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1 Introduction and statement of the result

Let (M,g) be a Riemannian manifold with boundary. In this paper we consider the
problem of determining the metric g from its associated boundary distance function

dg(w,y) = dist (z,y), x,y € OM,

that is the geodesic distance between boundary points. This problem arose in rigidity
questions in Riemannian geometry [12], [6], [8]. For the case in which M is a bounded
domain of Euclidean space and the metric is conformal to the Euclidean one, this problem
is called the inverse kinematic problem which arose in Geophysics and has a long history
starting at least in the early part of the 20th century with Herglotz [10]. He considered
the case where M is a ball {z € R?® | r = |z| < R} equipped with a spherically symmetric
metric ds?> = dz?/c?(r) where ¢(r) is a positive function depending only on the radius
r = |z|. Herglotz found a formula to determine ¢(r) from the boundary distance function.
Physically this corresponds to the case of a spherically symmetric Earth model with
an index of refraction depending only on the radius. The boundary distance function
corresponds to the travel times of e.g. acoustic waves going through the Earth and
measured at the surface. The general problem for the case that the sound speed depends
on all variables has been extensively studied (see for instance [17] and the references given
there). Also, this problem has a close connection for other inverse problems related to
determining the sound speed from boundary measurements, see [20].
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The problem of determining the metric tensor from the boundary distance function is
not in general uniquely solvable. Indeed, let ¢y : M — M be a diffeomorphism that fixes
the boundary, ©|sy = Id. Since 1 is the isometry of the Riemannian manifold (M, ¢*g)
onto (M, g), it is easy to see that the boundary distance functions of the metrics g and
1*g coincide. A Riemannian manifold (M, g) is said to be boundary rigid if this is the
only obstruction to unique identifiability of the metric. More precisely, (M, g) is boundary
rigid if, for any other Riemannian metric ¢’ on M, the equality d, = d, implies existence
of a diffeomorphism v : M — M which is the identity on the boundary and such that
Yrg=yg".

There are evident examples of manifolds that are not boundary rigid. Indeed, one can
construct a metric g with a point xyp € M such that dy(zo,0M) > sup ,,condy(,y)-
For such a metric, d, is independent of a change of g in a neighborhood of z,. Therefore
it is necessary to impose some a-priori restrictions on the metric. One such restriction is
to assume that the Riemannian manifold is simple, i.e., given two points there is a unique
geodesic joining the points and OM is strictly convex. M is strictly convex if the second
fundamental form of the boundary is positive definite in every boundary point.

Although the boundary rigidity problem has been extensively studied last two decades,
there are very few global results for this problem. It is proved that a simple metric is
uniquely determined in a prescribed conformal class by the boundary distance function
[14], [2], [6]. In the two-dimensional case, boundary rigidity is proved for metrics of
constant Gaussian curvature [12] and of nonpositive curvature [5], [15]. Boundary rigidity
of flat metrics is proved in the multidimensional case [8]. Only recently some local results
were obtained in [7] and [19] in which one assumes that the metric is a-priori close to a
given metric. In the latter articles, the linearized version of the boundary rigidity problem
is used which turns out to be the integral geometry problem for tensor fields (see [18] and
the references given there).

In this paper we prove a semiglobal result, that is on a bounded domain of Euclidean
space with smooth boundary we prove that two metrics with the same boundary distance
function are isometric via an isometry which is the identity at the boundary provided that
one metric is sufficient close to the Euclidean metric and the other satisfies an a-priori
bound on the curvature (see Theorem 1.1). To obtain this result we show also that the
boundary distance function determines all boundary values of derivatives of the metric
tensor, that is, the C*°-jet of the metric at the boundary (see Theorem 2.1). By combining
Theorem 2.1 with a result of [11] we can prove that the distance function d, determines
a class of real-analytic manifolds (see Theorem 2.2 for a precise statement).

Before we state the result we introduce some notation and definitions.

Let (M, g) be a compact Riemannian manifold. If 7" is a real covariant tensor field of
rank m on M, then its modulus, which is defined in local coordinates by

T =g g Ty, T

1-bm 1. Jm?

is independent of the choice of coordinates. By

k
Tl ckarg) = Y sup | V...V T(z)],

1—0 TEM !

we denote the C*-norm of the tensor field 7. Here V denotes the covariant derivative.
We remark that ||7||cx(as,g) is also invariantly defined, i.e., is independent of the choice of
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coordinates. The same holds for the H*-norm of 7" which is defined by

k
1T = 3 [ 122 YT @) V().
=0pr !

where dV/, is the Riemannian volume form.

For x € M and a two-dimensional subspace o of the tangent space 1, M, we denote
by Sec (x,0) the sectional curvature at the point z in the direction o. For 0 # & € T, M,
we denote

Sec (z,&) = sup K(z,0), Sec™ (z, &) = max{Sec (z,£),0}.
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We also define

&t (M, g) = sup [ ¢Sec” (v(1), 5(0)) dt,

where the supremum is taken over all unit speed geodesics v : [0,{] — M. Finally we
denote by R, the curvature tensor of the metric g and e the Euclidean metric in R". Our
main result is as follows:

Theorem 1.1 Let D C R" be a closed bounded domain with a smooth strictly convex
(with respect to the Euclidean metric) boundary 0D. Let K > 0 and g be a Riemannian
metric on D satisfying the conditions

| Rllcr(p,g) < K, (1.1)

kT(D,g) < 1/4, (1.2)

where k = [n/2]+18 and [n/2] denotes the integer part of n/2. Let g’ be another Rieman-

nian metric on D satisfying
dg = dg.

Then there ezists € = (K, D,n) > 0 such that if

”gzl'j — Gijllcype) <€ (1.3)

with | = [n/2] 4+ 20, then the metrics g and g' are isometric via an isometry which is the
tdentity on the boundary.

We remark that the hypothesis (1.2) guarantees invertibility, modulo the natural ob-
struction, of the ray transform of the metric g [18].

In Section 2 we prove that we can determine from the boundary distance function,
up to the natural obstruction, all the derivatives of the metrics at the boundary. This
will allow us to extend the two metrics g, ¢’ as in Theorem 1.1 to be the same outside D
with the same boundary distance function on any bounded set containing D. Therefore
we can reduce the proof of Theorem 1.1 to the case that D is a ball of sufficiently large
radius (see Lemma 2.3).

In Section 3 we use special coordinates, called semigeodesic coordinates (or boundary
normal coordinates) to eliminate the nonuniqueness caused by an isometry. The proof of
Theorem 1.1 is reduced to show that metrics g and ¢’ coincide in these coordinates. This
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is accomplished by showing that the hypothesis that the boundary distance function is
the same on the ball and the conditions of Theorem 1.1 imply that in fact the metric g is
also close to the Euclidean metric on an appropriate cube. This is stated in Lemma 3.1.
The latter lemma implies Theorem 1.1 with the help of the main result of [19].

In Section 4 we estimate the components of a metric tensor in semigeodesic coordinates
through the curvature tensor. In fact this estimation is a weak version of Cheeger’s method
for proving precompactness of families of metrics under some curvature conditions [3].

Lemma 3.1 is proved in Section 5. The main ingredients here are the interpolation
inequality and the stability estimate for the inverse of the ray transform. In order to use
the ray transform we need the boundary distance function of a strictly convex smooth
domain rather than of a cube.

2 The boundary C*°-jet of a metric is determined by
the boundary distance function

Given a connected Riemannian manifold (M, g) with boundary, we denote by d, : OM x
OM — R the boundary distance function. We recall that, for a diffeomorphism ¢ : M —
M which is the identity at the boundary, i.e. ¢|gops = Id, the metrics g and ¢’ = p*g have
the same boundary distance functions, that is, d, = dy. We say that the boundary 0M
is convex if the following holds: for every two points pg, p1 € OM, py # p1, there exists a
geodesic 7 : [0,1] — M joining these points, v(0) = po, v(1) = p1, such that the length
of 7y is equal to dg(po, p1), and all inner points of v belong to M \ OM.

Theorem 2.1 Let (M,g) be a connected Riemannian manifold with conver boundary.
Then the C'*°-jet of the metric g at the boundary is uniquely determined by the boundary
distance function dg in the following sense. If OM 1is convex with respect to another
metric g¢' on M, then the equality d, = dy implies the ezxistence of a diffeomorphism
@ : M — M which is the identity on the boundary, p|lon = Id, and such that the metrics
g and g" = p*g' satisfy the following: In any local coordinate system (z',...,z") defined
in a neighborhood of a boundary point, we have D*glaps = D*g" |anr for every multi-index
.

This result was proven by Michel in two dimensions [13] and for || < 2 in [12].
Theorem 2.1 has the following corollary:

Theorem 2.2 Let M be a compact real-analytic manifold with a real-analytic boundary.
Let g, ¢' be two real-analytic Riemannian metrics on M such that M is simple with respect
to the metrics g and g'. Assume d, = dy. Then there exists a real-analytic diffeomorphism
Y M — M with |y = Id such that g = *¢g'.

The proof of Theorem 2.2 follows readily from Theorem 2.1 and Theorem C(a) of [11].

Proof of Theorem 2.1. Assume that the metrics ¢ and ¢’ satisfy the hypothesis of
the theorem. Then g and ¢’ induce the same metric on JM, i.e., for every point p € OM
and for every vectors £, n € T,(0M),

<§a77>g = <§a77>g’a (2.1)



where (-, ), is the inner product with respect to g.

Let us recall the definition of the boundary exponential map expy,,. Given p € OM,
let v(p) € T,M be the unit inner normal vector to the boundary with respect to the
metric g. The map expyy(p,t) = exp,(tv(p)) is defined for sufficiently small £ > 0 and
maps some neighborhood of the set M x {0} in 0M x R" diffeomorphically onto some
neighborhood of the boundary OM. Let exp),, denote the same map with respect to
the metric ¢’. The map ¢ = expy,, o(exph,,) ', which we are considering in a small
neighborhood of M, can be extended to a diffeomorphism ¢ : M — M which is the
identity on the boundary. Let ¢” = ¢*¢’. Then there exists a neighborhood U C M of
the boundary OM such that if expy,,(p,t) € U for a point p € OM and 0 < t < tg, then
expyn (D, t) = explyy, (p, 1) for 0 <t < ty. In particular, v(p) = v"(p).

To simplify notations, we will denote the above-constructed metric g” by ¢’ again. In
other words, we can assume without loss of generality the initial metrics g and ¢’ to satisfy
expyu (P, t) = explhy,(p, t) for an arbitrary point p € M and for sufficiently small ¢ > 0.
We will show that, for such two metrics, the equality d, = dy implies that the C'°-jets of
the metrics at the boundary are the same.

We define

f=9-4¢.
Let v : [0,1] — M be a shortest geodesic of the metric ¢ joining two boundary points,

po = v(0) € OM, p; = (1) € OM; and let 7' : [0,1] — M be the shortest geodesic of the
metric ¢’ joining the same points, py = 7'(0), p1 = 7'(1). We will prove the inequalities

15() = [ )3 @7 (@) de <o, (2:2)
1) = [ 6/ O 07 (1) dt > 0. (23

The integrands above are written in local coordinates but it is easy to see that they are
independent of the choice of coordinates. Since 7' is the shortest geodesic of the metric

g,
d2 (po, 1) = / 9i; (Y ()Y ()77 (t) dt < / i (Y)Y ()7 () dt.

This implies the inequality
15() = [ 9s(r®)F (O 1) dt — [ gl;(v(E)3 ()77 (1) dt <

< dz(pOapl) - d?)’(p()apl) =0
which proves (2.2). The inequality (2.3) is proved in the same way by changing the roles
of g and ¢'.
We fix a point p € OM and introduce semigeodesic coordinates (z',...,z") = (y',...,y" "', 2
in a neighborhood U C M of the point such that the boundary is determined by the equa-
tion 2 =0, z > 0in U, and the length element ds, of the metric g is given by

dsz = gagdyadyﬂ + d2?
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in these coordinates. In this and subsequent formulas, Greek indices vary from 1 to n —1;
summation from 1 to n — 1 means over repeated Greek indices. The coordinate lines
y = const are geodesics of the metric g orthogonal to the boundary. Therefore the same
coordinate system will be also semigeodesic for the metric ¢, i.e., the length element ds,
of the metric ¢’ is given by
dsg, = g'aﬁdy“dyﬁ + d22.
Therefore, the tensor field f = g — ¢’ has components fus = gap — gop and fi, = 0,1 =
1,...,n.
Using induction on k, we will prove that

akfaﬂ
= 2.4
py: 0 (2.4)

2=0

for all &, «, 5. For k = 0, (2.4) is valid because of (2.1). Assume that (2.4) holds for all &
satisfying 0 < k < [, but is not valid for £ = [. We choose a point py € M and vector
& € T,,(OM), |&| =1, such that

0 fa o
I (migses # 0.

Without loss of generality, let us assume that

alfa/a’

0z
Then there is a neighborhood V' C T'M of the point (pg, &) such that
alfaﬁ

0z

for all (p,&) € V. The inequality (2.5) holds also for all points (p,&) belonging to the
conic neighborhood

(Po)ESEl > 0.

(p)E°€7 > 0 (2.5)

CV={(p,§) e TM [£#0, (p,&/|E) €V}

of the point (pg, &).
Developing in Taylor series we have

l
fus(y,2) = + 2o

=1 94 (y,0)2" + o(2").

This combined with (2.5) implies the inequality

fas(P)ERE" >0 (2.6)

for all (p,&) € CV', p ¢ OM, where V' C V is some neighborhood of (pq, &)-

Let § : (—&,e) = OM be a smooth curve starting at the point py in the direction
&, ie., 6(0) = po and 6(0) = &. Let v : [0,1] — M be the shortest geodesic of the
metric g joining the points py and (1), for sufficiently small 7 > 0, i.e., ¥(0) = po and
(1) = 6(7). The point (y(t),¥(t)/|7(t)|) tends to (pg, &) uniformly in ¢ € [0,1] as 7 — 0.



In particular, all points (y(t),%(t)) (0 < t < 1) belong to CV' for a sufficiently small
7 > 0. Therefore (2.6) gives

Fii (YA () = fap(YE)F*@)FP () >0 for 0<t<1.

This implies the inequality

[ 5 @)3 ()7 (2) de > 0

which contradicts (2.2). This finishes the proof of Theorem 2.1.

Using Theorem 2.1, we will reduce Theorem 1.1 to the particular case that the domain
D is a ball of sufficiently large radius. We denote by B} = {x € R" | || < p} the closed
ball of radius p > 0 centered at the origin. We will show that Theorem 1.1 follows from
the following special case.

Lemma 2.3 Let g = (gi;) and g' = (g;;) be two Riemannian C*°-metrics on R". Assume
the metrics coincide outside the ball B?

p/2n?
9:(x) = giz(w)  for x ¢ By, (2.7)
and are the Euclidean metric outside the ball By, ,
05(x) = glj(x) = 0y for « ¢ Bl (2.8)
Assume that
dy =dg

where the boundary distance functions are defined on the ball By, Then for every K > 0
and p > 0, there exists ¢ = (K, p,n) > 0 such that if

[ Rgllcr(rm ) < K, (2.9)

KT (B}, g9) <1/3, (2.10)

1gi; — dijllcrmn,e) < € (2.11)

with k = [n/2] + 18 and | = 18, then there exists a C*™-diffeomorphism ¢ : R* — R"
which s the identity outside Bg/n,

p(x) =z for z¢ By, (2.12)

and such that ©*g = ¢'.

Proof of Theorem 1.1. Let the metrics g and ¢’ satisfy the hypotheses of Theorem
1.1 with £ =1 — 2 = [n/2] + 18. Using Theorem 2.1, we can assume that all derivatives
of the functions g;; and gz'-j coincide on 0D.

We choose p such that D C Bjo,- We now extend the metric ¢’ to the whole space
R™ in such a way that it coincides with the Euclidean metric outside the ball B”, and

. . . p/n
satisfies the inequality
||9§j - 5ij||cl(Rn,e) <€ (2.13)
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Such extension is clearly possible with some &' = €'(e, p,n) that goes to zero as ¢ does.
We also extend the metric g to R™ by defining g = ¢’ outside D. The constructed metric
g satisfies (2.9) and (2.10).

If € in (1.3) is sufficiently small, the hypersurface 0D is strictly convex with respect
to the metric ¢’. The hypersurface 0D is also strictly convex with respect to the metric
g because the Taylor series of the metrics g and ¢’ coincide on 90D.

We now show that the boundary distance functions of the manifolds (B}, g) and
(B/’}/n,g’) are the same. Given points p,q € 9B}, let 7 : 0,1] — B}, be the shortest
geodesic of the metric ¢g joining these points. Since D is convex with respect to g, the
geodesic v intersects D in a finite number of segments, i.e., y(t) € Dfor 0 < 7; <t < 7] <
1 and v(7;),v(7;) € 0D, where 1 <i < m and 7] < 7;4;. We replace each of 7|, ;1) of the
curve v with the shortest geodesic of the metric ¢’ joining the points (7;),y(7/) € 0D.
Let 7' be the curve obtained by these replacements. Then the g¢’-length of +' is equal
to the g-length of v because the boundary distance functions of (D, g) and (D, ¢') are
the same. Therefore we have proved the inequality dg(p,q) < dg4(p,q). The converse
inequality is proved in the same way.

Assuming Lemma 2.3, we obtain a diffeomorphism ¢ : R™ — R" satisfying (2.12) and
such that ¢*g = ¢'. Since ¢ is the identity outside B}, and the metrics g and ¢’ coincide
outside D, ¢ is the identity outside D. Therefore ¢ transform D onto itself and is the
identity on 0D. This finishes the proof of Theorem 1.1.

3 Semigeodesic coordinates

In this section it is shown that if the metrics g, ¢’ have a special form and satisfy the
conditions of Lemma 2.3 then in fact the metric g is also close to the Euclidean metric.
Then Lemma 2.3 follows for this class of metrics using the result of [19].

The special form of the metrics will be obtained using semigeodesic coordinates. It is
natural to consider such coordinates in a rectangular domain. Therefore we introduce the
notation J? = {z = (z',...,2") € R" | —p < z* < p} C R™ One of the coordinates, say
x", will be distinguished in semigeodesic coordinates. Therefore we will use the notation
z = (y, z) for points of R" with y € R" ! and z € R.

We will show that Lemma 2.3 follows from the following

Lemma 3.1 For every K > 0 and p > 0, there exists € > 0 such that the following
statement is valid. Let g and ¢’ be two Riemannian C*°-metrics on the cube J; whose
length elements dsy and dsgy have the form

dsg = gap(y, 2)dydy® + d2?, (3.1)
dsg, = gy, 2)dy®dy® + dz? (3.2)

where gop and g(’lﬂ are smooth functions on Jj' such that
9os(@) = gl @) for @ ¢ T, (33)

Assume that the boundary distance functions for the manifolds (B}, g) and (B}, g') are
the same. Assume the metrics satisfy the inequalities

||R!}||C’°(J;‘,g) < Ka (34)
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kT (B}, 9) < 1/3, (3.5)

1908 — Sasllcrrp.e) <€ (3.6)

with k = [n/2] + 18 and | = 16. Assume also the boundary conditions
gaﬂ|7> = 5aﬁ (3-7)
ga,@le,p/n = 504,8 (38)

to be satisfied, where P is the part of the boundary of the cube J;!, P = {(yt,...,y" 1 2) €
oJ; : |y?| = p for some v < n —1}. Then the functions gap satisfy the estimate

1905 — dijllcr(in,e) <O (3.9)
where p =12 and § = 0(g, K, p,n) tends to zero when € goes to zero.

Proof of Lemma 2.3. Let two metrics ¢ and ¢’ satisfy the hypotheses of Lemma
2.3 with k = [n/2] + 18 and [ = 18, and let the boundary distance functions of (B}, g)
and (B}, ¢') coincide. First of all, this implies that these manifolds have the same lens
structure, see Lemma 4.8.6 of [18] or Lemma 2.1 of [19]. This means the following: Given
a point p € 0B}, and a vector 0 # £ € R", let (t) (resp. 7/(¢)) be the geodesic of the
metric g (resp. of the metric ¢') satisfying the initial conditions y(0) = p, 4(0) = £ (resp.
7' (0) = p, ¥(0) = &). If ¥([0,a]) C B, and y(a) € 0B", (resp. v'([0,a']) C B", and

p/n p/n p/n

v'(a) € 0B},,), then a = d', v(a) = +'(d'), and ¥(a) = ¥'(d').

Note also that condition (2.10) implies simplicity of the metric g. This follows from
Theorem XI.5.1 of [9] by setting m(t) = ¢ in this theorem.

Let us construct an embedding ¢’ : J; — R" in such a way that the length element

dsg of the metric g; = ¢'*¢' is given by
dsf],l = 9as (¥, 2)dy*dy® + dz>. (3.10)

This means that the standard coordinates of R"™ constitute a semigeodesic coordinate
system for the metric gj. Given y € J»~, let 7, : [—p, p] — R" be the geodesic of the
metric ¢’ which is determined by the initial conditions

(2.11) implies that, for a sufficiently small £ > 0, the transform
¢'(y, 2) = 7,(2) (3.11)

maps the cube J” diffeomorphically onto the domain
p

{w,2) | =p<y*<p, =p <2< 7(0)} (3.12)

which is close to J' and, in particular, contains the cube Ji;,. The transform ¢’ sends a
vertical straight line y = const, z = ¢ to the geodesic 7, (t). This means that the metric
g, = ¢'*¢' has the form (3.10). By (2.11), the transform ¢’ is C* !-close to the identity.
This implies the estimate

||9;/3 - 5a,8||cl—2(Jg,e) <€ (3.13)
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with some ¢’ = €'(g,1, p,n) which tends to zero as e goes to zero.

Because of (2.8), the geodesic 7, (t) coincides with the vertical straight line (y,t) until
this line hits to the ball By,. In particular, if |y| > p/n then v,(t) = (y,?) for all
t € [—p,p]. Hence, we have ¢'(y,2z) = (y,z) for (y,z) satisfying either z < —p/n or
ly| > p/n. This implies that the functions g;,4 satisfy the boundary condition

and the condition

= bas- (3.15)

Now, we construct a similar embedding ¢ : J» — R" for the metric g. Given y € J7,
by 7y : [—p, p] we denote the geodesic of the metric g which is determined by the initial
conditions

Yy(=p) = (Y, —p), F(=p) =(0,1).

By the above remark on the lens spaces (B}, ¢) and (B},,,¢') and condition (2.7), the

geodesics 7, and v, coincide outside B}y, In particular, the transform

oy, 2) = 1(2) (3.16)

maps the cube J} onto the same domain (3.12). Furthermore the maps (3.11) and (3.16)
coincide on Ji' \ J, .

For a sufficiently small €' in (3.13), every geodesic 7' : [—p, p] — R" is the shortest
path, in the metric ¢’, from the hyperplane P = {(y, —p) | y € R" '} C R" to the point
7'(p). This implies, since the boundary distance functions of (Bj,,,g) and (B}, g') are
the same, that every geodesic v, : [—p, p| = R™ is the shortest path, in the metric g, from
the hyperplane P to the point 7,(p).

Let us show that (3.16) is a one-to-one map. Suppose not. Then the geodesics v,, and
Vy» have a point in common for some y;, Y, € J;"l, Y1 # yo. This point belongs to Bjon
because, outside BZ/%, the geodesics 7, and 7, coincide with the disjoint curves v, and
7Yy, Tespectively. So, let v, (t1) = v, (t2) for some 1,1, € [-p/n, p/n]. Let, for instance,
t1 < ty (otherwise we change the roles of y; and y). Consider the broken geodesic
Y = Yol psy Y Voo, ) JOIning the points (y1, —p) € P and 7y,(p). The length of v is
equal to (t1+p)+ (p—t2) < 2p. Since y has a nonzero angle at the point 7y, (t1) = 7y, (t2),
it is not a shortest way from (y;, —p) to 7y,(p). Therefore the distance from ~,,(p) to P
is less than 2p. This contradicts to the statement of the previous paragraph.

A similar argument shows that the transform (3.16) is a diffeomorphism of the cube
J)' onto the domain (3.12). The metric g, = ¢*g has the form

s> = gap(y, 2)dy“dy® + dz*. (3.17)

Since the transforms ¢ and ¢’ coincide outside J7,,, the functions g5 and g5 satisfy the
condition (3.3). Furthermore, by (3.13)—(3.15), the functions g, satisfy the boundary
conditions (3.7)—(3.8).

Using exactly the same argument as in the corresponding paragraph of the previous
section we show that the boundary distance functions for the manifolds (B}, g;) and
(B}, g1) are the same.
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We have thus proven that the metrics g; and ¢] satisfy all hypotheses of Lemma
3.1. Assuming this lemma, we obtain the estimate (3.9) with some ¢ that can be made
arbitrarily small. Since [ > 14 and p = 12, inequalities (3.13) and (3.9) show that the
metrics ¢g; and g} are in a small C'2-neighborhood of the Euclidean metric. By using
the main result of [19], we conclude that these two metrics are isometric via an isometry
which is the identity on 0Bj. The same is valid for the original metrics g = (¢~')*¢g1 and

g =" g

4 Estimates for a metric tensor in semigeodesic
coordinates through the curvature tensor

Fix n > 2 and p > 0. We recall that the points of R" are denoted by = = (y, z) with
y € R"! and z € R. We denote by M(p,n) the set of all Riemannian metrics, on the
cube J}, whose length element ds, has the form

dsg = Gup(y, 2)dy*dy’ + d2°, (4.1)

where gqg are C'°-functions satisfying the boundary conditions

alga/a’
gaﬁ|1> = gaﬂ‘z:—p = 5aﬂa 8Zl = 0 (l = 1, 2, .. .), (42)
Z=—0p
det (gag)],_, > 1/2, (43)

where P is the same as in Lemma 3.1.
For an integer £ > 0 and K > 0, we denote by M(k, K, p,n) the subset of M(p,n)
consisting of metrics g whose curvature tensor R, satisfies the inequality

||Rg||ck(.1,7,g) < K.

Let ¢(g; ) be a smooth function of z € J;' depending also on a metric g € M(p, n).
We say that the function ¢ is k-bounded if the function

sup [¢(g; )|
zeJp
is bounded on the set M(k, K, p,n) for every K.
The goal of the present section is to prove the following

Theorem 4.1 For a metric g € M(p,n) whose length element has form (4.1), the partial
derivatives D) gqp are |y|-bounded for every n-multiindex y. The same holds for the partial
derivatives D)g*? of the inverse matriz (9%°) = (gap) ™"
Corollary 4.2 The norms || - ||Ck(ngg) and || - ||Ck(J;L7e) are equivalent in the following
sense. For every metric g € M(k, K, p,n) and for every tensor field T of rank m on gy,
the inequalities

C TNl erp.e) < I TNerpg) < ClT lor(p.e)

hold with some positive constant C' depending only on k, K, p,n, and m. The same is
valid for the H*-norms.
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To prove Theorem 4.1 we will need two auxiliary results. The first one is obvious:
Lemma 4.3 If a function 0 < f : Rt — R satisfies the inequality
F'(t) <Cif(t) +Cy
for some nonnegative constants Cy and Cs, then
() < e (f(0) + Cat).
The second needed result is related to Jacobi fields:

Lemma 4.4 Let v : [—p,p] = M be a unit speed geodesic in a Riemannian manifold
(M, g). If a vector field Y (t) along v satisfies the inequality

V5 V5 Y (t)] < CLIY (2)lg + Co (4.4)
for some nonnegative constants Cy and Cs, then the estimates
Y(O)2 < Cs (Y (=p)I2 + IV3Y (—p)[2) + Ci,
VY ()2 < Cs ()Y (=) 2+ V3 (=p)I2) + Ca
hold for t € [—p, p| with some constants C3 and Cy depending only on C1,Cy, and p.

Proof. We define
F) =Y @)+ VY (@)%

Using (4.4), we obtain
F1(t) = 2(Y, V3Y )y + 2(V5Y, V;V;Y),
<2(|V3 VY + [Yg) VY]
<2((C + DY, + C2)[V5Y
< ((C+ DY)+ o) + VYL

< (1412 +1) (IVE+ VY 2) + ((C1+ 1) +1) €3
We have thus proved the inequality

fi(t) < Csf(t) + Co

with Cs = (C; +1)2+ 1 and Cs = ((C; + 1)+ 1) C%. Applying Lemma 4.3, we obtain
the estimate f(t) < e“s(t+r) ( f(—=p) + Cs(t + ,0)) which implies the Lemma.

Lemma 4.5 Let a metric g € M(p,n) be of the form (4.1) and 8; = 3 (1 <i < n) be
the coordinate vector fields. For every indices 1 < 1q,...,1,J < n, the functions

‘Vail . Vaik aj‘g and ‘VanV@.l ce Vaik 8j|g
are k-bounded.
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Proof. The vector field 0; is a Jacobi vector field along every geodesic y = const. In
other words, 0; satisfies the equation

VanVanaj + R(aj, 6n)8n =0 (4.5)
with R = Ry. By (4.2), this vector field also satisfies the initial conditions

0 p=1, V...V0i,=0

m

for every m > 0.
Since |0,|, = 1, the Jacobi equation (4.5) implies the inequality

V5, Va,05lg < [Rlg - 10j]g < ||Rllco(ar,g) * |05]g-

Applying Lemma 4.4, we get 0-boundedness of the functions |0;|, and |Vj,0;/,-
Differentiating (4.5) with respect to d;, we obtain

Vo: (Vo Va,0; + R(;,0,)0,) = 0. (4.6)

Since
Vo, Vo, — Va,Va, = R(0;,0,), V5,0, = Vs, 0;, (4.7)

the equation (4.6) can be transformed to the following one:
Vs, Vs, (Va,0;) + R(V5,0;,0,)0, =
= —((Vo,R)(9j,0n) 00 + (Va, R) (8:, 0) 0+
+R(V, 05, 00)0; + R(D;, Vi, 0:)0n + 2R(0;, 0) Vi, 0; + R(0;,0,) Vs, 0;).
The right-hand side of the latter relation is 1-bounded. Therefore it implies the inequality
Vo, Vo, (Va,05)lg < || Rl coqarg) - Vo051 + C

which is valid for g € M(1, K, p,n) with some constant C' independent of g. Applying
Lemma 4.4, we get the 1-boundedness of the functions |Vy,0;|, and |V, Vs, 0|,

Now, we prove the statement of Lemma 4.5 by using induction on k. Applying the
operator Vp, ...Vp, to the Jacobi equation (4.5) gives

Vo, - -- Vo, (Vo, Vo, 0; + R(0;,00)0,) = 0.
Using the commutator formula (4.7), the latter equation can be transformed into:
Vo, Ve, (Vo --- Vo, 0;) + R(Va,, ... Vo, 04,0,)0, =T, (4.8)
where T is some tensor field expressed in terms of UR , U@m, and Vj, U@m

] t t
with 0 < s < kand 0 <t < k—1. By the induction hypothesis, |T|, is k-bounded. There-
fore (4.8) implies the inequality

Vo, Vo, (Va,, ---Va, 0j)g < [|Rllcoarg) - |Vay, - -- Vo, Ojlg +C

13



which is valid for ¢ € M(k, K, p,n) with some constant C' independent of g. Applying
Lemma 4.4, we get the statement of Lemma 4.5.

The statement of Theorem 4.1 on partial derivatives of the functions g.g follows from
Lemma 4.5 using that

D7gag _ D’Y<3a, aﬂ>g _ Z Cziﬂl"'ikjlmjl<vai1 ... Vaik Ous Vajl . Vajl 85>g.
k+l=|v|

The second statement of Theorem 4.1 follows from the first one using the following

Lemma 4.6 Under the hypotheses of Theorem 4.1, the function (det (ga/j))il 15 0-bounded.

. . 1/(n-1)
Proof. We use the following fact [16], page 44: the function h(y, z) = <det (gaﬂ))

satisfies the inequality
0?h Ric (Op, On)

< — h
022 — n—1
which implies
0%h
— < Kh 4.9
022 — (4.9)

for g € M(0, K, p,n).
We fix a point y and consider h as a function of z. Let z; be a point such that

h(zp) = min h(z). (4.10)
By (4.3), we can assume that —p < z5 < p and h'(z) = 0. The function

_ ] (W(2)* +(h(2))* if W(z) 20,
f (z)—{ (h(2))? it H(z) <0

is a C'-function on [—p, p|. If h'(z) > 0, then we conclude using (4.9)
f'(2) = 20'h" + 20k < (K +1)(h” + h?) = (K + 1) f(2).
If W'(z) <0, then f'(z) < 0. In both cases we have the inequality
f'(z) < (K +1)f(2).

Applying Lemma 4.3, we obtain

h(p) < eEFDE=20)p (5} < 2P (5).
The latter inequality, together with (4.3), implies

h(z) > e—2p(K+1)h(p) > o1/(1=n) g=2p(K+1)

Because of (4.10), this means that the function det (gos) is bounded from below by some
positive constant depending only on K, p, and n.

14



5 Proof of Lemma 3.1

After our preparations, we can use results from integral geometry to prove Lemma 3.1.
Let g and ¢’ be two Riemannian metrics on Jj, satisfying the hypotheses of Lemma 3.1.
In particular, the length elements of these metrics are given by formulas (3.1) and (3.2)
respectively, and the boundary distance functions of the manifolds (B}, g) and (B}, g')
coincide.

By Corollary 4.2, the norms ||T'||cx(gn gy and ||T'|| zx(sp 4) are equivalent to the norms

ITlcrg.0 = 3 sup ID'T(@)le and | Tlfwng = 3 [ IDVT() 2 do

y|<k =€5; 1I<kpn

respectively. In what follows, we use the notation ||T'|cxpp) (|T]|m+(5p)) that means

cither [Tllcan g (1711 t(sp.0)) 8 [T llcwag ) (1T sy )
We denote by 2B C B x R" the unit sphere bundle over the ball B} and by

9,:0B; ={(p,§) | p€ 9By, £ € R", [¢];=1,(v(p), &)y = 0},

the part of the boundary of 2B} consisting of unit outward vectors that are tangent to
B} at points of the boundary; here v(p) is the outer vector normal to the boundary with
respect to the metric g. This part is a compact manifold with boundary diffeomorphic
to the product Q" ! x B! of a sphere and a ball. Fixing a diffeomorphism 0+QB) —
Q" x BY! the norms || - lcr @, 0mp) and || - || ax o, apy) are defined.

We recall from [18] that, given a smooth tensor field f = (fj) on B}, the ray transform
of f is the function If € C*°(0,QB}) defined by

1.8 = [ FiOpe®)he)i5e®) at, (5.1)
7 (P,€)

where ¢ 1 [T (p,§),0] — B} is the maximal geodesic of the metric g satisfying the initial
conditions 7, ¢(0) = p, 9p¢(0) = & and such that v, ¢(7_(p,§)) € 9B;.
Integrating the differential equation for the geodesics of the metric g
Ve = ~UinTpe e
where F;k are the Christoffel symbols of the metric g, gives

0

e )~ € = [ i) elt)ike(t) dt
7 (p,€)

Comparing the latter equality with (5.1), we have that
LfO(p,€) = p(m-(p,€) = €, (5-2)

where f( is the symmetric tensor field with the components (f);, = I';, in the standard
coordinate system of R".

If v, ¢ ¢ [7-(p,§),0] — B} is the geodesic of the metric ¢’ satisfying the same initial
conditions

Te(0) =D, Vpe(0) =¢,
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then, since the boundary distance functions for the metrics ¢ and ¢’ are the same as well
as their lens structures, we get

;Yp,ﬁ(Tf (p: g)) = ;Y;a,g(Tf (pa g)) (53)

On the other hand we have by (3.6),

||"Y;,,§(7L(p, §)) — f||Cl—1(a+QB;) <ér (5.4)

with some ¢; = (g, [, p) which tends to zero as € goes to zero. Combining (5.2)—(5.4),
we obtain

||If(i)||Cl—1(6+QB;}) < ér. (5.5)

Next we use some notions of tensor analysis introduced in [18], namely, the inner
derivative d, and divergence ¢, with respect to the metric g. Here we use only the inner
derivative of covector fields v = (v;) and divergence of symmetric covariant 2-tensor fields
h = (hi;) which are defined in local coordinates as

1 .
(dgv)ij = E(ij + Viui),  (65h)i = ¢FVihij.

Here V is the covariant derivative with respect to the metric g. Every symmetric tensor
field h = (hy;) on B} can be represented in the form

h = ;l + ng, 59};, = 0, Ui'@B;} =0.

The summands of this decomposition are called the solenoidal part and potential part of
h respectively. The existence and uniqueness of this decomposition is proved in Section
3.3 of [18].

Returning to the proof of Lemma 3.1, we decompose the field f® into its potential
and solenoidal parts

FO = FO 4 dw® 6, FD =0, vD]yp =0. (5.6)

By Theorem 3.3.2 of [18] the solenoidal part of a tensor field depends continuously on
the field in Sobolev norms, i.e., we have

17D s (py < C(@ISP

for every s > 1. The constant C'(g) depends on the metric g but can be chosen uniformly
on the metrics involved into Lemma 3.1. Namely we have

He(Bp)

Lemma 5.1 For a metric g € M(k,K,p,n) and smooth symmetric tensor field f of
second rank on By, let

f=Ff+dp in By, 6,f=0 in By, wvlop =0 (5.7)
be the decomposition of f into its solenoidal and potential parts. Then we have
171

for s < k — 2 with some constant C depending on s, k, K, p,n but not on g.

H*(Bp) < C|lf] Hs(B2) (5.8)
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The proof of this lemma is presented in the next section. We continue proving Lemma,
3.1 using Lemma 5.1. Our idea is to show that the solenoidal part of f® is small.
Therefore, the Christoffel symbols '™ = (I'%,) with any i are approximately potential
tensor fields. However, since the Christoffel symbols have special structure, we can show
that they have to be approximately zeros. This will further imply that the metric g has
to be near Euclidean one. To carry out this plan we start with estimating the solenoidal
part of f®

By Theorem 4.3.3 of [18], we have the estimate

1PN o) < Co (1 Nmepy - IS Ollzagonomy) + 1L Nino,amp) - (5:9)

As it can be seen from the proof in [18] the constant C; depends only on the constant C'
from (5.8) for s = 2, and on the C"-jet of the metric g on dBj. Moreover, the latter is a
continuous dependence. Since the C'-jet of the metric g on 0B} coincides with the one
of the metric ¢’, and ¢’ is close to the Euclidean metric; we can consider C in (5.9) as an
universal constant depending only on K, p, and n.

By Theorem 4.1, the tensor field (f®);), = I, satisfies the estimate

”f(i)“Hl(B;}) < Ki, (5.10)

where the constant K; depends only on K from (3.4), p, and n. Inequalities (5.9) and
(5.10) imply the estimate

1FOI ) < O (KA FOIR o5y + IO o)

which, together with (5.5), gives

. 1/2
||f(z)||L2(Bg) < g9 i= (C1(K1€1 + 8%)) . (5.11)

Now, we use the interpolation of Sobolev spaces [1] to obtain the inequality for tensor
fields on B
1F Dl mimg) < Call PN BE - IFONH ) (5.12)

for 0 < j <'s, where the constant Cy depends only on j, s, p, and n. Besides this, by the
Sobolev embedding theorem, we have the estimate

17Ny < Call FN a3 ) (5.13)

for j > n/2+r with some constant C3 dependent only on j, 7, p and n. Combining (5.12)
and (5.13), we obtain

1f Dl mp) < Call PN DA - DN - (5.14)

Let s = j + 1. We conclude using (5.11) and (5.14)

1 1) 76)113/2
1FPNlcrsp) < Coey TN O - (5.15)
By Theorem 4.1, for 7 +1 < k — 1, we have

”f(i)“HjH(Bg) < Ky (5.16)
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with the right-hand side K; depending only on the constant K as in (3.4), p, and n.
Combining (5.8), (5.15) and (5.16) gives

17

For a fixed K in (3.4), the right-hand side €3 of (5.17) can be made arbitrary small by
choosing sufficiently small ¢ in (3.6).

C’“(B;’,‘) < €3 :1= C4K{/2Eé/(]+1) (517)

The final part of the proof is to deal with the potential part in (5.6), namely
dg® = fO — FO (5.18)

We consider (5.18) as a system of equations with unknowns v®. By (5.17), the second
term on the right-hand side of (5.18) is C"-small. Note that (5.18) is an overdetermined
system. Indeed, for a given i, (5.18) consists of n(n + 1)/2 equations for n components of
the covector field v(®. This overdeterminacy, together with the homogeneous boundary
condition

v |opy =0 (5.19)

will allow us to prove the smallness of the solution v as well as the smallness of f®. We
will prove the smallness by distinguishing some subsystems, of the system (5.18), which
can be considered as self-closed systems of ordinary differential equations on a segment
y = const, z € [—(p>—|y|*)"/?, (p*—|y|?)"/?]. Unfortunately, the boundary condition (5.19)
is not adapted to this method because (5.19) does not imply the corresponding boundary
condition for the derivatives: ng(i) la gy = 0. Therefore we will start by deriving another
boundary condition which is more suitable to our plan.
Let
I, ={r=(y,2) eR" |y € J;”/;l, z=—p/n} CR"

n Yp/n
be one of the faces of the cube ;}/n which is considered as a submanifold of R®. We will
prove the estimate 4
||U(Z) |67:J:/n||cr71(a;‘];t/n) < 64 (5.20)

with some €4 = g4(¢, 7, p, n) tending to zero as € goes to zero. In what follows, we will use
(5.20) as the new boundary (more exactly, initial) condition instead of (5.19).
Let v : [a,b] — B} be a geodesic of the metric g. By (5.18) we have

o (OO D) = Ve - 375k = () 414 = (05 = T
Integrating the latter equality, we obtain

o)) = (@) (@) = [ (T = F2) G@W @ © . (621)

a

Given a point x € By and vector 0 # £ € R", let v,¢ : [T (2,£),0] — B} be the
maximal geodesic determined by the initial conditions v,¢(0) = z, ;¢(0) = & Then
Yoe(T-(7,§)) € OB). Using (5.19) and (5.21) gives

0
go@) = [ (T = F0) (e (035 (0) dt. (5.22)
(z,6)

T—
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Let now z € 8;,];}/” and the vector £ € R™ be such that £&" > 0. Then the geodesic
7x¢ lies completely in the closure of J'\ J7,, where the metrics g and ¢’ coincide. By (3.6)
and (5.17), the integrand of (5.22) is C"-small. Besides this, the geodesic v, ¢ and the
integration limit 7_(z, £) are C"-close to the same quantities with respect to the Euclidean
metric, and therefore they are C"-bounded by some universal constant. Differentiating

(5.22), we conclude

0

Dyu¥(0) = Dl ggr (€0@) = Drgr | (U= 752) )it .

—(2,€)

The right-hand side of the latter equality can be estimated, for |y| < r —1, by Cs(e +¢3)
where ¢ and g3 are as in (3.6), (5.17) and C5 = Cs(r, p,n). This proves (5.20).
To investigate the system (5.18), we need also the following

Lemma 5.2 Consider the Cauchy problem for the linear system of ordinary differential
equations

QU 1 Ay, 2)u=f(y,2)

u|z=—p/n = uo(y)

(5.23)

whose coefficient and right-hand side depend smoothly on x = (y, z) € and the initial

n
p/n’
condition depends smoothly on y € J[’}/nl Here u = (uy, ...y Um), f=(f1,--, fm), A=
(aij)i%—1- If the inequalities

[Allein, ) <O Mfllern,) <0 luollergn1y <8
hold, then we have for the solution to (5.23)
lullctm, ) < Cid
with some constant Cy depending only on C,l, p, and n.

Proof. By Lemma IV.4.1 of [9], the following estimate holds for the solution to
problem (5.23):

z

u(y,2)| < | o) +| [ Flwrde||exo | [ 14w o)l dt

p/n —p/n

that implies the statement of the lemma in the case of [ = 0. The general case follows
easily by induction on [.

In coordinates the system (5.18) takes the form

1 i i A
5 (Vj’l),(c) + Vk’UJ(- )) F]k — fgk), (524)
where .
i vy, i
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We will consider the system in the cube J}, and will use the initial condition (5.20).
Because of (3.1), the Christoffel symbols satisfy

F?n =I,=0, (5.25)
1 39a5

m, =—— ) 5.26

af 2 0z ( )

First, we set i = j = k = n in (5.24) and obtain

ov _ _fm.
aZ nn

By (5.17) and (5.20), the right hand side of the latter equation and the initial value
vg”)\z:_p/n are C"~l-small. Applying Lemma 5.1, we obtain the estimate

lvi|

Cr—l(J:/n) < Csey = 05(63 + 84), (527)

where €3 and €4 are as in (5.17) and (5.20) respectively, and C5 = Cs(r, p, n).
Next, we set j = «, i = k = n in (5.24). This gives

(n) -
P 02,08 = 271 - Vol
z

The right hand sides of these equations and the initial values v{"|,—_, /n are C"2-small by
(5.17) and (5.27), and the coefficients I’ are C™"2-bounded by Theorem 4.1. Applying

Lemma 5.1 we conclude
o8]

CT_z(J;/n) < Cges (528)

with some Cg = C(r, K, p,n).
We have thus proven the C"2-smallness of the covector field v™. We now set i =
n,j =a,k=[1in (5.24). This gives

1 (n) n n _ Fn)

which implies the C"~3-smallness of I'2:

y < 0785 (529)

IT2sllcr-sc

n/n
with some C7 = Cy(r, K, p,n).
Finally, we consider (5.26) as a differential equation in g, — das:

a(gab’ - 6a/3)
0z

By (5.29), the right-hand side of the equation is C"~3-small. The homogeneous initial
condition

D} (9ap — 8as)] =0

z=—p/n
is valid for every (n — 1)-multiindex v because of (3.8). Applying Lemma 5.1, we obtain
the estimate

19ap — dasl cr=s(n,) < Cses (5.30)
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with some Cgy = Cs(r, K, p,n).
By (3.3), gap and g,4 coincide in J3 \ J7,. Therefore (3.6) and (5.30) imply that

1905 — Sapllcr-s(sm) <0

with some 6 = (e, K, p,n) tending to zero as € goes to zero. This estimate coincides with
(3.9) for p = r — 3. This finishes the proof.

6 Proof of Lemma 5.1

Let (M,g) be a compact Riemannian manifold with boundary, and f be a symmetric
tensor field of second rank on M. There exist uniquely determined tensor field f and
covector field v on M such that

f=Ff+du, 6,f=0, wvloy =0. (6.1)

We recall how the existence and uniqueness of the decomposition (6.1) are proved in
Section 3.3 of [18]. Let us assume the existence of the decomposition (6.1). By applying
the operator d, to the first of these equalities we conclude that the potential v satisfies
the boundary value problem

dgdgv = 04f, v|om =0.

Conversely, if we would have proven the existence of a solution to the boundary value
problem
dgdgv =h, vloy =0 (6.2)

and the stability estimate

V| st1ar,g) < C(9, )| Pl o101, (6.3)

then, setting h = 6,f and f = f —d,v, we obtain the existence of the decomposition (6.1)
as well as the stability estimate

1 1lz+ar,g) < Ci(g, 9) 1]

As is shown in [18], (6.2) is an elliptic problem with trivial kernel and cokernel. By general
results of elliptic theory, the stability estimate (6.3) is valid for every s. In [18] this fact
is proved for a C®-metric. The same proof is valid, however, in the case of a C*-metric
g for s < k—2.

H*(M,g)- (6.4)

Proof of Lemma 5.1. The proof is by contradiction. A more constructive, but
somewhat more technical proof can be given by using estimates for elliptic systems, see
e.g. [4]

Let us assume that the Lemma is not valid. Then there exists a sequence ¢(™ &
M(k, K, p,n) (m=1,2,...) of metrics and a sequence f(™ of smooth tensor fields on By
such that for the corresponding decompositions

f(m) = f~(m) + dg(m)v(m) in Bg, 5g(m)f(m) =0 in BZ, U(m)‘agg =0 (6.5)
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we have the inequalities
170 170

We can assume that || f(™|| ms+1(gr) = 1. There exists a subsequence of f(™) converging
in H*(B}). Without loss of generality, we can assume the initial sequence to have this
property:

H(By)- (6.6)

1
He(Bp) 2 -

f™ — f in H*(B)) as m — oo, (6.7)

By Theorem 4.1, M(k, K, p,n) is a precompact set in M(k — 1, K, p,n) if the latter
set is considered with the C*~'-topology. Actually, this fact is a particular case of the
Gromov-Cheeger compactness theory. Therefore there is a subsequence of g™ converging
in the C*~!-topology to some C*~! metric g. Without loss of generality, we can assume
the initial sequence to satisfy

(965) = (9p), (955) ™" = (a) ™" in C*(J) as mroo.  (68)

The coefficients of the operator §,(m)d,m) depend on the C*-jets of the matrices (ggg))
and (ggg))_l. Therefore (6.8) implies that

8 yom dgmy = Oy + L™, (6.9)

g

where L™ is a second order differential operator whose coefficients tend to zero in the
C*=3-norm as m — co. This implies that, for every € > 0, we have the estimate

I h|

Hs=1(Bn) < €||]'L| Hs+1(Br) (8 <k- 2) (610)

for every smooth tensor field ~ and for sufficiently large m. Similarly, we can write
dyim) = dg + 1™ (6.11)
for some first order operator [(™ satisfying the estimate

1™ h|

wsy) <El|bllm=rrmy (s <k —2) (6.12)

for sufficiently large m.
Applying the operator d,m) to the first of the equations (6.5), we obtain

5g(m)dg(m)v(m) = g(m)f(m).

Using (6.9), we can rewrite the latter equation in the form
g™ = 6.y fO — LWy,

By (6.3), the latter equation, together with the boundary condition v(™) |333) = 0, implies

the estimate
0™

or1(B5) < Clldgem £ — L0 || oo ) (6.13)

with some constant C' independent of m. For s < k — 2, we estimate the right-hand side
of (6.13) using (6.10). We conclude

||5g(m)f(m) — L(m)v(m)|

H=—1(Br) < ||6g(m)f(m)| gs-1(Br) T ||U(m)||HS+1(BZ)-
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Combining the latter estimate with (6.13) gives

(1= Ce)llv"™)]

Hs+1(B2) < C||6g(’")f(m)”Hs_1(B;})'
For sufficiently large m, 1 — Ce > 1/2, and therefore
||’U(m) ||Hs+1(B;L) < 20||6g(m)f(m) ||Hs—1(B;J—L). (614)

By (6.7) and (6.8), the right-hand side of (6.14) tends to 2C/||dy f || #r=-1(z) as m — oc.
Thus, for m sufficiently large we have
”v(m)“HS“(Bg) S 20||6gf||H5—1(B;}) + ]_ S Cl”f”HS(B;}) (615)

with some constant C'; independent of m.
Using (6.11), we obtain from (6.15),

1y 0™ a1s 3y < g™ |l p) + ™0™ | o) < Collo™ || msra(mgy < Call Fllmeiy)

(6.16)
with some C3 independent of m.
Finally, from (6.5) and (6.16) we conclude

171

which contradicts (6.6). This finishes the proof of the Lemma.

He(Br) < ||f(m)| H(B7) =+ ||dg(m)v(m)| He(Bp) < (03 + 1)||f| H(BR)
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