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1 Introdu
tion

This paper is devoted to the inverse boundary-value problem of ele
tromagneti
s

in the 
ase � = 0, where � is the 
ondu
tivity. Thus the governing Maxwell

equations, in the time domain, are of the form


urlE(x; t) = �B

t

(x; t); (Maxwell{Faraday); divB(x; t) = 0; (1)


urlH(x; t) = D

t

(x; t); (Maxwell{Amp�ere); divD(x; t) = 0; (2)

(x; t) 2 N � R; N � R

3

- a bounded domain, together with the 
onstitutive

relations

D(x; t) = �(x)E(x; t); B(x; t) = �(x)H(x; t): (3)

Here "; � are 3� 3 time-independent positive matri
es, whi
h, as also �N , are

C

1

-smooth.

The main results in the study of inverse boundary problems of ele
trodynami
s

deal with the isotropi
 
ase, i.e. s
alar "; �. It is shown in [5℄, [15℄, [16℄ that the

stati
 admittan
e map,

Z

0

: n�E

0

j

�N

! n�H

0

j

�N

;

where (E

0

; H

0

) are stationary solutions to (1) - (3), determine "; � uniquely.

What is more, the results of [5℄, [15℄, [16℄ make possible to �nd all three s
alar


oeÆ
ients, in
luding 
ondu
tivity, � 6= 0.

There are some other approa
hes to the inverse problem for (1) { (3), working

dire
tly in the time-domain, [1℄, [17℄. They make possible, under additional
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geometri
al restri
tions, to �nd some 
ombinations of unknown parameters.

Namely, [17℄ deals with the 
ase when N is a simple geodesi
 manifold in the

metri
 dl

2

= "�jdxj

2

, while 
onstru
tions of [1℄ are valid in a 
ollar neighborhood

of �N .

Mu
h less is known in the anisotropi
 
ase. It is, however, 
lear from s
alar

anisotropi
 problems that, instead of the uniqueness, one obtains a group of

transformations, involving proper 
oordinate 
hanges in N , e.g. [14℄, [19℄, [4℄,

[8℄, [13℄. Therefore, it is natural to split the solution of an anisotropi
 in-

verse problem into two steps. Firstly, to formulate and solve the 
orresponding


oordinate-invariant inverse problem, i.e. an inverse problem on a manifold.

Se
ondly, to analyse the properties of an inverse problem in R

n

resulting from

embedding the manifold into R

n

. (For a systemati
 development of this ap-

proa
h see [7℄).

In this paper, we 
on�ne our study to the 
ase of the s
alar wave impedan
e,

� = �

2

�; (4)

where � is a positive s
alar fun
tion.

Let g be the metri
 on N ,

g

ij

=

1

�

2

det(")

g

ik

0

"

j

k

=

�

2

det(�)

g

ik

0

�

j

k

; (5)

g

ij

0

= Æ

ij

; where the last equation in (5) is due to (4). Introdu
e di�erential 1�

and 2� forms, !

1

2 


1

M; !

2

2 


2

M;

!

1

= E

[

; !

2

= �

0

B

[

: (6)

Here �

0

is the duality between 1� forms and ve
tor �elds,

X

[

(Y ) = g

0

(X;Y );

X; Y being arbitrary ve
tor �elds, and �

0

is the Hodge star-operator in metri


g

0

. Metri
 g

0

appears in these equations as a ba
kground metri
 whi
h, in 
ase

of N � R

3

is the 
anoni
al Eu
lidian metri
. However, we 
an assume from the

beginning that (N ; g

0

) is a 
ompa
t 3�dimensional Riemannian manifold with

invariantly de�ned , in metri
 g

0

, operators 
url and div in (1), (2). All further


onstru
tions remain valid in this general 
ase.

Then equations (1) { (3) may be written as,

!

1

t

= Æ

�

!

2

; Æ

�

!

1

= 0; (7)

!

2

t

= d!

1

; d!

2

= 0; (8)

with ��
odi�erential Æ

�

: 


k

M ! 


3�k

M given by

Æ

�

!

k

= (�1)

k

� � d

1

�

� !

k

; (9)
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and � being the Hodge star-operator in metri
 g.

We note that 
onstitutive relations (3) are now in
orporated into (7), (8) via

the new metri
 g whi
h, for the reasons 
lear from the following, is 
alled the

travel time metri
. We note that Maxwell equations, (1) { (3) in the form (7),

(8), may also be written for another pair of di�erential forms

�

1

= �H

[

; �

2

= �

0

�D

[

;

with the 
onne
tion between two representations given by

�

2

= �!

1

; �

1

= �!

2

: (10)

This re
e
ts the well-known duality of the Maxwell equations.

From now on M is a 
ompa
t 3�manifold with (travel time) metri
 g and

wave impedan
e �; (M; g; �). To have an initial-boundary value problem, we


ompliment (7), (8) with initial and boundary 
onditions,

!

1

j

t=0

= 0; !

2

j

t=0

= 0: (11)

t!

1

= f 2 C

1

0

(R

+

;


1

�M): (12)

Here, t!

k

is the tangential 
omponent of !

k

on �M , t : 


k

M ! 


k

�M ,

t!

k

= i

�

!

k

; i : �M !M: (13)

To state rigorously the initial-boundary value problem (7), (8), (12), (13), the

notion of the 
omplete Maxwell system,

!

t

+M! = 0; ! = (!

0

; !

1

; !

2

; !

3

) 2 
M; (14)

is introdu
ed.

Here 
M = 


0

M � 


1

M � 


2

M � 


3

M is the full Grassmanian bundle over

M and

M = d� Æ

�

(15)

is the Dira
-type operator on 
M . Equations (14) are supplemented by initial

and boundary 
onditions,

!j

t=0

= 0; t! = f 2 C

1

0

(R

+

;
�M); (16)

whi
h give rise to a well-posed initial{boundary value problem. It turns out that

the problem (14), (16) is equivalent to (7), (8), (11), (12), if t!

0

= 0; �

t

t!

2

=

�dt!

1

(for details of the 
onstru
tion see [10℄, [11℄).

Denote byZ

T

the admittan
e map, Z

T

:

Æ

C

1

([0; T ℄;


1

�M)!

Æ

C

1

([0; T ℄;


1

�M),

Z

T

(f) = n(!

f

)

2

(t); t 2 [0; T ℄; (17)
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where !

f

(t) =

�

(!

f

)

1

(t); (!

f

)

2

(t)

�

is the solution to (7), (8), (12), (13), n!

k

is

the normal 
omponent of !

k

on �M , n : 


k

M ! 


3�k

�M

n!

k

= i

�

(

1

�

� !

k

); (18)

and

Æ

C

1


onsists of smooth fun
tions vanishing near t = 0.

We are in the position now to formulate the main results of the paper.

Theorem 1.1 Let T > 2rad(M), where

rad(M) = max

x2M

�(x; �M):

Then Z

T

determines (M; g; �) uniquely.

When � = 1, a lo
al version of Theorem 1.1 near �M is proven in [2℄. The

method to re
over (M; g) from Z

T

; T > 4diam(M), for an arbitrary s
alar �, is

in [10℄.

Returning to R

3

, we observe that Z

T


orresponds to the map

Z

T

: n�Ej

�N�[0;T ℄

! n�H j

�N�[0;T ℄

;

whi
h is, indeed, a well-known admittan
e map. Consider two 
opies of N as

Riemannian manifolds with the metri
s g and eg of form (5), where, in 
ase of

eg, we use e"

j

k

; e�

j

k

; e�, and distan
e fun
tions �(x; y); e� (x; y).

Theorem 1.2 The group of transformations for the Maxwell system (1) { (3)

with s
alar wave impedan
e, whi
h preserve the admittan
e map,

Z

T

; T > 2max

x2N

max(�(x; �N ); e� (x; �N ));

is generated by the group of di�eomorphisms, X : N ! N ; X j

�N

= idj

�N

: The

transformation formulae for "; � are then

e"

ij

(ex) =

1

det(DX)

�ex

i

�x

k

�ex

j

�x

l

"

kl

(x); e�

ij

(ex) =

1

det(DX)

�ex

i

�x

k

�ex

j

�x

l

�

kl

(x); (19)

where ex = X(x) and "

ij

= "

i

k

g

jk

0

.

The form (19) of admissible transformation for the two-dimensional 
ondu
tivity

problem is observed in [19℄ with relations between the low-frequen
y limit of the

admittan
e map and the 
ondu
tivity problem analysed in [12℄.

In this paper, we give a brief sket
h of the proof of Theorems 1.1, emphasizing

the part on �, and 1.2 (see [10℄ for more details.)
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2 Re
onstru
tion of the manifold and the metri


In this se
tion we des
ribe very brie
y the method to determine (M; g) from Z

T

referring to [10℄, [11℄ for further details. The basi
 analyti
al ideas, formulated

in two theorems below, make possible to �nd the energy and lo
ation of an

ele
tromagneti
 wave generated by a boundary sour
e f .

Let !(t) = (!

1

(t); !

2

(t)) satis�es (7), (8), i.e. represents an ele
tromagneti


wave in the absen
e of internal sour
es. Ele
tri
 and magneti
 
omponents of

the total energy, E(t), are given, respe
tively, as

E

e

(t) =

1

2

Z

M

1

�

!

1

(t) ^ �!

1

(t) =

1

2

k!

1

(t)k

L

2

(


1

M)

; (20)

E

m

(t) =

1

2

Z

M

1

�

!

2

(t) ^ �!

2

(t) =

1

2

k!

2

(t)k

L

2

(


2

M)

; (21)

E(t) = E

e

(t) + E

m

(t):

with the rhs of (20), (21) de�ning the norms in L

2

�spa
es of 1� and 2� forms

on M .

Theorem 2.1 Let !

f

(t) be a solution of the Maxwell equations (7), (8), (11),

(12) with a smooth boundary sour
e f . Then

1. For any T > 0, Z

2T

determines E

f

e

(t); E

f

m

(t); t � T .

2. For any T > 0, Z

T

determines E

f

(t); t � T .

It is also 
lear from this theorem that Z

2T

determines the inner produ
ts

((!

f

)

1

(t); (!

g

)

1

(s)) and ((!

f

)

2

(t); (!

g

)

2

(s)); s; t � T , where !

g

(s) is the wave

generated by a boundary sour
e g.

Proof: Maxwell system (7), (8), (12) implies that

�

t

E(!

f

)(t) =

Z

�M

n(!

f

)

2

(t) ^ (!

f

)

1

(t) =

Z

�M

(Z

T

f)(t) ^ f(t):

As E(0) = 0, this proves part 2.. For part 1., we refer to [10℄, [11℄. 2

To formulate the se
ond result, we need some auxiliary notions. Let � � �M

be open. The domain of in
uen
e of � at time � , M(�; �) is given by

M(�; �) = fx 2M j �(x;�) < �g; (22)

and the double 
one of in
uen
e, K(�; �), by

K(�; �) = f(x; t) 2M � [0; 2� ℄j �(x;�) < � � j� � tjg: (23)
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Let also

X(�; �) = 
l

L

2

f(!

f

)

1

(�) j f 2

Æ

C

1

(℄0; � [;


1

�)g (24)

and

Y (�) = 
l

L

2

f((!

f

t

)

1

(�); (!

f

t

)

2

(�)) j f 2 C

1

0

(℄0; � [;


1

�M)g; (25)

where 


1

� � 


1

�M 
onsists of 1�forms with support in �.

Theorem 2.2 1. Let !(t) be a solution of the Maxwell equations (7), (8)

su
h that

t!

1

j

��[0;2� ℄

= 0; n!

2

j

��[0;2� ℄

= 0:

Then �

t

!(t) = 0 in K(�; �).

2. Let X(�; �) be of form (24). Then,

Æ

�

H

1

0

(


2

M(�; T )) � X(�; T ) � 
l

L

2

�

Æ

�

H(Æ

�

;


2

M(�; T ))

�

:

3. Let � > 2rad(M). Then

Y (�) = Æ

�

H(Æ

�

;


2

M)� d

Æ

H

(d;


1

M) = Y:

Here H(Æ

�

;


2

M); H(d;


1

M) are natural domains of operators Æ

�

and d in

L

2

(


2

M) and L

2

(


1

M), 
orrespondingly, and

Æ

H

(d;


1

M) � H(d;


1

M) is de-

�ned by t!

1

= 0. H

s

(


i

M); s 2 Z

+

; i = 1; 2 is a Sobolev spa
e of 1� and 2�

di�erential forms, with H

s

0

(


i

M) = 
l

H

s

(


i

M

int

), where 


i

M

int


onsists of

i�forms vanishing near �M . Furthermore, solution !(t) in 1 : may be a weak

solution of the Maxwell system (see e.g. [10℄, [11℄.)

The subspa
e Y = Ran(M

e

), where the operator M

e

is de�ned by (15) on

Æ

H

(d;


1

M) �H(Æ

�

;


2

M). Operator M

e

is not ellipti
 but the operator (15)

with Diri
hlet boundary 
ondition, t! = 0, 
onsidered as operator on L

2

(
M)

is ellipti
. Taking into a

ount that, on Y , M

e

and the operator (15) 
oin
ide,

it is possible to use ellipti
 theory to study M

e

j

Y

, [10℄.

It is standard in PDE-
ontrol to introdu
e the spa
es of generalised boundary

sour
es, F([0; T ℄). To this end, we start with the equivalen
e,

f � g i� !

f

(t) = !

g

(t); for t > T;

whi
h gives rise to the fa
tor-spa
e, C

1

0

([0; T ℄;


1

�M)= �; and then 
omplete

it in the norm

jjjf jjj

2

= jj�

t

(!

f

)

1

(t)jj

2

+ jj�

t

(!

f

)

2

(t)jj

2

: (26)
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Clearly, rhs in (26) is independent of t > T . When T > 2rad(M), it follows

from Theorem 2.2, 3., that the delay operator, f(�) ! f(� � �) is well-de�ned

on F([0; T ℄) for small � > 0. Therefore, we 
an de�ne, in a natural way,

the operator of t� di�erentiation, D in this spa
e. The domains of powers

D

s

; s 2 Z

+

of D , whi
h we denote by F

s

([0; T ℄), may be 
hara
terized by

f 2 F

s

([0; T ℄) i� �

t

!

f

2

s

\

j=0

C

s�j

(℄T;1[;D(M

j

e

) \ Y ): (27)

There is a natural identi�
ation between F

s

([0; T

1

℄) and F

s

([0; T

2

℄); T

1

; T

2

>

2rad(M),

f

1

� f

2

i� !

f

1

(t) = !

f

2

(t) for t > max(T

1

; T

2

);

where f

i

2 F([0; T

i

℄); i = 1; 2. Later, we will often write just F

s

when referen
e

to the time interval ℄0; T [ is irrelevant.

Theorems 2.1, 2.2 make possible to 
ontinue Z

T

to t > T . The 
onstru
tion

below is a straightforward extension of the one for the s
alar wave equation [7℄,

[9℄. Another 
ontinuation method is des
ribed in [3℄.

Corollary 2.3 Z

T

; T > 2rad(M), uniquely determines Z

t

for any t > 0.

Proof: Let 2" = T�2rad(M). Due to Theorem 2.2, 3., for f 2 C

1

0

([0; T ℄; 


1

�M),

there is a sequen
e f

n

2 C

1

0

(["; T ℄; 


1

�M) with

�

t

!

f

n

(T )! �

t

!

f

(T ) in L

2

(


1

M)� L

2

(


2

M); (28)

whi
h is equivalent to the equation

E(!

g

n

)(T )! 0; g

n

= �

t

(f � f

n

): (29)

In turn, due to Theorem 2.1, 2., equation (29) 
an be veri�ed using Z

T

.

As f; f

n

= 0 for t � T , it follows from (28) that

n�

t

(!

f

n

)

2

j

�M�℄T;1[

! n�

t

(!

f

)

2

j

�M�℄T;1[

: (30)

As n�

t

(!

f

n

)

2

j

�M�℄T;T+"[

are known from Z

T

, (30) de�nes n(!

f

)

2

j

�M�℄T;T+"[

.

Iterating this pro
edure, we 
onstru
t Z

�

for any � > 0.

2

In further 
onstru
tions, we will need Z

T

with various T > 2radM . Taking into

a

ount 
orollary 2.3, we will just speak about the admittan
e map Z .

Let now �

j

� �M be open disjoint sets, 1 � j � J and �

�

j

and �

+

j

be positive

times with

0 < �

�

j

< �

+

j

� diam(M); 1 � j � J:

7



We de�ne the set S = S(f�

j

; �

�

j

; �

+

j

g) �M given as an interse
tion of sli
es,

S =

J

\

j=1

�

M(�

j

; �

+

j

) nM(�

j

; �

�

j

)

�

: (31)

A rather te
hni
al 
onstru
tion, [10℄, makes possible to 
he
k whether meas(S) >

0. To this end, let

F

S

(T

1

) � F

1

=

\

s�0

F

s

; T

1

> 2rad(M) + diam(M);

be a subspa
e of generalised sour
es, f , su
h that

(�

t

!

f

)

1

(T

1

) 2 X(�

j

; �

+

j

); (�

t

!

f

)

2

(T

1

) = 0; �

tt

!

f

(T

1

) = 0 in X(�

j

; �

�

j

): (32)

The following theorem, based on theorems 2.1 and 2.2, is 
ru
ial for our 
onsid-

erations, see [10℄.

Theorem 2.4 Let S and F

S

(T

1

) are de�ned as above. Then,

1. meas(S) = 0 i� F

S

(T

1

) = f0g;

2. Given Z, it is possible to verify if f 2 F

S

(T

1

) or not.

Further steps are the same as in the 
ase of a s
alar wave equation [7℄. They 
on-

sist of 
onstru
ting, using various S(f�

j

; �

�

j

; �

+

j

g) �M , of the set of boundary

distan
e fun
tions, R(M),

R(M) = fr

x

2 C(�M) j x 2Mg; r

x

: �M ! R

+

; r

x

(z) = �(x; z);

and de�ning a Riemannian stru
ture on R(M) whi
h makes it isometri
 to

(M; g).

3 Fo
using sour
es

Our next goal is to �nd sequen
es of generalised sour
es, ff

p

g, su
h that the


orresponding waves, f!

p

(t)g, at time t = T

1

, 
onverge to a Æ�type distribution


on
entrated at a point y 2M

int

. Let S

p

of form (31) 
onverge to y, i.e.

S

p+1

� S

p

;

\

p>0

S

p

= fyg;

with

J(p) = 3; �

p+1

j

� �

p

j

;

\

�

p

j

= fz

j

g 2 �M; �

�;p

j

; �

+;p

j

! �(y; z

j

) (33)

8



(see [7℄ for the existen
e of su
h sequen
e). For a given sequen
e of f

p

2 F

S

p

(T

1

),

we 
an verify via Z if the 
orresponding waves,

�

t

!

p

(T

1

)! A

y

; (34)

where A

y

is a distribution-form 
on
entrated in y. Indeed, Theorem 2.1, 1.

makes possible to verify the existen
e of the limit,

lim

p!1

(�

t

!

p

(T

1

); �

t

!

g

(T

1

)) for any g 2 F

1

: (35)

Due to Theorem 2.2, 3., this is equivalent to the existen
e of lim

p!1

(�

t

!

p

(T

1

); �)

for any � 2

T

s�0

D(M

s

e

) \ Y: As, on the other hand, (�

t

!

p

(T

1

); e�) = 0 for

e� ? Y , it is enough to verify (34) on �

t

!

g

(T

1

); g 2 F

1

: In the future, we refer

to the des
ribed sequen
es ff

p

g as fo
using sequen
es.

Further information about A

y

is given in the following Theorem.

Theorem 3.1 Let ff

p

g be a fo
using sequen
e, i.e. �

t

!

p

(T

1

) ! A

y

. Assume,

in addition, that, for any g 2 F

3

, there exists the limit (35). Then,

A

y

= (Æ

�

(�Æ

y

); 0); (36)

where � 2 �

2

T

�

y

M and Æ

y

is the delta-fun
tion at y,

Z

M

1

�

!

0

^ �Æ

y

=

�

!

0

; Æ

y

�

= !

0

(y); !

0

2 


0

M:

Proof:

1

,

It follows from (32), (34) that

A

y

= (A

1

y

; 0); Æ

�

A

1

y

= 0; supp(dA

1

y

) = fyg; (37)

so that

supp(�

�

A

1

y

) = fyg; �

�

= dÆ

�

+ Æ

�

d: (38)

As, due to (32),

�

t

!(T

1

) = 0 in M n

0

�

3

\

j=1

M(�

p

j

; �

+;p

j

)

1

A

;

(33) implies that

A

1

y

= 0 in M n

�

\

M(z

j

; �(y; z

j

))

�

:

1

Proof of this Theorem in [10℄ is in
omplete.
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By unique 
ontinuation for ellipti
 systems, this yields, together with (38), that

supp(A

1

y

) � fyg:

Furthermore, by our assumptions,

A

y

2 (D(M

s

e

))

0

� H

�3

(M);

so that A

1

y

may 
ontain only Æ

y

and its derivatives of the 1�st order,

A

1

y

=

3

X

i;j=1




j

i

�

j

Æ

y

dx

i

+

3

X

i

e


i

Æ

y

dx

i

: (39)

Substituting (39) into identity Æ

�

A

1

y

= 0, we obtain (36). 2

We note that, for any � 2 �

2

T

�

y

M , there is a fo
using sequen
e, ff

p

g, su
h

that the 
orresponding waves �

t

!

p

(T

1

) 
onverge to (Æ

�

(�Æ

y

); 0). Indeed, let �

p

be a usual Æ

y

-sequen
e. Then, by Theorem 2.2, 3., there are f

p

2 F

1

with

�

t

!

f

p

(T

1

) = (Æ

�

(��

p

); 0). Then ff

p

g is a desired fo
using sequen
e.

Let vary y, i.e. 
onsider a family ff

y

p

g; y 2M

int

, of fo
using sour
es with

A

y

= (Æ

�

(�

y

Æ

y

); 0); �

y

2 �

2

T

�

y

M: (40)

Lemma 3.2 Given Z ; it is possible to verify if the map y ! �

y

determines a

nowhere vanishing di�erential 2�form � 2 


2

M ,

�(y) = �

y

:

Proof: Let � 2 


2

M has 
ompa
t support. By Theorem 2.2, 3., there is h 2 F

1

with �

t

!

h

(T

1

) = (Æ

�

�; 0) By (34), (36),

lim

p!1

�

�

t

!

y

p

(T

1

); �

t

!

h

(T

1

)

�

=

�

Æ

�

(�

y

Æ

y

); Æ

�

�

�

= h�

y

; dÆ

�

�i

y

; (41)

where !

y

p

(t) is the wave generated by f

y

p

and h�; �i

y

stands for the inner produ
t

in �

2

T

�

y

M .

As � is arbitrary, in a vi
inity of any y 2M

int

we 
an 
hoose �

y

i

; i = 1; 2; 3; so

that the 2�forms dÆ

�

�

y

i

are linearly independent near y. Indeed, if (x

1

; x

2

; x

3

); x(y) =

0; are normal 
oordinates,

�

ik

= �(x)(x

i

)

2

dx

i

^ dx

k

; i < k;

where �(x) is a 
ut-o� fun
tion, satisfy desired 
onditions. Therefore, � 2 


2

M

i�, for any h 2 F

1

, the rhs in (41) de�nes a C

1

� fun
tion. 2

It follows from this proof that, using 3 families, ff

y;i

p

g; i = 1; 2; 3 of fo
using

sequen
es, we 
an verify via Z , if the 
orresponding 2�forms �

i

form a basis in

10



�

2

T

�

y

M for any y 2M

int

. Choosing �

i

2 


2

(M); i = 1; 2; 3, whi
h are linearly

independent at any y, 
onsider

K(y)(�

t

!

f

(t))

2

=

3

X

i=1

h�

i

(y); (�

t

!

f

(t))

2

i

y

�

i

(y) 2 


2

(M

int

); t � T

1

: (42)

Lemma 3.3 Given Z ; it is possible to evaluate, for f 2 F

1

, the 2�form

K(y)(�

t

!

f

(t))

2

, where K(y) is a smooth se
tion of End(


2

M).

We note that, at this stage, K(y) is unknown. Clearly, being able to identify

families ff

y;i

p

g; i = 1; 2; 3 with K(y) = id

y

, where id

y

is the identity in �

2

T

�

y

M ,

makes possible to �nd �. This will be done in the next se
tion.

4 Green's form and re
onstru
tion of �

Let again fh

p

g be a fo
using sequen
e,

lim

p!1

�

t

!

h

p

(T

1

) = (Æ

�

(�

y

Æ

y

); 0); � 2 �

2

T

�

y

M: (43)

Then,

lim

p!1

�

t

!

h

p

(t+ T

1

) = G

m

(x; t; y) = G

m;�

(x; t; y); (44)

where G

m;�

(x; t; y), 
alled the magneti
 Green's fun
tion, solves the problem

(�

t

+M)G

m

(x; t; y) = 0; tG

m

(x; t; y) = 0; G

m

(x; t; y)j

t=0

= (Æ

�

(�

y

Æ

y

); 0): (45)

Using the WKB-method, we show the following lemma.

Lemma 4.1 For 0 < t < �(y; �M),

G

m;�

(x; t; y) =

�

(G

m;�

(x; t; y))

1

; (G

m;�

(x; t; y))

2

�

;

where

(G

m;�

(x; t; y))

1

= [�(�Q(x; y)�

y

^ d

x

�)℄ Æ

(2)

(t� �(x; y)) + r

1

(x; t; y); (46)

(G

m;�

(x; t; y))

2

= [�(�Q(x; y)�

y

^ d

x

�) ^ d

x

� ℄ Æ

(2)

(t� �(x; y)) + r

2

(x; t; y): (47)

Here Q(x; y) 2 End(�

2

T

�

y

M

int

; �

2

T

�

x

M

int

) is smooth outside diag(M

int

) and

Æ

(2)

(t� �) is the se
ond derivative of the Æ-fun
tion on the sphere S

y

(t). Singu-

larities of r

1

; r

2


ontain only Æ

(1)

(t� �) and Æ(t� �).
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Using (41) and Lemma 3.3, we see that Z determines

K(x) [�(�Q(x; y)�

y

^ d

x

�) ^ d

x

� ℄ ;

for any �

y

of form (43). If it happens that K(x) = id

x

, then

K(x) [�(�Q(x; y)�

y

^ d

x

�) ^ d

x

� ℄ (v; w) = 0; for any v; w 2 T

x

S

y

(t): (48)

Using this, we 
an impose (48) as a 
ondition for the fo
using sour
es ff

y;i

p

g,

that de�ne endomorphism K(x). Then we have

K(x) = 
(x)id

x

;

for a nowhere vanishing 
 2 C

1

(M

int

). Furthermore, if K(x) = id

x

, then

d

h

K(x)

�

�

t

!

h

�

2

(x; t)

i

= 0; for any h 2 F

1

: (49)

Imposing 
onditions (49) on ff

y;i

p

g, we obtain that


(x) = 
onst:

Returning to (42), we see that Z determine, for h 2 F

1

,




2

Z

M

(�

t

!

h

)

2

(x; t) ^ �(�

t

!

h

)

2

(x; t):

Dividing it by E

m

(�

t

!

h

)

2

)(T

1

) evaluated by Theorem 2.1, 1., and taking a se-

quen
e fh

p

g with supp(�

t

!

p

(T

1

))! fyg, we �nd 2


2

�(y).

As Z(
�) = 


�1

Z(�), where Z(
�) is the impedan
e map 
orresponding to

(M; g; 
�), we �nd �. This 
ompletes the proof of Theorem 1.1.

5 Proof of Theorem 1.2

Let "

j

k

(x); �

j

k

(x) and e"

j

k

(x); e�

j

k

(x); x 2 N � R

3

. It then follows from assump-

tions of Theorem 1.2, that, due to Theorem 1.1,

(N ; g; �) � (

e

N ; eg; e�);

where � stands for isometry. Therefore, there is a di�eomorphism X ,

X : N ! N ; X j

�N

= idj

�N

;

su
h that

eg = X

�

g; e� = X

�

�: (50)

As, due to (5),

"

j

k

=

1

�

p

gg

jn

Æ

nk

; �

j

k

= �

p

gg

jn

Æ

nk

;

12



(50) yields (19).
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