a(ξ0),
where a ∈ C∞

0 (R) is a smooth localizer supported in |ξ0| ≤ 2 and equal one

in |ξ0| ≤ 1. Assume that f(y) ∈ C∞
0 (Rn+1) ∩ G

1/α
0 (R1

t ), where 0 < α < 1.
Then, for every µ > 0, β1 > 2, v ∈ L2(Rn+1) there are two constants c106, c107
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independent of µ such that

a) ∥A(β1D0/µ)f(y)(1− A(D0/µ))v∥0 ≤ c107e
−c106µα∥v∥0 .

Moreover, if h ∈ C∞
0 (Rn+1) is a function such that h ≡ 1 on supp(f), then

b) ∥A(β1D0/µ)fhv∥0 ≤ ∥f∥∞∥A(D0/µ)h(y)v∥0 + c107e
−c106µα∥hv∥0 .

If v ∈ Hm(Rn+1), m ≥ 1, then the estimate above holds also in Hm(Rn+1),

under the additional condition Dm
x f(y) ∈ G

1/α
0 (R1

t ):

c) ∥A(β1D0/µ)f(1− A(D0/µ))v∥m ≤ c108e
−c106µα∥v∥m .

Proof. a) On the set supp[(1 − a(ξ0/µ))a(β1ξ
1
0/µ)] one obtains |ξ10 − ξ0|α ≥

(µ − 2µ/β1)
α and the assumption f(t, .) ∈ G

1/α
0 (Rt) implies, uniformly in x

on a compact set K ⊂ Rn and for some c3 = c3(α,K), c117 = c117(α,K) and
c106 = c117(1− 2/β1)

α/4,

|Ft′→(ξ10−ξ0)[f(t
′, x)]| ≤ c3e

−c117|ξ10−ξ0|α ≤ c3e
−2c106µαe−c117|ξ

1
0−ξ0|α/2.

We then estimate in the Fourier space the operatorA(β1D0/µ)f(·)(1−A(D0/µ)),

∥a(β1ξ10/µ)Ft′→ξ10

(
f(t′, x)

(
F−1
ξ0→t′(1− a(ξ0/µ))Ft→ξ0 [v]

))
∥20

= ∥a(β1ξ
1
0

µ
)
(∫

R
(1− a(

ξ0
µ
))Ft′→(ξ10−ξ0)[f(t

′, x)]Ft→ξ0 [v] dξ0

)
∥20

≤ c3

∫
Rn+1

dxdξ10

(∫
R
(1− a(

ξ0
µ
))a(

β1ξ
1
0

µ
)e−2c106µαe−c117|ξ

1
0−ξ0|α/2|Ft→ξ0 [v](ξ0, x)| dξ0

)2

≤ c3

∫
Rn+1

dxdξ10∥(1− a(
ξ0
µ
))a(

β1ξ
1
0

µ
)e−2c106µαe−c117|ξ

1
0−ξ0|α/2∥2L2(dξ0)

∥Ft→ξ0 [v](ξ0, x)∥2L2(dξ0)

≤ c3e
−4c106µα∥(1− a(

ξ0
µ
))a(

β1ξ
1
0

µ
)e−c117|ξ

1
0−ξ0|α/2∥2L2(dξ0dξ10)

∥Ft→ξ0 [v](ξ0, x)∥2L2(dξ0dx)

≤ c2107e
−2c106µα∥v∥20 ,

with c107 =
(
c3

8
β1
Γ
(

1
α

)
1

α(c117)1/α
1

(αc106)
1

α−1
)
)1/2

and where we apply at the last

step the inequalities

∥(1− a(ξ0/µ))a(β1ξ
1
0/µ)e

−c117|ξ10−ξ0|α/2∥2L2(dξ0dξ10)
≤ 8

β1
Γ
( 1

α

) 1

α(c117)1/α
µ,

and µ e−c106µ
α ≤ 1

(αc106)
1

α−1
.

b) To prove the inequality we observe that

∥A(β1D0/µ)fhv∥0 ≤ ∥A(β1D0/µ)fA(D0/µ)hv∥0 +
∥A(β1D0/µ)f(1− A(D0/µ))hv∥0

where we can apply the estimate a) to the second term at the right hand side,
and where the first term is bounded by ∥f∥∞∥A(D0/µ)h(y)v∥0.
c) The extension to Hm of a) follows from

Dζf(1− A(D0/µ))v =
∑
υ:υ≤ζ

(
ζ
υ

)(
Dζ−υf

)(
(1− A(D0/µ))(D

υv)
)
.

By hypothesis any derivative Dζ−υf belongs to G
1/α
0 (Rt); hence we consider all

of them as a new function g, having the same Gevrey-parameters c3, c117 as f .
Then we apply A(β1D0/µ) and repeat the computations of step a), replacing v
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with Dυv. The coefficient c108 = cmc107 is a proper multiple in m of c107.

Another technical Lemma is the following result.

Lemma 2.4. Let φ(y) be a second order polynomial in y = (t, x) ∈ R × Rn.

If χ(s) ∈ G
1/α1

0 (R), for α1 ∈ (0, 1), then eτφ(y)χ(φ(y)) ∈ G1/α1(Rn+1). If

supp(χ) = [−8δ, δ] and b((y − y0)/(2R)) ∈ G
1/α1

0 (Rn+1) is a cut-off function,
then there are constants c122, c123, such that

|Ft→ξ0 [e
τφ(y)χ(φ(y))b((y − y0)/(2R))]| ≤ c122e

τδ−c123|ξ0|α1 .

Proof. By assumption both φ(y) and eτs are analytic functions (i.e. in G1)

while χ ∈ G
1/α1

0 (R). Since G1 ⊂ G1/α1 and they are both rings by Proposition
8.4.1 of [7], we deduce that the product eτsχ(s) is in G1/α1(R). Moreover this
product has compact support, since χ is compact supported. Let us write χ as
χ(s) = χ1(s/δ) where χ1 has the properties in Definition 4.3, with associated
coefficient c1X . By assumption we have, for z ∈ C, E =supp(χ)=[−8δ, δ],
c119 = δc1X(α1), B = δα1c1X(α1), and HE as in Definition 4.1,

|(Fs→zχ(s))| ≤ c119 exp(HE(Im z)−B|Re z|α1).

Consequently, for ξ ∈ R,

Fs→ξ (e
τsχ(s)) = Fs→ξ+iτ (χ(s)),

and for τ > 0

|Fs→ξ (e
τsχ(s))| ≤ c119 exp(HE(τ)−B|ξ|α1) = c119 exp(δτ −B|ξ|α1).

Hence we can estimate the derivatives:

|∂ks eτsχ(s)| = |
∫
R
eiξs(iξ)k(Fs′→ξ e

τs′χ(s′))(ξ)dξ|

≤
∫
R
c119|ξ|k exp(δτ −B|ξ|α1)dξ = 2πc119e

τδB
− (k+1)

α1
1

α1

Γ(
k + 1

α1

)

≤ 2πc119
α1

eτδΓ(2)max
k

{
B

− (k+1)
α1

(k + 1

α1

− 1
) (1−α1)

α1

}(k + 1

α1

− 1
) k

α1 ≤ ck+1
121 e

τδkk/α1 ,

where c120 =
( (1−α1)
α1 lnB

) (1−α1)
α1 B

− (1−α1)
α1 lnB

+1
, c121 =

2πc119
α1

Γ(2)
(

2
α1

)α1c120 and

Γ
(k + 1

α1

)
=

(k + 1

α1

−1
)
· · ·

(k + 1

α1

−p
)
Γ
(k + 1

α1

−p
)
≤ Γ(2)

(k + 1

α1

−1
) k+1

α1
−1

with p = [k+1
α1

]−1. We now recall that the composition of a Gevrey function with

an analytic map is still a Gevrey function, therefore we get eτφχ(φ(y)) ∈ G1/α1 .
Since φ(y) is a second order polynomial, for k = 0, 1, 2 we have |∂kt φ(y)|C0(BR) ≤
c118(R) and, without restriction of generality we take c118 ≥ 1. Considering the
composition with φ we obtain by induction, calling m(s) = eτsχ(s), for any
k ≥ 0,

∂ktm(φ(y)) =
∑
r∈J

k!

(2r − k)!(k − r)!
(∂rsm)s=φ(y)(∂tφ)

2r−k
(∂2t φ

2

)k−r
,
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where J = {r ≥ 0 : 2r ≥ k ≥ r}, and

|∂kt eτφ(y)χ(φ(y))| ≤ ck+1
121 e

τδ
∑
r∈J

k!

2k−r(2r − k)!(k − r)!
cr+1
118 r

r/α1

≤ ck+1
121 e

τδck+1
118

∑
r∈J

(
k
r

) r!

2k−r(2r − k)!
rr/α1 ≤ (eτδck+1

121 c
k+1
118 )2

kkk/α1 ,

with r!
(2r−k)!r

r/α1 ≤ kk/α1 , for r admissible. For the product we get, applying

(4.1) and calling c122 = max{4c118c121, c1X/R},
∂kt b((y − y0)/(2R)) ≤ R−kc1+k1X kk/α1 ,

∂kt [m(φ(y))b((y − y0)/(2R))] ≤ eτδc2+k122 k
k/α1 .

Consider the partial Fourier transform Ft→ξ0 in time of ∂kt (e
τφχ(φ)b((y−y0)/(2R));

from the estimate above it follows that

|ξ0|k|Ft→ξ0(e
τφχ(φ)b((y − y0)/(2R)))| ≤ eτδck+1

122 k
k/α1 .

This implies that

|Ft→ξ0 [e
τφχ(φ)]| ≤ eτδck+1

122

kk/α1

|ξ0|k
≤ c122e

τδ−k ≤ c122e
τδ−c123|ξ0|α1+1

where for each ξ0 we choose k as the largest integer such that c122|ξ0|−1k1/α1 <
e−1. Since k > [e−1c−1

122|ξ0|]α1 − 1, we get the result once we choose c123 =
(ec122)

−α1 .

In Theorem 2.1 we referred to the radius R, that is defined in Table (3.10)

as R := qR2 with q = 1
4

(
16 + 1

16

)−1/2

, and where R2 in the same table is

computed in terms of the pseudoconvexity constants introduced in subsection
3.1. By using those quantities one can introduce the geometric construction of
figure 2. Let f(y) be the second order polynomial defined in Theorem 2.1, with
ϕ = eλψ and y0 ∈ Ω. Recall that f(y0) = ϕ(y0).

Proposition 2.5. Let δ be a positive constant such that

0 < δ ≤ n|ϕ′′|C0,ρq2R2+ρ
2 /8 ,(2.1)

and

φ(y) := f(y)− f(y0) =
∑

0<|υ|≤2

(∂υϕ)(y0) (y − y0)
υ/υ!− σ|y − y0|2 .(2.2)

Then, {y ∈ B(y0, R2); ϕ ≤ ϕ(y0)} ∩ {y ∈ B(y0, R2); φ(y) ≥ −8δ} ⊂ B(y0, R).
In addition, let r be a positive constant such that

r ≤
n|ϕ′′|C0,ρ(BR2

)q
2R2+ρ

2

2|ϕ′|C0(BR2
) + 10n|ϕ′′|C0,ρ(BR2

)R
1+ρ
2

.(2.3)

Then the ball B(y0, 2r) ⊂ {y; |φ(y)| ≤ δ}.

We postpone the proof of the proposition till the end of section 3.

In the following Lemma we show how an exponential decay for the L2-norm
of a proper localization of Pu is transmitted to the right hand side of Tataru
inequality.
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Lemma 2.6. Under the Assumptions A1, let y0 ∈ Ω and φ be the quadratic

polynomial (2.2). Let 0 < α, α1 < 1 and χ(s) ∈ G
1/α1

0 (R) be a localizer sup-
ported in [−8δ, δ] and equal 1 in [−7δ, δ/2]. Let µ > 0, δ > 0, be given constants,
b ∈ C∞

0 (Rn+1) and a ∈ C∞
0 (R). Let A(D0) be a pseudodifferential operator with

symbol a and µ∗ = min{µα, µα1}. If

∥u∥H1(B2R) = 1, ∥Pu∥L2(B2R) < 1, ∥A(D0/µ)b((y − y0)/R)Pu∥0 ≤ e−µ
α

,

then for each τ ≥ 0, there are constants c110, c109 such that

∥e−ϵ|D0|2/2τeτφχ(φ)P (y,D)u∥0 ≤ c110e
2τδ−c109µ∗ .

Proof. Define aµ/3(s) := a(3s/µ), hence supp(1 − aµ/3(ξ0)) ⊂ {|ξ0| ≥ µ/3}.
Then, we get:

∥e−ϵ|D0|2/2τeτφχ(φ)P (y,D)u∥0 = ∥e−ϵξ20/(2τ)Ft→ξ0(e
τφχ(φ)P (y,D)u)∥0

≤ ∥(1− aµ/3(ξ0))e
−ϵξ20/(2τ)Ft→ξ0(e

τφχ(φ)P (y,D)u)∥0
+∥aµ/3(ξ0)e−ϵξ

2
0/(2τ)Ft→ξ0(e

τφχ(φ)P (y,D)u)∥0 =: I1 + I2 .

By our construction we have that b((y − y0)/R) = 1 on supp(χ(φ)Pu), hence
we can write χ(φ)P (y,D)u = χ(φ)b((y − y0)/R)P (y,D)u.
The first integral can be estimated for τ < c127µ as follows, where c127 =√
ϵ/(36 δ),

I1 ≤ e−ϵµ
2/(18τ)∥Ft→ξ0(e

τφχ(φ)P (y,D)u)∥0 ≤ e−ϵµ
2/(18τ)∥eτφχ(φ)P (y,D)u∥0

≤ e−ϵµ
2/(18τ)+τδ∥χ(φ)P (y,D)u∥0 ≤ e−c127δµ∥b((y − y0)/R)P (y,D)u∥0,

where we have −ϵµ2/(18τ) + τδ ≤ −c127δµ. Notice that the estimate for I1
holds only for τ < c127µ. If instead τ ≥ c127µ then

∥e−ϵ|D0|2/2τeτφχ(φ)P (y,D)u∥0 ≤ eδτ∥χ(φ)P (y,D)u∥0
≤ e2δτ−c127δµ∥b((y − y0)/R)P (y,D)u∥0

since eδτ = e2δτ−δτ ≤ e2δτ−c127δµ. For the second integral we get

I2 = ∥e−ϵξ20/(2τ)aµ/3(ξ0)Ft→ξ0(e
τφχ(φ)b((y − y0)/R)P (y,D)u)∥0

≤ ∥Aµ/3(D0)e
τφχ(φ)b((y − y0)/R)P (y,D)u∥0

≤ ∥Aµ/3(D0)e
τφχ(φ)b((y − y0)/(2R))Aµ(D0)b((y − y0)/R)P (y,D)u∥0 +

∥Aµ/3(D0)e
τφχ(φ)b((y − y0)/(2R))(1− Aµ(D0))b((y − y0)/R)P (y,D)u∥0

=: I3 + I4 .

To estimate I3 we apply the assumption and we obtain:

∥A(3D0/µ)e
τφχ(φ)b((y − y0)/(2R))A(D0/µ)b((y − y0)/R)Pu∥0

≤ eτδ∥A(D0/µ)b((y − y0)/R)Pu∥0 ≤ eτδ−µ
α

.

To estimate I4 we apply Lemma 2.3 and Lemma 2.4. By the estimates for f(y)
at its derivatives in Step 3 of section 3.1 we deduce for k = 0, 1, 2

|∂kt φ(y)| ≤ c118(ϕ) := 1+|ϕ′|0(1+R2)+5n|ϕ′′|0,ρRρ+1
2 +|ϕ′′|0(1+R2

2)+σ(2+R
2
2).

Lemma 2.4 and the properties of eτφχ(φ) imply that

|Ft′→(ξ10−ξ0)[e
τφχ(φ)(t′, x)b((y′ − y0)/(2R))]| ≤ c122e

τδe−c123µ
α1/(2 3α1 )e−c123|ξ

1
0−ξ0|α1/2,
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Figure 2. Geometric construction around y0

y0 B2r����

φ = δ

φ = 0 φ = −8δ
ϕ > ϕ(y0) ϕ < ϕ(y0)

supp u

@
@

@

BR

since |ξ10 − ξ0| ≥ µ− 2µ/3 = µ/3 on supp[(1− a(ξ0/µ))a(3ξ
1
0/µ)].

To estimate I4 we then apply Lemma 2.3.a) and using the fact that f =
eτφχ(φ)b((y − y0)/(2R)) and recomputing the constants, we get

∥A(3D0/µ)e
τφχ(φ)b((y − y0)/(2R))(1− A(D0/µ))b((y − y0)/R)Pu∥20

≤ c2110e
2τδ−c128µα1∥b((y − y0)/R)Pu∥20 ,

with c128 =
1

3α12
c123 and c110 =

(
c122(8/3)Γ(1/α1)/[α1c

1/α1

123 (α1c128)
1/(α1−1)]

)1/2
.

Calling c109 = min(
√
ϵ δ/36, c128/2, 1) we finally get the result.

We now prove Theorem 1.1, stating an estimate of inverse exponential type for
the temporal frequencies |ξ0| ≤ 2ω.

Proof of Theorem 1.1.
If y0 ∈ S is as in the Assumption A1, then by Theorem 2.1 there exists λ > 1
such that ϕ(y) = exp(λψ) is a conormally strongly pseudoconvex function with
respect to P in Ω. Then we introduce the function φ defined in (2.2) as the
second order polynomial approximation of the conormally pseudoconvex func-
tion ϕ− ϕ(y0) around y0, translated by −σ|y − y0|2 .
In Table (3.10) we found σ independent of y0 so that φ also satisfies the conor-
mally pseudoconvexity condition w.r.t. P in the ball B(y0, R2). In Proposition
2.5 we also computed a δ independent of y0 so that

{y; ϕ ≤ ϕ(y0)} ∩ {y; φ > −8δ} ⊂ B(y0, R).

Given δ, we found r > 0 so that B(y0, 2r) ⊂ {y; |φ(y)| ≤ δ}.
Let χ1 ∈ G

1/α1

0 (R) be a smooth cutoff function which is 0 on (−∞,−8]∪ [1,∞),
1 in [−7, 1/2] and 0 ≤ χ1 ≤ 1 . Define its scaled version χ(s) := χ1(s/δ). Then,

Pχ(φ)u = χ(φ)Pu+ [P, χ(φ)]u
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where, since u is supported in {y; ϕ ≤ ϕ(y0)}, it follows from Proposition 2.5
that

supp(χ(φ)u) ⊂ {y; ϕ(y) ≤ ϕ(y0)} ∩ {y; −8δ < φ(y) < δ} ∩ {y; |y − y0| ≤ R},
and [P, χ(φ)] is a partial differential operator of order one and satisfies
supp([P, χ(φ)]u(y)) ⊂ {y; −8δ < φ(y) < −7δ}.
We now apply the estimate of Theorem 2.1 to χu to obtain, for all τ > τ0,

τ∥e−ϵ|D0|2/2τeτφχ(φ)u∥21,τ ≤ c21,T∥e−ϵ|D0|2/2τeτφχ(φ)Pu∥20
+c21,T∥e−ϵ|D0|2/2τeτφ[P, χ(φ)]u∥20 + c22,T τ∥eτ(φ−d)χ(φ)u∥21,τ ,

where d = R2
2/(4ϵ). We refer to Table (3.10) for all the involved parameters.

According to our construction, δ is chosen such that d > 8δ. To estimate the
first term at the right hand side we apply Lemma 2.6.
The second term can be bounded by

c21,T∥e−ϵ|D0|2/2τeτφ[P, χ(φ)]u∥20 ≤ c114e
−14τδ∥u∥2H1(B2R),

with c114 = c21,T |g|2C1|χ1|2C2(1+|φ′|4C0/δ4+|φ′′|2C0/δ2), since χ′(φ) = χ′
1(φ/δ)(φ

′/δ)

and χ′′(φ) = χ′′
1(φ/δ)(φ

′ · φ′)/δ2 + χ′
1(φ/δ)(φ

′′/δ).
Applying ∥χ(φ)u∥21 ≤ (1 + |χ′

1|2C0/δ2)∥u∥2H1(B2R), the third term is such that

c22,T τ∥eτ(φ−d)χ(φ)u∥21,τ ≤ c22,T (|φ′|2C0 + 1)τ 3e−14τδ∥χ(φ)u∥21 ≤ c115 e
−13τδ,

with c115 = c22,T (|φ′|2C0 + 1)(33e−3/δ3)(1 + |χ′
1|2C0/δ2). Since τ0 ≥ 1 so that

(1 + τ0)/2 ≤ τ , we get

(1 + τ0)

2
∥e−ϵ|D0|2/2τeτφχ(φ)u∥21,τ ≤ c116e

4δτ (e−2c109µα + e−16δτ ), ∀τ > τ0,(2.4)

where c116 := 3max(c21,T c
2
110, c114, c115). We want to extend the previous esti-

mate to the complex upper half-space. Define, for τ ≥ 0

N(τ) :=
1

2
(1 + τ0)∥e−ϵ|D0|2/2τeτφχ(φ)u∥21,τ ,

and we get

N(τ) =
1

2
(1 + τ0)∥

√
|ξ|2 + τ 2Ft→ξ0Fx→ξ̃[F

−1
ξ0→te

−ϵξ20/(2τ)Ft→ξ0(e
τφχ(φ)u)]∥20

=
1

2
(1 + τ0)∥

√
|ξ|2 + τ 2e−ϵξ

2
0/(2τ)Ft→ξ0Fx→ξ̃(e

τφχ(φ)u)∥20

=
(1 + τ0)

2

∫
Rn+1

dξ̃dξ0(|ξ|2 + τ 2)e−ϵξ
2
0/(2τ)Fy→ξ(e

τφχ(φ)u)e−ϵξ
2
0/(2τ)Fy→ξ(eτφχ(φ)u).

We first extend the estimate (2.4) to the case 0 ≤ τ ≤ τ0. Define first c112 =
(1 + |φ′|2C0) and

c113 = max{c116, c112(1 + τ 30 )(1 + |χ′
1|2C0/δ2)e12δτ0}.(2.5)

Using that φ ≤ 0 on supp(χu), we have

N(τ) ≤ 1

2
(1 + τ0)

∫
Rn+1

dξ̃dξ0

(
|ξFy→ξ(e

τφχ(φ)u)|2 + τ 2|Fy→ξ(e
τφχ(φ)u)|2

)
(2.6)

≤ 1

2
(1 + τ0)

∫
Rn+1

dxdt
(
|∇y(e

τφ(y)χ(φ)u)|2 + τ 20 |eτφχ(φ)u|2
)

≤ c112(1 + τ 30 )∥χ(φ)u∥21 ≤ c113e
−12δτ0 ≤ c113e

4δτ (e−2c109µα + e−16δτ ) .
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We now consider z ∈ C with Im(z) > 0 and rewrite the previous expression in
the complex half-space by replacing τ with −iz:

N(−iz) :=(2.7)

1 + τ0
2

∫
Rn+1

dξ(|ξ|2 + |z|2)e
ϵξ20
i2z Fy→ξ(e

−izφχ(φ)u)e
ϵξ20
i2z Fy→ξ(e−izφχ(φ)u)

=
1

2
(1 + τ0)

∫
Rn+1

dξe
− ϵξ20Im z

|z|2 (|ξFy→ξ(e
−izφχ(φ)u)|2 + |zFy→ξ(e

−izφχ(φ)u)|2)

≤ 1

2
(1 + τ0)

∫
Rn+1

dξ(|ξFy→ξ(e
−izφχ(φ)u)|2 + |zFy→ξ(e

−izφχ(φ)u)|2)

=
1

2
(1 + τ0)

∫
Rn+1

dy
(
|∇y(e

−izφχ(φ)u)|2 + |z(e−izφχ(φ)u)|2
)

=
1

2
(1 + τ0)

∫
Rn+1

dy

(
|e−izφ[∇y(−izφ) (χ(φ)u) +∇y(χ(φ)u))]|2 +

+|z|2|e−izφχ(φ)u)|2
)

≤ 1

2
(1 + τ0)c112

(
(1 + |z|2)∥χ(φ)u∥20 + ∥∇yχ(φ)u∥20

)
≤ 1

2
(1 + τ0)c112 (1 + |z|2)∥χ(φ)u∥21 ≤ c113(1 + |z|2) .

In the following we want to apply the properties of subharmonic functions. We
notice that the function U(y, z) := e−ϵ|D0|2/(−2iz)e−izφχ(φ)u(y) is analytic in z
such that Im z > 0, and that N(−iz) is subharmonic in z as integral in one
parameter of the sum of two squares of the absolute values of analytic functions.
Our aim is now to estimate the H1 norm of A(D0/ω)b((y − y0)/R)u)(y) where
ω = µα/β, for some β > 0 to be determined.
Let η(s) := η1(s/δ), for η1 of Gevrey class 1/α1 with support in [−4, 1] and
equal to one in [−3, 1/2]. Call µ̃ = µα and η̂ = Fs→zη to shorten the notation.
First define F as

F (y) := A(βD0/µ̃)(η(φ)u)(y).

Due to the regularity of η we can write the following foliation with respect to
the level sets of φ:

η(φ)(y′) =

∫
R
η(s) δ(s− φ(y′)) ds =

∫
R
η̂(z)e−izφ(y

′) dz .

We remind that, according to our construction, χ(φ) = 1 on supp(η(φ)u), and
then η(φ)u = η(φ)χ(φ)u.
Consequently we rewrite F as:

F (y) = A(βD0/µ̃)(η(φ)χ(φ)u)(y) =

∫
R
η̂(z̄)(A(βD0/µ̃)e

−izφχ(φ)u)(y) dz .

We remind that A(βD0/µ̃) is an integral operator with kernel

k(t, t′) =
µ̃

β
â
( µ̃
β
(t′ − t)

)
.

Hence the previous equality is justified by Fubini’s theorem, because for y′ =
(t′, x) the integrand |η̂(z̄)k(t, t′)e−izφ(y′)χ(φ(y′))u(y′)| is bounded by the func-
tion ce−|z|α1e−|t−t′|αu(t′, x) ∈ L1(Rz × Rt′).
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Since η ∈ C∞
0 , then the Fourier-Laplace transform η̂(z) is holomorphic for

z ∈ C, and hence η̂(z̄) is also holomorphic. We then need a good estimate for

both η̂(z̄) and A(βD0/µ̃) (e
−izφχ(φ)u(y)) in the upper half plane.

From the Gevrey class condition, we compute:

|η̂(z)| = |δη̂1(δz)| ≤ δc101 exp(δ sup
w∈supp(η1)

⟨w, Imz⟩ − c102δ
α1 |Re z|α1) .

By considering the domain Imz̄ = −Im z < 0, we have

|η̂(z̄)| ≤ δc101 exp(δ sup
w∈[−4,1]

⟨w, Imz̄⟩ − c102δ
α1 |Rez̄|α1)

≤ δc101 exp(−4δImz̄ − c102δ
α1|Re z|α1) ,

where c101 = c101(α1) is a given constant, c102 = c102(α1, c101).
We now change path of integration in the upper half plane Im z > 0:

F (y) =

∫
Γ1∪Γ2

η̂(z̄)A(βD0/µ̃) (e
−izφχ(φ)u(y)) dz

with Γ1 = {z ∈ R : |z| ≥ 1√
2
c130µ̃} and Γ2 the open rectangle inside the

ball |z| ≤ c130µ̃ defined as Γ2 = {z ∈ C : Re z = − 1√
2
c130µ̃, 0 ≤ Im z ≤

1√
2
c130µ̃} ∪ {z ∈ C : |Re z| ≤ 1√

2
c130µ̃, Im z = 1√

2
c130µ̃} ∪ {z ∈ C : Re z =

1√
2
c130µ̃, 0 ≤ Im z ≤ 1√

2
c130µ̃}.

Hence,

∥F∥H1 ≤
∫
Γ1

|η̂(z̄)|∥A(βD0/µ̃) (e
−izφχ(φ)u(y))∥H1 |dz|

+

∫
Γ2

|η̂(z̄)|∥A(βD0/µ̃) (e
−izφχ(φ)u(y))∥H1 |dz| := IΓ1 + IΓ2 .

Along Γ1, with z = Re z, we have both |η̂(z̄)| ≤ δc101 exp(−c102δα1 |z|α1), and

∥A(βD0/µ̃)e
−izφχ(φ)u(y)∥2H1 ≤ ∥e−izφχ(φ)u(y)∥2H1

≤ 2(|z|2|φ′|2C0 + 1)∥χ(φ)u∥2H1

≤ (|z|2 + 1)c113 .

The final estimate for IΓ1 is

IΓ1 ≤ 2δc101
√
c113

∫ +∞

1√
2
c130µ̃

√
s2 + 1e−c102δ

α1sα1ds

≤ 2δc101
√
c113e

−c102δα1 ( 1
2
√

2
c130)α1 µ̃α1

∫
R

√
s2 + 1 e−c102δ

α1sα1/2ds

≤ 2c101
√
c113e

−c102δα1 ( 1
2
√
2
c130)α1 µ̃α1

∫
R

√
(s/δ)2 + 1 e−c102s

α1/2ds .

In IΓ2 we multiply and divide by the invertible operator eϵ|D0|2/(2iz)

IΓ2 =

∫
Γ2

|η̂(z̄)|∥A(βD0/µ̃)e
−ϵ|D0|2/(2iz)eϵ|D0|2/(2iz)e−izφu(y)∥H1 |dz|

≤ δc101

∫
Γ2

e4δImz−c102δα1 |Re z|α1∥A(βD0/µ̃)e
−ϵ|D0|2/(2iz)∥B(H1)·

· ∥e−ϵ|D0|2/(−2iz)e−izφχ(φ)u(y)∥H1 |dz|.
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In the region Γ2 ⊂ {z : c130µ̃/
√
2 ≤ |z| ≤ c130µ̃} the norm in B(H1) can be

estimated, independently of µ̃, via the Fourier symbol of the product

|a(βξ0/µ̃)e−ϵξ
2
0/(2iz)| = |a(βξ0/µ̃)e

ϵξ20Im z

2|z|2 | ≤ exp
( ϵ(2µ̃)2Im z

2β2|c130µ̃/
√
2|2

)
= exp

(4ϵIm z

β2c2130

)
;

while the latter H1-norm is related to the estimate (2.11) for N(−iz)

∥e−ϵ|D0|2/(−2iz)e−izφχ(φ)u(y)∥2H1 ≤
N(−iz)

min{1, µ̃2c2130/2}
≤ 2c113(1 + |z|2)

min{1, c2130/2}
e−10δImz

where we use (|ξ|2 + 1) ≤ 1
min{1, µ̃2c2130/2}

(|ξ|2 + |z|2) in the first inequality, and

and µ̃ ≥ 1 in the second. Hence,

IΓ2 ≤ δc101

(2c113(1 + µ̃2c2130)

min{1, c2130/2}

)1/2
∫
Γ2

e4δImz−c102δα1 |Re z|α1e
4ϵIm z

β2c2130 e−5δImz|dz|

≤ δc101

(2c113(1 + µ̃2c2130)

min{1, c2130/2}

)1/2
∫
Γ2

e−c102δ
α1 |Re z|α1e−δImz/2|dz|

where we choose ϵ and β such that ϵ ≤ δβ2c2130/8. Actually by our choice of
c130 the inequality can be written as

ϵ ≤ 9β2

247δ
min

( ϵδ
36
,
c2123

4(3)2α1 , 1
)
.

The latter relation is satisfied for any ϵ ≤ ϵ0 and β ≥ c131, where c131 =
max{

√
2(16)6, (

√
2(16)63(α1−1)

√
ϵ0δ)/c123, ((16)

6
√
ϵ0δ)/(3

√
2)}, with ϵ0 computed

in Table 3.10.
Denoting z = x′ + iy′ we conclude the estimate

δ

∫
Γ2

e−c102δ
α1 |Re z|α1−δImz/2|dz|

≤ 2δ

∫ c130µ̃√
2

0

e
−c102δα1

(c130µ̃)α1
√

2
α1 e−δy

′/2dy′ + δ

∫ c130µ̃√
2

− c130µ̃√
2

e−c102δ
α1 |x′|α1e

−δ c130µ̃

2
√
2 dx′

≤ 2δe
−c102δα1

(c130)
α1

(
√
2)α1

µ̃α1

∫ +∞

0

e−δy
′/2dy′ + δe

−δ c130
2
√
2
µ̃

∫
R
e−c102δ

α1 |x′|α1dx′

≤ 2e
−c102δα1

(c130)
α1

(
√

2)α1
µ̃α1

∫ +∞

0

e−y
′/2dy′ + e

−δ c130
2
√

2
µ̃

∫
R
e−c102|x

′|α1dx′ .

Comparing the estimates for IΓ1 and IΓ2 , recalling that e−cµ̃ ≤ e−cµ̃
α1 and

choosing the largest constants, we obtain the final estimate for F (y)

∥A(βD0/µ̃)(η(φ)χ(φ)u)(y)∥H1 ≤ c136e
−c137µ̃α1 ,(2.8)

with c137 =
1
2

(
c102δ

α1 (c130)α1

(
√
2)α1

+ δ c130
2
√
2

)
+ 1

2
c102δ

α1( 1
2
√
2
c130)

α1 and

c136 = 2c101
√
c113

∫
R

√
(s/δ)2 + 1 e−c102s

α1/2ds+c101

(
2c113(1+c2130)

min{1, c2130/2}

) 1
2
(
2
∫ +∞
0

e−y
′/2dy′+∫

R e
−c102|x′|α1dx′

)
.

One can prove a similar estimate with η(φ) replaced by b((y − y0)/r). By con-
struction we have chosen r so that supp(b((y−y0)/r))∩suppu ⊂ {y; η(φ(y)) =
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1)} ∩ suppu and we write

A(
3βD0

µ̃
)b(

y − y0
r

)u(y) = A(
3βD0

µ̃
)b(

y − y0
r

)A(
βD0

µ̃
)η(φ)u(y)

+A(
3βD0

µ̃
)b(

y − y0
r

)[1− A(
βD0

µ̃
)]η(φ)u(y) := J1 + J2.

From (2.8), J1 has the desired estimate

∥J1∥1 ≤ c136

(
1 +

|b′|C0

r

)
e−c137µ̃

α1 ,

due to the fact that A(3βD0

µ̃
)b(y−y0

r
) is a bounded operator. To estimate J2 we

apply Lemma 2.3.c) using the fact that b ∈ G1/α1(Rn+1):

∥J2∥1 ≤ c134e
−c135µ̃α1 ,

where c134 =
(
(rc1X)

8
3
Γ
(

1
α1

)
1

α1(rα1c2X)1/α1 (α1c135)1/(α1−1)

)1/2
, c135 = rα1c2X

1

23α1 .

This concludes the proof of Theorem 1.1 by choosing c129 = max{c134, c136},
c132 = min{c135, c137}.

�

Here we show in details the estimate for the function N applied in the proof of
the previous Lemma.

Lemma 2.7. Let us define N1(−iz) := N(−iz)/|1 − iz|2, where N(−iz) is
defined in (2.7). For z ∈ C ∩ {Im z ≥ 0}, N1(−iz) satisfies the inequalities

N1(−iz) ≤ c113e
4δImz(e−2c109µ̃ + e−16δImz), z ∈ R ∪ {Re z = 0, Im z ≥ 0},(2.9)

N1(−iz) ≤ c113, Im z > 0.

where c113 is given in (2.5) and c109 is defined in Lemma 2.6. Therefore, there
exists some constant c130 independent of µ̃, so that

N1(−iz) ≤ 2c113e
−10δImz, |z| ≤ c130µ̃, Im z ≥ 0,(2.10)

with c130 =
3c109
4δ

( 1

16

)5

.

Consequently, in the region |z| ≤ c130µ̃ with Im z ≥ 0,

N(−iz) ≤ 2c113(1 + |z|2)e−10δImz.(2.11)

Proof. Since N1(−iz) ≤ N(−iz), the estimates (2.9) for N1 follow from the
equivalent estimates for N proved in (2.4), (2.6) and (2.7). To show (2.10) we
first consider z = x′ + iy′ in the region x′ > 0, y′ > 0. Here we define the
analytic function

h(z) = e2iδze−8δi(z−C1µ̃(1−κ)zκ),

where z = |z|eiθ, zκ = exp(κ ln z), with ln z = ln |z|+ iθ, θ ∈ [0, π/2], and C1 is
a constant to be determined. Taking κ = 6/5, so that 1 < κ < 2 and close to
1, we write h(z) as

h(z) = exp(2δ(ix′ − y′)) exp(−8δ[−y′ + C1µ̃
1−κ|z|κ sin(κθ)])·

· exp(−8δi[x′ − C1µ̃
1−κ|z|κ cos(κθ)]) ,

and use h and its inverse to estimate N1. Consider

N1(−iz) = N2(−iz)|h−1(z)|2 ,



16 ROBERTA BOSI, YAROSLAV KURYLEV, MATTI LASSAS

where N2(−iz) is the subharmonic function in the first quadrant given by:

N2(−iz) :=N1(−iz)|h(z)|2=
∫
Rn+1

(|ξ|2 + |z|2) |h(z)|2

|1− iz|2
|e

−ϵξ20
−i2z Fy→ξ(e

−izφχ(φ)u)|2dξ̃dξ0.

We observe that:
a. On the real axis y′ = 0 we have |h(x′)| = 1, therefore

N2(−iz) ≤ N1(−iz) ≤ 2c113 .

b. On the positive imaginary axis y′ > 0, x′ = 0,

|h(iy′)| = exp(−2δy′) exp(a(y′)), with a(y′) := 8δ(y′ − C1µ̃
1−κ(y′)κsκ) .

where we have sκ = sin(κπ/2) > 1/2.
Then a(y′) achieves its maximum at y′M = µ̃(C1κsκ)

1/(1−κ) with the value

a(y′M) =
8δµ̃(κ− 1)

κ(C1κsκ)1/(κ−1)
. We choose C1 ≥

1

κsκ

(8(κ− 1)

κc109

)κ−1

δκ−1, so that we

have −c109µ̃+ a(y′M) ≤ 0, and consequently, by the estimates of N1 and |h|2,

N2(−iz) ≤
(
c113e

4δy′(e−2c109µ̃ + e−16δy′)
)
e−4δy′e2a(y

′)

= c113(e
2(−c109µ̃+a(y)) + e−16δy′+2a(y′))

≤ c113(e
2(−c109µ̃+a(y′M )) + e−16δC1µ̃1−κ|z|κsκ) ≤ 2c113 .

c. In the region y′ > 0, x′ > 0, we get

|h(z)| = exp (−2δy′) exp [8δ|z|(sin θ − C1µ̃
1−κ|z|κ−1 sin(κθ))] ≤ e−2δy′ec(µ̃).

Indeed for any θ ̸= 0 fixed we can compute the maximum in |z| of that expres-
sion and apply 1/2 < sin(κθ)/ sin θ ≤ κ to obtain

max
r≥0

[8δr(sin θ − C1µ̃
1−κrκ−1 sin(κθ))] ≤ c(µ̃) :=

8δ(κ− 1)

κ(κC1/2)1/(κ−1)
µ̃

that implies

N2(−iz) ≤ c113e
−4δy′e2c(µ̃) .

In order to get rid of the µ̃ dependency in this estimate, we apply the Phragmen-
Lindelöf Theorem 4.4 for subharmonic functions in the sector x′ ≥ 0, y′ ≥ 0 to
obtain

N2(−iz) ≤ 2c113
and we note that c113 is independent of µ̃. To prove (2.10) observe that, for
κ = 6/5, we have sin(κπ/2) > 1/2 and the following inequality is valid in the
region |z| = c130µ̃ with Re z ≥ 0, Im z ≥ 0,

|h−1(z)| = exp (2δIm z) exp (−8δIm z + 8δC1µ̃
1−κ|z|κ sin(κθ)) ≤ exp(−5δIm z) ,

where

c130 :=
3c109
4δ

( 1

16

)5

≤ min
θ∈[0,π/2]

( sin θ

8C1 sin(κθ)

) 1
κ−1

.

Indeed we see that 8C1µ̃
1−κ(c130µ̃)

κ−1 sin(κθ) ≤ sin θ, proving the derived esti-
mate, and also (2.11) follows consequently.
Next, we observe that the same estimate (2.10) can be obtained in the sector
Re z ≤ 0, Im z ≥ 0 by applying the following arguments:
In the region x′ < 0, y′ > 0, with z = x′ + iy′, we define w = −z̄ = −x′ + iy′,
belonging to the first quadrant, and N3(−iw) := N1(−i(−z̄)) and N4(−iw) :=
N1(−i(−z̄))|h(−z̄)|2. Notice that h(w) is an antiholomorphic function in w,
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and therefore |h(w)| is subharmonic. Also N3(−iw), N4(−iw) are subharmonic
and they satisfy the same estimates as N1(−iz), N2(−iz). We then apply the
same procedure as in the first step with N1, N2 replaced by N3, N4.

We now can complete the proof of the logarithmic stability estimate in Theo-
rem 1.2.

Proof of Theorem 1.2. We consider two cases:
Case A. Assume ∥Pu∥L2(B2R) ≥ ∥u∥H1(B2R)/e. Then the estimate is trivial as

∥u∥L2(Br) ≤ ∥u∥H1(B2R) ≤ ln(1 + e)
∥u∥H1(B2R)

ln
(
1 +

∥u∥H1(B2R)

∥Pu∥L2(B2R)

) .
Case B. Assume now ∥Pu∥L2(B2R) < ∥u∥H1(B2R)/e and without restriction of
generality take ∥u∥H1(B2R) = 1. Our aim is to consider separetely estimates
for low and high temporal frequencies. Let A(D0) be a pseudo-differential

operator with symbol a(ξ0), where a ∈ G
1/α
0 (R) with α ∈ (0, 1) is a smooth

Gevrey class localizer that is supported in |ξ0| ≤ 2 , equal to one in |ξ0| ≤ 1 and
0 ≤ a ≤ 1. Then a(βξ0/µ̃) is a scaled version of it, where µ̃ > 1 is the parameter

to be optimized, and β > 0 an adjusting constant. Let b ∈ G
1/α1

0 (Rn+1) with
0 < α ≤ α1 be another localizer supported in B2, equal to one in B1 and
0 ≤ b ≤ 1.
Observe that according to our geometric construction we have (see Proposition
2.5):

Br ⊂ supp b((y − y0)/r) ⊆ B2r ⊂ BR ⊂ supp b((y − y0)/R) ⊆ B2R ,

and hence ∥u∥L2(Br) ≤ ∥b((y − y0)/r)u∥L2 .
Then we perform the splitting:

b((y − y0)/r)u = A(βD0/µ̃)b((y − y0)/r)u+ (1− A(βD0/µ̃))b((y − y0)/r)u.

For high temporal frequencies |ξ0| ≥ µ̃/β we estimate as follows:

∥(1− A(βD0/µ̃))b((y − y0)/r)u(y)∥2L2=∥(1− a(
βξ0
µ̃

))Ft→ξ0(b((y − y0)/r)u(y))∥2L2

≤ β2

µ̃2

∫
|ξ0|>µ̃/β

∫
Rn

|ξ0Ft→ξ0(b((y − y0)/r)u(t, x))|2dxdξ0

≤ β2

µ̃2
∥b((y − y0)/r)u(y)∥2H1 ≤

β2

µ̃2

(
1 +

|b′|2C0

r2

)
∥u(y)∥2H1(BR) .

For low temporal frequencies we first choose µ̃ such that ∥Pu∥L2(B2R) = e−µ̃ <
e−1. Then we take µ > 1, such that µ̃ = µα. Hence for A and b as above we
get for all ζ > 0:

∥A(ζD0/µ)b((y − y0)/R)Pu∥0 ≤ ∥Pu∥L2(B2R) = e−µ̃.(2.12)

For ζ = 1 in (2.12) we can apply Theorem 1.1 to obtain

(2.13) ∥A(βD0/µ̃)b((y − y0)/r)u∥L2 ≤ c129e
−c132µ̃α1 , β ≥ 3c131.
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By collecting the previous estimates for low and high temporal frequencies we
conclude that, as µ̃ ≥ 1,

∥u∥L2(Br) ≤ β

µ̃

(
1 +

|b′|2C0

r2

)1/2

+ c129e
−c132µ̃α1 ≤ c105

µ̃
=

c105
− ln(∥Pu∥0)

≤ 2c105
∥u∥H1(B2R)

ln
(
1 +

∥u∥H1(B2R)

∥Pu∥L2(B2R)

) ,
where c105 = β

(
1 +

|b′|2
C0

r2

)1/2

+ c129 and in the last step we apply ln(y) ≥
ln(1 + y)/2 for y = ∥u∥H1(B2R)/∥Pu∥L2(B2R) > e, and then we return to the
original notation. Defining c111 = ln(1 + e) + 2c105 we obtain the result.

3. Geometric constants

3.1. Pseudoconvexity constants. In the following we work under the fol-
lowing assumptions, derived from the ones in Theorem 1.2:

A3. We consider the case of the wave operator (1.1) with principal symbol
p(y, ξ) = −ξ20 +

∑n
jk=1 g

jk(x)ξjξk, with 0 < a1 δ
jk ≤ gjk(x) ≤ b1 δ

jk,
a1, b1 > 0.

Call ξ = (ξ0, ξ̃) ∈ R× Rn, where |ξ̃|2 =
∑n

j=1 ξ
2
j .

A4. We fix a function ψ ∈ C2,ρ(Rn+1), for some ρ ∈ (0, 1), such that
p(y, ψ′(y)) ̸= 0 and ψ′(y) ̸= 0 in a domain Ω0 ⊆ Ω, containing the
point y0 lying on the level set S = {y; ψ(y) = 0}. In particular we
assume that |ψ′(y)| ≥ Cl in Ω0 for Cl > 0.

Moreover we use Einstein’s convention for the repeated indexes.
To get Tataru inequality we proceed in three Steps. In Table (3.10) are listed
the computed constants.

Step 1 . Given a function ψ ∈ C2,ρ(Rn+1) fulfilling the assumptions above
in a domain Ω0, we find positive constants M2, M1, MP such that the
following inequality holds true

M2ξ
2
0 +M1

( |p(y, ξ + iτψ′(y))|2

τ 2 + |ξ|2
+ |⟨p′ξ(y, ξ + iτψ′(y), ψ′(y)⟩|2

)
(3.1)

+
{p(y, ξ + iτψ′(y)), p(y, ξ + iτψ′(y))}

2iτ
≥MP (τ

2 + |ξ|2)

for every ξ ∈ R×Rn, ξ ̸= 0, τ ∈ R. The previous inequality proves that
the hypersurface S = {y; ψ(y) = 0} is conormally strongly pseudocon-
vex w.r.t. P in Ω0.

Step 2 . For ϕ = eλψ, with y0 on the level set ϕ(y) = 1, we find λ > 0 such
that the following inequality holds true

M2ξ
2
0 +

M1

min{1, λ2ϕ2(y)}
|p(y, ξ + iτϕ′(y))|2

τ 2 + |ξ|2
(3.2)

+
1

λϕ(y)

{p(y, ξ + iτϕ′(y)), p(y, ξ + iτϕ′(y))}
2iτ

≥MP min{1, λ2ϕ2(y)}(τ 2 + |ξ|2)

for every ξ ∈ R×Rn, ξ ̸= 0, τ ∈ R. The previous inequality proves that
the function ϕ is conormally strongly pseudoconvex w.r.t. P in Ω0.



LOCAL STABILITY 19

Step 3 . We consider a perturbation of ϕ by the shifted 2nd order polynomial
centred in the point y0,

f(y) =
∑
|υ|≤2

(∂υϕ)(y0) (y − y0)
υ/υ!− σ|y − y0|2.(3.3)

In a ball B(y0, R1) ⊂ Ω0 where f ′ ̸= 0 we define

ϕ0 = min
y∈B(y0,R1)

ϕ(y), ϕM = max
y∈B(y0,R1)

ϕ(y).

We find σ and R2 > 0 small enough such that in the ball B(y0, R2) the
following inequalities hold true: f(y) < ϕ(y) in B(y0, R2)\{y0},
and

M2ξ
2
0 + 2M1

|p(y, ξ + iτf ′(y))|2

τ 2 + |ξ|2
+

{p(y, ξ + iτf ′(y)), p(y, ξ + iτf ′(y))}
(λϕ0)2iτ

(3.4)

≥ 1

2
(τ 2 + |ξ|2) .

The previous inequality proves that the function f is conormally strongly
pseudoconvex w.r.t. P in B(y0, R2).

Proof of STEP 1: We recall that

p(y, ξ + iτψ′(y)) = p(y, ξ)− τ 2p(y, ψ′) + iτ{p, ψ}
|p(y, ξ + iτψ′(y))|2 = |p(y, ξ)− τ 2p(y, ψ′)|2 + τ 2|{p, ψ}|2

= |p(y, ξ)|2 + τ 4|p(y, ψ′)|2 − 2τ 2p(y, ξ)p(y, ψ′) + τ 2|{p, ψ}|2

⟨p′ξ(y, ξ + iτψ′(y), ψ′(y)⟩ = {p, ψ}(y, ξ) + i2τp(y, ψ′)

|⟨p′ξ(y, ξ + iτψ′(y), ψ′(y)⟩|2 = |{p, ψ}(y, ξ)|2 + 4τ 2|p(y, ψ′)|2

We have to estimate the quantities

I1,ψ :=
|p(y, ξ + iτψ′(y))|2

τ 2 + |ξ|2
+ |⟨p′ξ(y, ξ + iτψ′(y), ψ′(y)⟩|2,

I2,ψ :=
{p(y, ξ + iτψ′(y)), p(y, ξ + iτψ′(y))}

2iτ
= {p, {p, ψ}}(y, ξ) + τ 2{p, {p, ψ}}(y, ψ′(y)),

where the last equality holds for our second order wave operator.
For the second term we get, by setting a00 = −1, aj0 = 0, ajk = gjk, j, k = 1...n,

I2,ψ =
n∑

l,m=0

ξlξm

(
4

n∑
j,k=0

ajlψ′′
jka

km + 4
n∑

j,k=0

ajl∂xja
kmψ′

k − 2
n∑

j,k=0

∂xja
lmakjψ′

k

)
+τ 2

n∑
l,m=0

ψ′
lψ

′
m

(
4

n∑
j,k=0

ajlψ′′
jka

km + 2
n∑

j,k=0

ajl∂xja
kmψ′

k

)
≥ −C3(|ξ|2 + τ 2)

where C3 is defined as follows

max
y∈Ω0

(
4
∑
j,k

ajlψ′′
jka

km + 4
∑
j,k

ajl∂xja
kmψ′

k − 2
∑
j,k

∂xja
lmakjψ′

k

)
(2 + ψ′

lψ
′
m)

≤ 20(1 + n2|gjl|2C1)|ψ′|C1(1 + |ψ′|2C0) := C3.
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For the first term we get

I1,ψ =
|p(y, ξ)|2

τ 2 + |ξ|2
+ τ 2|p(y, ψ′)|2

(
4 +

τ 2

τ 2 + |ξ|2
)
− 2

τ 2

τ 2 + |ξ|2
p(y, ξ)p(y, ψ′)

+|{p, ψ}|2
(
1 +

τ 2

τ 2 + |ξ|2
)

≥ |p(y, ξ)|2

τ 2 + |ξ|2
(1− ω) + τ 2|p(y, ψ′)|2

(
4|ξ|2 +

(
5− 1

ω

)
τ 2
) 1

τ 2 + |ξ|2

+|{p, ψ}|2
(
1 +

τ 2

τ 2 + |ξ|2
)

≥ 1

τ 2 + |ξ|2
(
|p(y, ξ)|2(1− ω) + 4|p(y, ψ′)|2|ξ|2τ 2 + |p(y, ψ′)|2

(
5− 1

ω

)
τ 4

+|{p, ψ}|2(2τ 2 + |ξ|2)
)

where by Young’s inequality, 2p(y, ξ)τ 2p(y, ψ′) ≤ ω|p(y, ξ)|2 + 1
ω
τ 4|p(y, ψ′)|2,

where we choose ω ∈ (0, 1) such that (4 ≥) 5− 1
ω
> 0.

We now split the estimate into two parts:
Case 1: If p(y, ξ) > 0, then

|p(y, ξ)| = p(y, ξ) = −ξ20 +
∑
kj

gkjξkξj ≥ a1|ξ̃|2 − ξ20 ,

|p(y, ξ)|2 = (−ξ20 +
∑
kj

gkjξkξj)
2 ≥ (a1|ξ̃|2 − ξ20)(−ξ20 +

∑
kj

gkjξkξj)

= ξ40 + a1|ξ̃|2(
∑
kj

gkjξkξj)− ξ20 [
∑
kj

gkjξkξj + a1|ξ̃|2] ≥ ξ40 + a21|ξ̃|4 − (b1 + a1)|ξ̃|2ξ20 .

Our aim is to find M2,M1,MP such that M2ξ
2
0 +M1I1,ψ+ I2,ψ ≥MP (τ

2+ |ξ|2).
Hence,

M2ξ
2
0 +M1I1,ψ + I2,ψ ≥M2ξ

2
0 − C3(τ

2 + |ξ|2) +

M1

[ |p(y, ξ)|2
τ 2 + |ξ|2

(1− ω) +
τ 2|p(y, ψ′)|2

τ 2 + |ξ|2
(
4|ξ|2 +

(
5− 1

ω

)
τ 2
)
+ |{p, ψ}|2

(
1 +

τ 2

τ 2 + |ξ|2
)]

≥ 1

τ 2 + |ξ|2

(
M2(τ

2ξ20 + |ξ|2ξ20) +M1(1− ω)[a21|ξ̃|4 + ξ40 − (a1 + b1)|ξ̃|2ξ20 ] +

+M1|p(y, ψ′)|2
[
4τ 2|ξ|2 +

(
5− 1

ω

)
τ 4
]
− C3(τ

4 + |ξ|4 + 2τ 2|ξ|2)
)

≥MP (τ
2 + |ξ|2) .
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To fulfil the last inequality we have to solve the system of 7 inequalities:(
M1(1− ω)a21 − C3

)
|ξ̃|4 ≥ MP |ξ̃|4(

M1(1− ω) +M2 − C3

)
ξ40 ≥ MP ξ

4
0(

M2 − (b1 + a1)M1(1− ω)− 2C3

)
|ξ̃|2ξ20 ≥ 2MP |ξ̃|2ξ20(

4M1|p(y, ψ′)|2 − 2C3

)
τ 2|ξ̃|2 ≥ 2MP τ

2|ξ̃|2(
4M1|p(y, ψ′)|2 − 2C3 +M2

)
τ 2ξ20 ≥ 2MP τ

2ξ20(
M1|p(y, ψ′)|2

(
5− 1

ω

)
− C3

)
τ 4 ≥ MP τ

4 .

Case 2: If p(y, ξ) ≤ 0, then

|p(y, ξ)| = −p(y, ξ) = ξ20 −
∑
kj

gkjξkξj ≥ 0 ⇒ ξ20 ≥
∑
kj

gkjξkξj ≥ a1|ξ̃|2.

Once again we look for M2,M1,MP such that M2ξ
2
0 +M1I1,ψ+ I2,ψ ≥MP (τ

2+
|ξ|2):

M2ξ
2
0 +M1I1,ψ + I2,ψ ≥M1

[τ 2|p(y, ψ′)|2

τ 2 + |ξ|2
(
4|ξ|2 +

(
5− 1

ω

)
τ 2
)

+|{p, ψ}|2
(
1 +

τ 2

τ 2 + |ξ|2
)]

+M2

(ξ20
2

+
ξ20
2

)
− C3(τ

2 + |ξ|2)

≥ 1

τ 2 + |ξ|2
(
M1|p(y, ψ′)|2

[
4τ 2|ξ|2 +

(
5− 1

ω

)
τ 4
]
− C3(τ

4 + |ξ|4 + 2τ 2|ξ|2)

+M2

(ξ20
2

+
a1|ξ̃|2

2

)
(τ 2 + |ξ|2)

)
≥MP (τ

2 + |ξ|2) .

To get the last inequality we have to solve the system of 3 inequalities:(
4M1|p(y, ψ′)|2 − 2C3 +

M2

2
min{a1, 1}

)
τ 2|ξ|2 ≥ 2MP τ

2|ξ|2(
M1|p(y, ψ′)|2

(
5− 1

ω

)
− C3

)
τ 4 ≥ MP τ

4(M2

2
min{a1, 1} − C3

)
|ξ|4 ≥ MP |ξ|4 .

From Case 1 and 2 we obtain two systems of inequalities for the coefficients; by
choosing ω = 1/2 and solving them, the pseudoconvexity estimate (3.1) holds
with M1, M2 as in Table (3.10) and with MP a free parameter to be set in the
following.

Remark 3.1. 1. Notice that the estimate is valid also in the limit τ → 0.
Indeed, for ξ ̸= 0

M2ξ
2
0 +M1I1,ψ + I2,ψ = M2ξ

2
0 +M1(

|p(y, ξ)|2

|ξ|2
+ |{p, ψ}|2) + {p, {p, ψ}}

≥ M2ξ
2
0 − C3|ξ|2 +M1

|p(y, ξ)|2

|ξ|2
≥MP |ξ|2.
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2. From the constraint onM1 one can understand the reason for the assumption
p(y, ψ′) ̸= 0. Actually, as observed in [6] and by other authors, in the case
p(y0, ψ

′(y0)) = 0 the estimate (3.1) is still possible if {p, {p, ψ}}(y0, ψ′(y0)) > 0.
Indeed, in that case there are positive constants C4, C5 such that I2,ψ ≥ C5τ

2−
C4|ξ|2, and one can proceed as above to get (3.1) with different coefficients.

Proof of STEP 2: Let ϕ(y) = eλψ(y), τ1 = τλϕ(y), and recall that

τϕ′(y) = τλϕ(y)ψ′(y) = τ1ψ
′(y), ϕ′′(y) = λϕ(y)(ψ′′(y) + λψ′(y)⊗ ψ′(y)),

where ϕ′(y) ̸= 0 in Ω0. Then for τ ̸= 0 (see [6], Lemma 4.2)

{p(y, ξ + iτϕ′(y)), p(y, ξ + iτϕ′(y))}
λϕ(y)(2iτ)

=
1

2iτ1
{p(y, ξ + iτ1ψ′(y)), p(y, ξ + iτ1ψ

′(y))}

+λ|⟨p′ξ(y, ξ + iτ1ψ
′(y), ψ′(y)⟩|2 ,

where at the right hand side one has first to perform the derivatives and next
to substitute τ1 (which consequently must not be seen as a function of y and τ
in the bracket). In the case τ = 0,

{p, {p, ϕ}}(y, ξ)
λϕ(y)

= {{p, {p, ψ}}(y, ξ) + λ|⟨p′ξ(y, ξ), ψ′(y)⟩|2.

Hence by substituting in (3.1) the variables τ1, ξ and for

λ ≥M1,

we obtain τ 21 + |ξ|2 ≥ min
(
1, λ2ϕ2(y)

)
(τ 2 + |ξ|2), and finally (3.2).

Proof of STEP 3: For simplicity we now consider λ and a domain B(y0, R1)
where ϕ0 = e−1 ≤ ϕ(y) ≤ e = ϕM and min

(
1, λ2ϕ2(y)

)
= 1. Since |ψ(y) −

ψ(y0)| ≤ |ψ′|C0(Ω0)R1, then we choose

R1 ≤ min{1,min
Ω0

|y0 − y|, 1

λ|ψ′|C0(Ω0)

}, λ ≥ e .(3.5)

We then rewrite f as

f(y) = ϕ(y0) +
n∑
j=1

∂jϕ(y0)(xj − x0,j) + ∂tϕ(y0)(t− t0)

+
1

2

n∑
j,k=1

∂2j,kϕ(y0)(xj − x0,j)(xk − x0,k) +
n∑
j=1

∂2j,tϕ(y0)(xj − x0,j)(t− t0)

+
1

2
∂2t ϕ(y0)(t− t0)

2 − σ|x− x0|2 − σ|t− t0|2

and its derivatives, by identifying ∂t with ∂0, and calling δab the Kroenecker
symbol,

f ′
j(y) = ϕ′

j(y0) +
n∑
h=1

ϕ′′
jh(y0)(xh − x0h) +

+ϕ′′
tj(y0)(t− t0)− 2σ

(
(xj − x0j)(1− δ0j) + (t− t0)δ0j

)
f ′′
jm(y) = ϕ′′

jm(y0)− 2σ δjm, j,m ∈ {0, 1, . . . , n}.
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First of all we ask for f ′ ̸= 0 in the ball |y − y0| ≤ R2

|f ′(y)| ≥ |ϕ′(y0)| − |ϕ′′(y0)||y − y0| − 2σ|y − y0|
≥ |ϕ′(y0)| − |ϕ′′(y0)|R2 − 2σR2

≥ |ϕ′(y0)|/2
which implies the following constraint on R2,

|ϕ′′(y0)|R2 + 2σR2 ≤ |ϕ′(y0)|/2(3.6)

In order to pass from (3.2) to (3.4) we compute

|p(y, ξ + iτϕ′(y))|2 =
|p(y, ξ)− τ 2p(y, f ′) + τ 2(p(y, f ′)− p(y, ϕ′))|2 + τ 2|{p, f}+ ({p, ϕ− f})|2

≤ 2|p(y, ξ)− τ 2p(y, f ′)|2 + 2τ 4|p(y, ϕ′)− p(y, f ′)|2

+2τ 2|{p, f}|2 + 2τ 2|({p, ϕ− f})|2

≤ 2|p(y, ξ + iτf ′(y))|2 + 2τ 4|p(y, ϕ′)− p(y, f ′)|2 + 2τ 2|({p, ϕ− f})|2

≤ 2|p(y, ξ + iτf ′(y))|2 + 2τ 4η1 + 2τ 2|ξ|2η2
≤ 2|p(y, ξ + iτf ′(y))|2 + η2(1 + |ϕ′|2C0 + |f ′|2C0) (τ 2 + |ξ|2)2

where η1, η2 are

|p(y, ϕ′)− p(y, f ′)|2 =
∣∣∣∣− (ϕ′

t)
2 +

n∑
jk=1

gjkϕ′
jϕ

′
k + (f ′

t)
2 −

n∑
jk=1

gjkf ′
jf

′
k

∣∣∣∣2
≤ 2|f ′

t − ϕ′
t|2(|ϕ′

t|+ |f ′
t |)2 + 2|

n∑
jk=1

gjk((ϕ′
j − f ′

j)ϕ
′
k + f ′

j(−f ′
k + ϕ′

k))|2

≤ 4(1 + n4|gjk|2C0)(|ϕ′|2C0 + |f ′|2C0)|f ′ − ϕ′|2C0 := η1

and

|{p, ϕ− f}|2 = |2ξ0(f ′
t − ϕ′

t) + 2
∑

gjkξj(ϕ
′
k − f ′

k)|2

≤ 8(1 + n4|gjk|2C0)|f ′ − ϕ′|2C0 |ξ|2 := η2|ξ|2 .
Next

{p(y, ξ + iτϕ′(y)), p(y, ξ + iτϕ′(y))}
2iτ

= {p, {p, ϕ}}(y, ξ) + τ 2{p, {p, ϕ}}(y, ϕ′(y))

≤ {p, {p, f}}(y, ξ) + τ 2{p, {p, f}}(y, f ′(y)) + |{p, {p, ϕ− f}}(y, ξ)|
+τ 2|{p, {p, ϕ− f}}(y, ϕ′(y))|+ τ 2|{p, {p, f}}(y, ϕ′(y))− {p, {p, f}}(y, f ′(y))|
≤ {p, {p, f}}(y, ξ) + τ 2{p, {p, f}}(y, f ′(y)) + η3|ξ|2 + η4τ

2 + η5τ
2 .

Where η3, η4, η5, are defined as follows

{p, {p, ϕ− f}}(y, ξ) = 4(ϕ′′
tt − f ′′

tt)ξ
2
0 +

n∑
l,m=1

ξlξm

(
4

n∑
j,k=1

gjl(ϕ′′
jk − f ′′

jk)g
km

+4
n∑

j,k=1

gjl∂xjg
km(ϕ′

k − f ′
k)− 2

n∑
j,k=1

∂xjg
lmgkj(ϕ′

k − f ′
k)
)

≤ 4|ϕ′′ − f ′′|C0ξ20 +
(
4|ϕ′′ − f ′′|C0 |gjl|2C0n4 + 6|gjl∂xjgkm|C0n4|ϕ′ − f ′|C0

)
|ξ̃|2

≤ 10(1 + n4|gjl|2C1)
(
|ϕ′′ − f ′′|C0 + |ϕ′ − f ′|C0

)
|ξ|2 := η3|ξ|2 .
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Analogously, by setting ξ = ϕ′(y),

{p, {p, ϕ− f}}(y, ϕ′) ≤ η3|ϕ′|2C0 := η4 .

Then, substituting ϕ− f with f and ξ with ϕ′ or f ′ in the computations for η3,

|{p, {p, f}}(y, ϕ′(y))− {p, {p, f}}(y, f ′(y))| ≤ 4|f ′′|C0(|ϕ′|C0 + |f ′|C0)|ϕ′ − f ′|C0

+
(
4|f ′′|C0 |gjl|2C0n4 + 6|gjl∂xjgkm|C0n4|f ′|C0

)
(|ϕ′|C0 + |f ′|C0)|ϕ′ − f ′|C0

≤ 10|f ′|C1(1 + n4|gjl|2C1)(|ϕ′|C0 + |f ′|C0)|ϕ′ − f ′|C0 := η5 .

Summing up:

M2ξ
2
0 +

M1

min{1, λ2ϕ2}

(
2|p(y, ξ + iτf ′(y))|2 + 2η1τ

4 + 2η2τ
2|ξ|2

τ 2 + |ξ|2

)
+
{p(y, ξ + iτf ′(y)), p(y, ξ + iτf ′(y))}

(λϕ)2iτ
+

1

λϕ
(η3|ξ|2 + (η4 + η5)τ

2)

≥MP min{1, λ2ϕ2}(τ 2 + |ξ|2) .

Without restrictions of generality we can take MP = 1, while on the ball
BR2(y0) ⊂ B(y0, R1) we have also that min{1, λ2ϕ2

0} = 1. Then

M2ξ
2
0 + 2M1

|p(y, ξ + iτf ′(y))|2

τ 2 + |ξ|2
+

{p(y, ξ + iτf ′(y)), p(y, ξ + iτf ′(y))}
(λϕ)2iτ

+

≥ (τ 2 + |ξ|2)− η2M1(1 + |ϕ′|2C0 + |f ′|2C0)(τ 2 + |ξ|2)− η3
λϕ

|ξ|2 − 1

λϕ
(η3|ϕ′|2C0 + η5)τ

2

≥
(
1− η2M1(1 + |ϕ′|2C0 + |f ′|2C0)−

η3
λϕ

(1 + |ϕ′|2C0 + |f ′|C1(|ϕ′|C0 + |f ′|C0))
)
(τ 2 + |ξ|2)

:=MR (τ 2 + |ξ|2)

where we used η5 ≤ η3|f ′|C1(|ϕ′|C0 + |f ′|C0). Furthermore on σ we must set the
constraint f < ϕ for y ̸= y0. Define v(s) = ϕ(p(s)), p(s) = y0 + s(y− y0), then

there is a q ∈ (0, 1) such that v(1) = v(0) + v′(0) +
1

2
v′′(q) . Hence,

|v(1)− v(0)− v′(0)− 1

2
v′′(0)| = 1

2
|v′′(q)− v′′(0)|

= |
∑
|ζ|=2

1

ζ!
(∂ζϕ(p(q))− ∂ζϕ(y0)) (y − y0)

ζ | ≤ cT |y − y0|ρ+2,

|ϕ(y)−
∑
|ζ|≤2

1

ζ!
(∂ζϕ)(y0) (y − y0)

ζ | ≤ cT |y − y0|ρ+2, for cT = nmax
|ζ|=2

|∂ζϕ|C0,ρ .

On the set |y − y0| ≤ R2, y ̸= y0, we now consider the inequality

f(y)− ϕ(y) ≤ −σ|y − y0|2 + cT |y − y0|ρ+2 ≤ −(σ − cTR
ρ
2)|y − y0|2 < 0 .

This is satisfied by taking

σ := 2cTR
ρ
2 = 2n|ϕ′′|C0,ρ(BR2

(y0))R
ρ
2.(3.7)

With this choice the constraint (3.6) becomes, since R1+ρ
2 ≤ R2 and Cl as in

A2,

(|ϕ′′|0 + 4n|ϕ′′|0,ρ)R2 ≤ λCl/2 .(3.8)
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Hence, the main quantities can be estimated as follows. If not else specified, the
C0, C1,C2, C0,ρ norms of ψ and gjk are referred to the given domain B(y0, R1),
while the ones for ϕ and f are referred to the smaller ball |y − y0| ≤ R2, with
radius R2 ≤ R1 to be determined:

|ϕ′|C0(BR2
) ≤ λϕM |ψ′|C0

|ϕ′′|C0(BR2
) ≤ λϕM(|ψ′′|C0 + λ|ψ′|2C0)

|ϕ|C0,ρ(BR2
) ≤ |ϕ′|C0 |ψ|C0,ρ ≤ λϕM |ψ|C0,1R1−ρ

2

|ϕ′′|C0,ρ(BR2
) ≤ λ|ϕψ′′|0,ρ + λ2|ϕψ′ ◦ ψ′|0,ρ ≤ λϕM |ψ′′|0,ρ + λ2ϕM |ψ|0,1|ψ′′|0R1−ρ

2

+2λ2ϕM |ψ′|0|ψ′|0,1R1−ρ
2 + λ3ϕM |ψ|0,1|ψ′|20R

1−ρ
2

|ϕ′ − f ′|C0(BR2
) ≤ sup

j
|

n∑
k=0

(∂kϕ′
j(p(q̃))− ∂kϕ′

j(y0)) (yk − y0,k)|+ 2σ|y − y0|

≤ n|ϕ′′|0,ρ|y − y0|1+ρ + 2σ|y − y0| ≤ 5n|ϕ′′|0,ρR1+ρ
2

|ϕ′′ − f ′′|C0(BR2
) ≤ |ϕ′′|C0,ρ|y − y0|ρ + 2σ ≤ (2n+ 1)|ϕ′′|C0,ρRρ

2

|f ′|C0(BR2
) ≤ |ϕ′|C0 + |ϕ′ − f ′|C0 ≤ |ϕ′|C0 + 5n|ϕ′′|0,ρR1+ρ

2

|f ′′|C0(BR2
) ≤ |ϕ′′|C0 + 2σ = |ϕ′′|C0 + 4n|ϕ′′|C0,ρRρ

2.

We can now end up the estimate above

η2 ≤ c(|gjk|C0) |ϕ′ − f ′|2C0

η3 ≤ c(|gjk|C1) (|ϕ′ − f ′|C0 + |ϕ′′ − f ′′|C0)

η5 ≤ η3|f ′|C1(|ϕ′|C0 + |f ′|C0).

Call c100(g) = 10(1 + n4|gjk|2C1(B(y0,R1))
) the biggest constant entering in the

estimates for ηj. Then, for R2 < 1

MR := 1− c100(g)
[
|ϕ′ − f ′|2C0M1(1 + |ϕ′|2C0 + |f ′|2C0)

+(|ϕ′ − f ′|C0 + |ϕ′′ − f ′′|C0)
1

λϕ0

(
1 + |ϕ′|2C0 + |f ′|C1(|ϕ′|C0 + |f ′|C0)

)]
≥ 1− c100(g)

[
((5n)2R

2(1+ρ)
2 |ϕ′′|2C0,ρ)M1(1 + 5|ϕ′|2C0)

+(10nRρ
2|ϕ′′|C0,ρ)

1

λϕ0

(
1 + |ϕ′|2C0 + (2|ϕ′|C0 + |ϕ′′|C0 + 4n|ϕ′′|20,ρR

ρ
2)(3|ϕ′|C0)

)]
In the last step we used the following constraint on BR2 : |f ′|C0 ≤ 2|ϕ′|C0 , that
is a consequence of (3.8).
Defining the term |λψ|max as

|ϕ′′|C0,ρ ≤ ϕM max(λ|ψ′′|0,ρ, λ2|ψ|0,1|ψ′′|0, λ3|ψ|0,1|ψ′|20) := |λψ|max ,

we can refine condition (3.8) and add an extra conditions on Rρ
2 (that is quali-

tatively equivalent to |f ′′|C0 ≤ 2|ϕ′′|C0)

(λϕM(|ψ′′|C0 + λ|ψ′|2C0) + 4n|λψ|max)R2 ≤ λCl/2,(3.9)

4n|ϕ′′|0,ρRρ
2 ≤ 4n|λψ|maxRρ

2 ≤ λϕM(|ψ′′|C0 + λ|ψ′|2C0),
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where we apply the previous estimates to the norms of ϕ′, ϕ′′. By including the
numeric constants into c100, we can then write

MR ≥ 1− c100(g)
[
|λψ|2maxR

2(1+ρ)
2 M1(1 + λ2ϕ2

M |ψ′|20)

+|λψ|maxRρ
2

1

λϕ0

(
1 + λ2ϕ2

M |ψ′|20 + λ2ϕ2
M(|ψ′|0|ψ′′|0 + λ|ψ′|30)

)]
.

We first require that R2 is such that:

c100(g)|λψ|2maxR
2(1+ρ)
2 M1(1 + λ2ϕ2

M |ψ′|20 ≤ 1/4,

c100(g)|λψ|maxRρ
2

1

λϕ0

(
1 + λ2ϕ2

M |ψ′|20 + λ2ϕ2
M(|ψ′|0|ψ′′|0 + λ|ψ′|30)

)
≤ 1/4.

Then we add the previous two constraints (3.9). The resulting upper bound for
R2 is in Table (3.10).

We now collect in the following table all the constants computed in Step 1,
2, 3 and in the following sections. If not else specified, the C0, C1,C2, C0,ρ

norms of ψ and gjk are referred to the domain B(y0, R1), while the ones for
ϕ and f are referred to the smaller ball BR2 : |y − y0| ≤ R2. In case of spe-
cial geometries where ψ is given explicitly, the constraints in the table can be
improved.

Table for the constants computed under the assumptions A3, A4(3.10)

and the notations of Step 1, 2, 3 at the beginning of the section.
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Name Limit Value
C3 ≥ 20(1 + n2|gjk|2C1(Ω0)

)|ψ′|C1(Ω0)(1 + |ψ′|2C0(Ω0)
)

M1 ≥ (MP + C3)maxy∈Ω0

{
2
a21
, 1

2|p(y,ψ′)|2

}
M2 ≥ 2

min{1,a1}(MP + C3) +
(b1+a1)

2
M1

MP ≤ 1

λ ≥ max{M1, e,
2|ψ′′|C0(Ω0)

C2
l

}
ϕ0 ≥ e−1

ϕM ≤ e
R1 ≤ min{1,miny∈∂Ω0 |y0 − y|, 1

λ|ψ′|C0(Ω0)
}

R2 ≤ min
{
R1,

(
Cl

2ϕM (|ψ′′|C0(B(R1))
+λ|ψ′|2

C0(B(R1))
)

)
,
(λϕM (|ψ′′|C0(B(R1))

+λ|ψ′|2
C0(B(R1))

)

4n|λψ|max

) 1
ρ
,(

1
4c100(g)|λψ|2maxM1(1+λ2ϕ2M |ψ′|2

C0(B(R1))

) 1
2+2ρ

,(
λϕ0

4c100(g)|λψ|max

(
1+λ2ϕ2M |ψ′|2

C0(B(R1))
+λ2ϕ2M (|ψ′|C0(B(R1))

|ψ′′|C0(B(R1))
+λ|ψ′|3

C0(B(R1))

)) 1
ρ
}

σ ≥ 2n|ϕ′′|C0,ρ(BR2
)R

ρ
2

ϵ0 ≤ 1
2n|f ′′|C0(BR2

)

τ0 ≥ max{1, 64
(
4M1+

1
4λϕ0

)(
|f ′′|2C0(1+n2|gjk|C0)2+n|h|2L∞(2+2|f ′|2C0)+

2|q|2L∞

)
}

R ≤ 1
4

(
16 + 1

16

)−1/2

R2

δ ≤ n 1
32

(
16 + 1

16

)−1

|ϕ′′|C0,ρ(BR2
)R

2+ρ
2

r ≤
n|ϕ′′|C0,ρ(BR2

)
1
4

(
16+ 1

16

)−1

R2+ρ
2

|ϕ′|C0(BR2
)+5n|ϕ′′|C0,ρ(BR2

)R
1+ρ
2

r0 ≤ nλ2C2
l
1
4

(
16+ 1

16

)−1

R2+ρ
2

2e
(
|ϕ′|C0(BR2

)+5n|ϕ′′|C0,ρ(BR2
)R

1+ρ
2

)
c1,T ≥

√
4
(

4M1

τ0
+ 1

4(λϕ0)

)
c2,T ≥ (1

2
+
√
2M2)(1 +

2|χ′
1|C0

τ0κ
) +

c1,T√
τ0
c133

c111 ≥ ln(1 + e) + 6c131

(
1 +

|b′|2
C0

r2

)1/2

+ 2c129

Here the coefficients c129, c131, c133 are defined and derived: c133 in subsection
3.2; c129 and c131 in the proof of Theorem 1.1.

3.2. Tataru inequality for the wave operator. We now go quickly trough
[6] to compute the coefficients of the inequality in Theorem 2.1. We decompose
the wave operator (1.1) into the sum of its principal part P2 and the lower order
part P1

P2(y,D) = −D2
0 + gjk(x)DjDk

P1(y,D) = hj(x)Dj + q(x)
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We then consider the conjugate operator P (y,D + iτf ′) and split it into its
principal part P3 and the lower order part P4

P (y,D + iτf ′(y)) = eτf(y)P (y,D)e−τf(y) = P3(y,D, τ) + P4(y,D, τ)

P3(y,D, τ) = P2(y,D) + τ 2((f ′
0)

2 − gjkf ′
jf

′
k) + 2iτ(−f ′

0D0 + gjkf ′
jDk)

P4(y,D, τ) = −τ(f ′′
0 − gjkf ′′

jk) + P1(y,D + iτf ′)

The principal symbol of P (y,D) and P (y,D + iτf ′) are respectively

p(y, ξ) = −ξ20 + gjk(x)ξjξk

p(y, ξ + iτf ′) = p(y, ξ)− τ 2p(y, f ′) + iτ{p, f}
Since f is a quadratic function and the coefficients gjk are time independent we
can write the following expression

e−ϵ|D0|2/(2τ)eτfP (y,D)u = e−ϵ|D0|2/(2τ)P (y,D + iτf ′)eτfu

= P (y,D − ϵf ′′ · (D0, 0) + iτf ′)e−ϵ|D0|2/(2τ)eτfu

Call D⃗ = D − ϵf ′′ · (D0, 0) and ξ⃗j = ξj − ϵf ′′
j0ξ0, j = 0, 1, . . . , n.

If ϵ is such that 2nϵ|f ′′|C0 ≤ 1, then we get |ξ⃗j|2 ≤ 2|ξj|2 + 2ϵ2|f ′′|2C0ξ20 and
1
2
|ξ|2 ≤ |ξ⃗|2 ≤ 2|ξ|2.

Since p(y, ξ+ iτf ′) is the symbol of P3(y,D, τ), then p(y, ξ̂+ iτf
′) is the symbol

of P3(y, D⃗, τ). Now set ξ⃗ in place of ξ into the inequality (3.4), which becomes,
for V ∈ C∞

0 (B(y0, R2)),

2M2∥|D0|V ∥2 + 4M1∥P3(y, D⃗, τ)V ∥2−1,τ +
Im⟨Re(P3(y, D⃗, τ))V, Im(P3(y, D⃗, τ))V ⟩

(λϕ0)2τ

≥ 1

4
∥V ∥21,τ .

Observing that ∥W∥20 ≥ τ 2∥W∥2−1,τ , ∥P3W∥20 ≥ 2Im⟨(ReP3)W, (ImP3)W ⟩ and
for τ ≥ 1 we get

2M2∥|D0|V ∥2 +
(4M1

τ
+

1

4(λϕ0)

)∥P3(y, D⃗, τ)V ∥20
τ

≥ 1

4
∥V ∥21,τ .(3.11)

We now estimate the error term E1:

E1 := ∥P (y, D⃗ + iτf ′)V − P3(y, D⃗, τ)V ∥20
= ∥ − τ(f ′′

0 − gjkf ′′
jk)V + P1(y, D⃗ + iτf ′)V ∥20

≤ 2τ 2∥|f ′′|C0(1 + n2|gjk|C0)V ∥20 + 2∥hjDjV − ϵhjf ′′
0jD0V ∥20

+2τ 2∥(n|h|L∞ |f ′|C0 + |q|L∞)V ∥20
≤ 4

(
|f ′′|2C0(1 + n2|gjk|C0)2 + n|h|2L∞(2 + 2|f ′|2C0) + 2|q|2L∞

)
∥V ∥21,τ .

Now choose τ0 > 1 such that 2
τ0

(
4M1 +

1
4λϕ0

)
E1 ≤ 1

8
∥V ∥21,τ and call c1,T :=√

4
(

4M1

τ0
+ 1

4(λϕ0)

)
. From (3.11) and ∥P3(D⃗)v∥2 ≤ 2E1 + 2∥P (D⃗)v∥2, we have

after multiplying by 2 and squaring, for τ ≥ τ0,√
2M2∥|D0|V ∥0 + c1,T

∥P (y, D⃗ + iτf ′)V ∥0√
τ

≥ 1

2
∥V ∥1,τ .(3.12)
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Now consider u ∈ H1(Bκ/4) and define v := e−ϵ|D0|2/(2τ)eτfu, V := χ1(t/(2κ))v,
with χ1 as in (4.3) with N = 1, B1 = [−1, 1] B2 = [−2, 2]. Hence, supp(V ) ⊂
{y; |t| ≤ 4κ, |x| ≤ κ/4} ⊂ {y; |y− y0| ≤ R2} with κ =

(
16+ 1

16

)−1/2
R2. Due to

Lemma 3.4 in [6] (see also Lemma 2.79 in [10]) the following inequalities hold:

∥P (y, D⃗ + iτf ′)V − χ1(t/(2κ))e
−ϵ|D0|2/(2τ)eτfP (y,D)u∥0

= ∥[P (y, D⃗ + iτf ′), χ1(t/(2κ))]v∥0
≤ c133∥(1− χ1(t/κ))(∇+ τ)v∥0 ≤ c133e

−τκ2/(4ϵ)∥eτfu∥1,τ ,

and

∥|D0|V ∥0 ≤ ∥|D0|v∥0 +
2|χ′

1|C0

κ
∥(1− χ1(t/κ))v∥

≤ 2κτ

ϵ
∥v∥0 + (1 +

2|χ′
1|C0

τ0κ
)e−τκ

2/(4ϵ)∥eτfu∥1,τ ,

and

∥v∥1,τ ≤ ∥V ∥1,τ + (1 +
2|χ′

1|C0

τ0κ
)e−τκ

2/(4ϵ)∥eτfu∥1,τ ,

for τ ≥ τ0 and c133 = 2(1+n2|gjk|C0)
(

|χ′′
1 |C0

τ0κ2
+

|χ′
1|C0

κ
(1+ |f ′|C0 + |h|L∞

τ0
)
)
. As last

step we use the above relations to estimate the terms of (3.12) and we notice
that

√
2M2

2κ
ϵ0
< 1

4
according to our choice of the parameters. Therefore, for

τ > τ0, we obtain the Tataru inequality of Theorem 2.1 with coefficients as in
Table 3.10.

Remark 3.2. Observe that, according to the computations above, ϵ cannot be
arbitrarily smaller that ϵ0, since this affects the size of R2 and τ .

3.3. Proof of Proposition 2.5. In the previous subsection we considered u ∈
H1(BR) where the radius R is defined as R := qR2 with q = 1

4

(
16 + 1

16

)−1/2

,

with R2 defined in Table (3.10).
Let us compute δ such that the region IB := {y ∈ B(y0, R2); f(y) − ϕ(y0) ≥
−8δ} ∩ {y ∈ B(y0, R2);ϕ ≤ ϕ(y0)} is inside the ball B(y0, R). By assumption,
in B(y0, R2)− {y0} we have

f(y)− ϕ(y) < −cTRρ
2|y − y0|2.

Moreover, in IB we have f(y)− ϕ(y0) ≤ f(y)− ϕ(y).
Hence, the limit case is reached along the boundary {y; |y − y0| = R}, where

f(y)− ϕ(y0) < −cT q2R2+ρ
2 .

Define δ such that −cT q2R2+ρ
2 ≤ −8δ, i.e.

δ = cT q
2R2+ρ

2 /8 = n|ϕ′′|C0,ρq2R2+ρ
2 /8 .

Under this condition, the set IB is inside B(y0, R).
In order to compute the smaller radius r we apply a rougher estimate, using
the definition of f . Consider {y; |f − ϕ(y0)| ≤ δ} ∩ {y; |y − y0| ≤ 2r}, then

|f(y)− ϕ(y0)| ≤ |f ′|C0(BR2
)|y − y0| ≤ |f ′|C02r ≤ δ.
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Hence the solution is r ≤ δ
2|f ′|C0(BR2

)
, that is guaranteed by

r ≤
n|ϕ′′|C0,ρ(BR2

)q
2R2+ρ

2

2|ϕ′|C0(BR2
) + 10n|ϕ′′|C0,ρ(BR2

)R
1+ρ
2

(≤ R2/10).

By hypothesis ϕ′(y0) ̸= 0, hence the denominator does not vanish.
If we choose λ > 2|ψ′′|C0(Ω0)/C

2
l and apply ψ′(y) > Cl we obtain in BR1

ϕ′′(y) = ϕλ(ψ′′ + λψ′ × ψ′) ≥ e−1λ2C2
l /2.

Consequently ϕ′′(y) ̸= 0 and |ϕ′′|C0,ρ(BR2
) > Cρ, with Cρ := e−1λ2C2

l /2 > 0 we
get an uniform lower bound for r in BR1

r0 ≤
nCρq

2R2+ρ
2

2|ϕ′|C0(BR2
) + 10n|ϕ′′|C0,ρ(BR2

)R
1+ρ
2

.
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4. Appendix

We recall the results on Gevrey class functions that are used in the article.
The reference is [7, 18].

Definition 4.1. Let Ls be an increasing sequence of positive numbers such
that

L0 = 1, s ≤ Ls, Ls+1 ≤ CLs,

for some constant C > 1. We denote by CL the set of all u ∈ C∞(X) (with
X ⊂ RN open subset) for which to every compact setK ⊂ X there is a constant
CK such that

|Dζu(x)| ≤ CK(CKL|ζ|)
|ζ|, x ∈ K,

for all multi-indices ζ. By Stirling’s formula we could replace |ζ||ζ| by |ζ|!.
CL(X) is a ring which is closed under differentiation. If f : Y → X is and
analytic map from the open set Y ⊂ RN to the open set X ⊂ RN , then the
composition with f defines the map f ∗ : CL(Y ) → CL(X), f ∗u = u ◦ f .
The class CL(X) with Ls = (s + 1)m and m > 1 is called the Gevrey class
of order m and denoted by Gm(X). If m = 1, then G1(X) is the set of real
analytic functions in X.
We denote by Gm

0 (RN) the set Gm
0 (RN) = Gm(RN) ∩ C∞

0 (RN). For m > 1 one
has

∑
1/km < ∞, and it follows from Th.1.4.2 in [7] that Gm

0 is so large that
one can find cutoff functions there; it is of course an algebra.
In particular, let f, g ∈ Gm(RN) and let K ⊂ RN be a compact set, then by
calling c1,f and c1,g the constants CK for f and g, we get fg ∈ Gm(RN) such
that for cP = max{c1,f , c1,g}

|Dκ(f(x)g(x))| ≤ 2|κ|c
|κ|+2
P |κ|m|κ|, x ∈ K.(4.1)
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Moreover, if E is a compact set in RN , then we define the ’the supporting
function of E’ HE as ([7], (4.3.1), p. 105)

HE(ξ) = sup
x∈E

⟨x, ξ⟩, ξ ∈ RN .

In the present paper we widely use the Paley-Wiener-Schwartz Theorem for
Gevrey class functions. As reference we give the following statement proved in
[8] for a proper subset γm0 (RN) of Gm

0 (RN). The Theorem can also be reformu-
lated for ϕ ∈ Gm

0 once we substitute the sentence ”to every B > 0 there exists
a constant CB such that” with ”there exist positive constants B and C such
that”. The proof is the same.

Theorem 4.2. ([8], Th.12.7.4, p.137) An entire function Φ(ζ), ζ ∈ CN , is
the Fourier-Laplace transform of a function ϕ ∈ γm0 (RN) with support in the
compact convex set K with supporting function HK if and only if to every B > 0
there exists a constant CB such that

|Φ(ζ)| ≤ CB exp(HK(Imζ)−B|Reζ|1/m), ζ ∈ CN .

In particular we can introduce the main properties of the Gevrey class localizers
used in the paper.

Definition 4.3. Define χ1 ∈ Gm
0 (RN) and χδ(v) := χ1(v/δ) such that χ1 = 1

in a ball B1 ⊂ RN , χ1 = 0 outside a larger ball B2, and 0 ≤ χ1 ≤ 1. Hence,
Fv→ζχδ(v) = δNFv→δζχ1(v) and

|Dκχ1(v)| ≤ c
|κ|+1
1X |κ|m|κ|, v ∈ B2,(4.2)

|Fv→ζχ1(v)| ≤ c1X exp(HB2(Imζ)− c2X |Reζ|1/m), ζ ∈ C,(4.3)

|Fv→ζχδ(v)| ≤ δNc1X exp(δHB2(Imζ)− c2Xδ
1/m|Reζ|1/m), ζ ∈ C,(4.4)

with c1X = c1X(m) a given number, and c2X = 1/(eNc1X)
1/m.

In the following we present the Phragmen-Lindelöf Theorem for subharmonic
functions used in Lemma 2.7.

Theorem 4.4. ([15], Ch. 7.3.) Let D be an angle of opening π/λ, and let u(z)
be a function subharmonic in this angle, satisfying an asymptotic estimate

u(z) < |z|ρ, a.e., ρ < λ,

and bounded by a constant M on the boundary of the angle. Then u(z) ≤ M
inside the full angle D.

We now recall the concept of conormal pseudoconvexity for operators as given
in [20, 21].
If S is a C2-oriented hypersurface, we can represent it as level set surface of a
C2-function:

S := {y; ψ(y) = 0}
where ψ′ ̸= 0 on S.

Definition 4.5. Decompose the coordinates of RN into y = (y′, y′′).
The conormal bundle of the foliation F of RN with the surfaces y′′ =const is
the set

N∗F := {(y, ξ) ∈ T ∗RN ; with ξ = (ξ′, ξ′′) and ξ′ = 0}.
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Its reduction to a subset K ⊂ RN is

ΓK := {(y, ξ) ∈ T ∗K, ξ′ = 0},
while its fibre in y0 is

Γy0 := {(y0, ξ) ∈ N∗F}.

Let P (y,D) be a partial differential operator of order m with smooth coeffi-
cients. Denote by p(y, ξ) its principal symbol.

Definition 4.6. Let S be a smooth oriented hypersurface which is a level surface
of a C2 function ψ, and y0 ∈ S, ψ′(y0) ̸= 0. We say that S is conormally strongly
pseudoconvex with respect P at y0 if

Re{p, {p, ψ}}(y0, ξ) > 0(4.5)

on p(y0, ξ) = {p, ψ}(y0, ξ) = 0, 0 ̸= ξ ∈ Γy0 ;

{p(y, ξ + iτψ′(y)), p(y, ξ + iτψ′(y))}/(2iτ) > 0(4.6)

on y = y0, such that 0 ̸= ξ ∈ Γy0 , τ > 0,

and p(y0, ξ + iτψ′(y0)) = {p(y, ξ + iτψ′(y)), ψ(y)}(y = y0) = 0.

Definition 4.7. A C2 real valued function ψ is conormally strongly pseudocon-
vex with respect to P at y0 if

Re{p, {p, ψ}}(y0, ξ) > 0(4.7)

on p(y0, ξ) = 0, 0 ̸= ξ ∈ Γy0 ;

{p(y, ξ + iτψ′(y)), p(y, ξ + iτψ′(y))}/(2iτ) > 0(4.8)

on y = y0, such that p(y0, ξ + iτψ′(y0)) = 0, 0 ̸= ξ ∈ Γy0 , τ > 0.

Hence, the term ’conormally strongly pseudoconvex’ means ’strongly pseu-
doconvex in N∗F or in a subset ΓK ’. Definition 4.6 implies that if Ω0 is a
sufficiently small neighborhood of y0, then there are constants such that an
inequality like (3.1) holds, while Definition 4.7 implies that the inequality (3.2)
holds for the function ϕ = eλψ.

For second order differential operators the definitions above are simpler. In
particular, for the wave operator (1.1) the conditions are void for noncharac-
teristic surfaces ψ, as shown in section 3.1, see also Remark 3.1.
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