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1 Introduction

This paper is devoted to the inverse boundary-value problem of electromagnetics
in the case 0 = 0, where o is the conductivity. Thus the governing Maxwell
equations, in the time domain, are of the form

curl B(x,t) = —Bi(z,t), (Maxwell-Faraday), div B(z,t) =0, (1)

curl H(z,t) = Dy(z,t), (Maxwell-Ampere), divD(z,t) =0, (2)

(z,t) € N x R, N C R® - a bounded domain, together with the constitutive
relations

D(w,t) = e()E(w,1), Blx,1) = p(z)H(z,1). (3)
Here e, are 3 x 3 time-independent positive matrices, which, as also N, are

C*°°-smooth.

The main results in the study of inverse boundary problems of electrodynamics
deal with the isotropic case, i.e. scalar e, p. It is shown in [5], [15], [16] that the
static admittance map,

Z() :TLXEO|5_/\/—>TL XHO|5N)

where (Ey, Hy) are stationary solutions to (1) - (3), determine ¢, s uniquely.
What is more, the results of [5], [15], [16] make possible to find all three scalar
coefficients, including conductivity, o # 0.

There are some other approaches to the inverse problem for (1) — (3), working
directly in the time-domain, [1], [17]. They make possible, under additional
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geometrical restrictions, to find some combinations of unknown parameters.
Namely, [17] deals with the case when N is a simple geodesic manifold in the
metric dI? = ep|dz|?, while constructions of [1] are valid in a collar neighborhood

of ON.

Much less is known in the anisotropic case. It is, however, clear from scalar
anisotropic problems that, instead of the uniqueness, one obtains a group of
transformations, involving proper coordinate changes in N, e.g. [14], [19], [4],
[8], [13]. Therefore, it is natural to split the solution of an anisotropic in-
verse problem into two steps. Firstly, to formulate and solve the corresponding
coordinate-invariant inverse problem, i.e. an inverse problem on a manifold.
Secondly, to analyse the properties of an inverse problem in R resulting from
embedding the manifold into R”. (For a systematic development of this ap-
proach see [7]).

In this paper, we confine our study to the case of the scalar wave impedance,
w= a2€7 (4)

where « is a positive scalar function.
Let g be the metric on N,
2
ik .j @

. 1
Z] = =
g a2det(e) 9o Ek det(p)

98 1 (5)
g = 6, where the last equation in (5) is due to (4). Introduce differential 1—
and 2— forms, w! € Q' M, w? € Q2 M,
w' =E, w?=xB". (6)
Here % is the duality between 1— forms and vector fields,
X*(Y) = go(X,Y),

X, Y being arbitrary vector fields, and #¢ is the Hodge star-operator in metric
go- Metric go appears in these equations as a background metric which, in case
of N C R® is the canonical Euclidian metric. However, we can assume from the
beginning that (A, go) is a compact 3—dimensional Riemannian manifold with
invariantly defined , in metric go, operators curl and div in (1), (2). All further
constructions remain valid in this general case.

Then equations (1) — (3) may be written as,

Wi = 6aw?, Jaw' =0, (7

wl = dw', dw?® =0, (8)

with a—codifferential &, : Q¥ M — Q3~F M given by

ok = (~Dta wd v ot (9)



and * being the Hodge star-operator in metric g.

We note that constitutive relations (3) are now incorporated into (7), (8) via
the new metric g which, for the reasons clear from the following, is called the
travel time metric. We note that Maxwell equations, (1) — (3) in the form (7),
(8), may also be written for another pair of differential forms

n' = osz, 0 = *Oan,
with the connection between two representations given by
2

n =xw', n' =%l (10)

This reflects the well-known duality of the Maxwell equations.

From now on M is a compact 3—manifold with (travel time) metric g and
wave impedance «, (M, g,«). To have an initial-boundary value problem, we
compliment (7), (8) with initial and boundary conditions,

w1|t:0 = 0, w2|t:0 = 0. (11)

tw' = f € C° (R, Q'0M). (12)
Here, tw* is the tangential component of w* on OM, t : Q¥ M — Q¥OM,
twh =i*wk, i:0M — M. (13)

To state rigorously the initial-boundary value problem (7), (8), (12), (13), the
notion of the complete Mazwell system,

Wi+ Mw=0, w=w’w" w?w’) eQM, (14)

is introduced.

Here QM = Q°M x Q' M x Q2M x Q*M is the full Grassmanian bundle over
M and

M=d-6, (15)

is the Dirac-type operator on M. Equations (14) are supplemented by initial
and boundary conditions,

wlico =0, tw=f €05 Ry, QIM), (16)

which give rise to a well-posed initial-boundary value problem. It turns out that
the problem (14), (16) is equivalent to (7), (8), (11), (12), if tw® = 0, Ostw? =
—dtw? (for details of the construction see [10], [11]).

Denote by Zr the admittance map, Z7 : 8"’0([07 T],Q'OM) — Co’oo([O, T],Q'oM),

2r(f) =n(w!)*t), telo,T], (17)



where w/ (t) = ((w/)!(t), (w/)?(t)) is the solution to (7), (8), (12), (13), nw* is
the normal component of w* on OM, n: Q¥M — Q3~k9M

nwh = i* (= x wh), (18)

]
and C'*° consists of smooth functions vanishing near ¢t = 0.

We are in the position now to formulate the main results of the paper.

Theorem 1.1 Let T > 2rad(M), where

rad(M) = ;ne%lm'(:v, OM).

Then Zr determines (M, g, a) uniquely.

When « = 1, a local version of Theorem 1.1 near M is proven in [2]. The
method to recover (M, g) from Z7, T > 4diam(M), for an arbitrary scalar «, is
in [10).

Returning to R?, we observe that Zr corresponds to the map

Zr :n x Elgprxjo,r) = 1 X Hlgarxo,1,

which is, indeed, a well-known admittance map. Consider two copies of N as
Riemannian manifolds with the metrics g and g of form (5), where, in case of
g, we use £, iy, &, and distance functions 7(z,y), 7(z,y).

Theorem 1.2 The group of transformations for the Mazwell system (1) — (3)
with scalar wave impedance, which preserve the admittance map,

Zr, T > QHE%(max(T(x,aN),?(x,aN)),

is generated by the group of diffeomorphisms, X : N = N, X|on = id|onr. The
transformation formulae for e, u are then
1 ozt Oz

), AY(@) = pH(z), (19)

1 o0zt 0F7 H( oz' 0z’
det(DX) Oz* Ox!

i (5 ogr o
(@) det(DX) Oz* Ox! c

where & = X (z) and & = ¢i gi¥,
The form (19) of admissible transformation for the two-dimensional conductivity

problem is observed in [19] with relations between the low-frequency limit of the
admittance map and the conductivity problem analysed in [12].

In this paper, we give a brief sketch of the proof of Theorems 1.1, emphasizing
the part on «, and 1.2 (see [10] for more details.)



2 Reconstruction of the manifold and the metric

In this section we describe very briefly the method to determine (M, g) from Z7
referring to [10], [11] for further details. The basic analytical ideas, formulated
in two theorems below, make possible to find the energy and location of an
electromagnetic wave generated by a boundary source f.

Let w(t) = (w'(t),w?(t)) satisfies (7), (8), i.e. represents an electromagnetic
wave in the absence of internal sources. FElectric and magnetic components of
the total energy, £(t), are given, respectively, as

et) =5 [ @A 0) = 5l Ollo@an; (20)
Em(t) = %/M é W (t) A xw(t) = %||W2(t)||L2(QQM), (21)

E(t) = Ec(t) + Em(d).

with the rhs of (20), (21) defining the norms in L?2—spaces of 1— and 2— forms
on M.

Theorem 2.1 Let w?(t) be a solution of the Mazwell equations (7), (8), (11),
(12) with a smooth boundary source f. Then

1. For any T >0, Zor determines EI (1), 4, (1), t < T.

2. For any T > 0, Zr determines £7(t), t <T.

It is also clear from this theorem that Z57 determines the inner products
(WH' (1), (w9)'(5)) and ((wF)2(t), (w9)?(s)), s,t < T, where wI(s) is the wave
generated by a boundary source g.

Proof: Maxwell system (7), (8), (12) implies that

D€ (W )(t) = /@ n(P0 A @0 = /8 ENO Ao,

As £(0) = 0, this proves part 2.. For part 1., we refer to [10], [11]. O

To formulate the second result, we need some auxiliary notions. Let ' C M
be open. The domain of influence of T at time 7, M (T, 7) is given by

M@, 7)={z e M|r(z,T) < 1}, (22)
and the double cone of influence, K(T',T), by

K(T,71) ={(z,t) € M x [0,27]| 7(2,T) <7 — |T —¢|}. (23)



Let also
X(I,7) = cga{(w)(7) | f € C*(10,7[,'T)} (24)
and
Y(r) = clp2{((@])' (1), @])*(7) | f € G210, 7, @' 0M)}, (25)
where Q'T' C Q'OM consists of 1—forms with support in T.

Theorem 2.2 1. Let w(t) be a solution of the Mazwell equations (7), (8)
such that

tw'lrxo2,] =0, 1w’|rypo2,] = 0.
Then Syw(t) =0 in K(T, 7).
2. Let X(T',7) be of form (24). Then,

SoHY(QM(T,T)) C X(T,T) C clpe <5QH(5Q, Q2M(I‘,T))>.

3. Let T > 2rad(M). Then
Y (1) = 60 H (80, QM) x dH(d, QM) = Y.

Here H(0,,Q2M), H(d,Q'M) are natural domains of operators d, and d in
L2(Q2M) and L2(Q' M), correspondingly, and H(d, Q' M) ¢ H(d, Q' M) is de-
fined by tw' = 0. H*(Q°M), s € Z4, i = 1,2 is a Sobolev space of 1— and 2—
differential forms, with Hg(Q'M) = clg- (' M™Y) where QIM™Y consists of
i—forms vanishing near M. Furthermore, solution w(t) in 7. may be a weak
solution of the Maxwell system (see e.g. [10], [11].)

The subspace ¥ = Ran(M.), where the operator M, is defined by (15) on

;I(d, QLM) x H(8,,9°M). Operator M, is not elliptic but the operator (15)
with Dirichlet boundary condition, tw = 0, considered as operator on L?(2M)
is elliptic. Taking into account that, on Y, M, and the operator (15) coincide,
it is possible to use elliptic theory to study M.y, [10].

It is standard in PDE-control to introduce the spaces of generalised boundary
sources, F([0,T]). To this end, we start with the equivalence,

f~g iffw(t) =wi(t), fort>T,

which gives rise to the factor-space, C5°([0,T],Q10M)/ ~, and then complete
it in the norm

AP = 112" O + 118 (w!)* (O] (26)



Clearly, rhs in (26) is independent of ¢ > T. When T > 2rad(M), it follows
from Theorem 2.2, 3., that the delay operator, f(-) = f(- — o) is well-defined
on F([0,T]) for small ¢ > 0. Therefore, we can define, in a natural way,
the operator of t— differentiation, ID in this space. The domains of powers
D, s € Z of D, which we denote by F*([0,T]), may be characterized by

feFo,T) iff o' e ﬂ C* (T, 00[, D(MI)NY). (27)

j=0

There is a natural identification between F*([0,71]) and F*([0,Tv]), T1,T> >
2rad(M),

f1 ~ f2 iff wf1 (t) = wa (t) for t > max(Tl, TQ),
where f; € F([0,T;]), i = 1,2. Later, we will often write just F* when reference

to the time interval ]0, T is irrelevant.

Theorems 2.1, 2.2 make possible to continue Z7 to t > T. The construction
below is a straightforward extension of the one for the scalar wave equation [7],
[9]. Another continuation method is described in [3].

Corollary 2.3 Zp, T > 2rad(M), uniquely determines Z; for any t > 0.

Proof: Let 2e = T—2rad(M). Due to Theorem 2.2, 3., for f € C5°([0,T]; Q*OM),
there is a sequence f, € C5°([e, T]; Q'OM) with

dw’ (T) = duw’ (T) in L2(Q' M) x L*(Q>M), (28)
which is equivalent to the equation
EWm)T) =0, gn=0u(f— fn) (29)

In turn, due to Theorem 2.1, 2., equation (29) can be verified using Z7.
As f,fn=0for t > T, it follows from (28) that

n0: (W) 2 o011 7,00 = 0O (W) 500 5] T,00[- (30)

As 00y (w™)?|gprx)1,742) are known from Zr, (30) defines n(w’)?|par«) 7,744
Iterating this procedure, we construct Z, for any 7 > 0.

O

In further constructions, we will need Z7 with various 7' > 2rad M. Taking into
account corollary 2.3, we will just speak about the admittance map Z.

Let now I'; C OM be open disjoint sets, 1 < j < J and T and Tj+ be positive

times with
0<7; <7 <diam(M), 1<j<J.



We define the set S = S({T'j,7;",7; +1) C M given as an intersection of slices,

J
ﬂ (T, 7))\ M(Ty,777)). (31)

A rather technical construction, [10], makes possible to check whether meas(S) >
0. To this end, let

Fs(Ty) C F° = () F*, Ti > 2rad(M) + diam(M),

§>0

be a subspace of generalised sources, f, such that

@) (Ty) € X(Tj,77), (B’ (Th) =0, Opw! (Ty) =0in X(Tj,7;). (32)

VAR

The following theorem, based on theorems 2.1 and 2.2, is crucial for our consid-
erations, see [10].

Theorem 2.4 Let S and Fs(Ty) are defined as above. Then,

1. meas(S) =0 iff Fs(T1) = {0};

2. Given Z, it is possible to verify if f € Fs(T1) or not.

Further steps are the same as in the case of a scalar wave equation [7]. They con-
sist of constructing, using various S({F]’,ij,rj*}) C M, of the set of boundary
distance functions, R(M),

R(M) ={r, € COM) |z € M}, ry:0M — Ry, rp(z) = 7(z,2),

and defining a Riemannian structure on R(M) which makes it isometric to
(M, g).

3 Focusing sources

Our next goal is to find sequences of generalised sources, {f,}, such that the
corresponding waves, {wy(t)}, at time ¢ = T}, converge to a d—type distribution

concentrated at a point y € Mt Let Sy of form (31) converge to y, i.e.

Spi1 C Spe () So = 1y},

p>0

J(p)=3, Ty crf, (\If={z}edM, =7 77" >7(yz) (33



(see [7] for the existence of such sequence). For a given sequence of f, € Fs, (T1),
we can verify via Z if the corresponding waves,

Otwp(Tl) — Ay, (34)

where A, is a distribution-form concentrated in y. Indeed, Theorem 2.1, 1.
makes possible to verify the existence of the limit,

lim (Qywy(T1), Ow?(T1)) for any g € F*°. (35)

p—>00

Due to Theorem 2.2, 3., this is equivalent to the existence of lim,_, o (Orw,(T1), 1)
for any n € (Nyoq D(ME) NY. As, on the other hand, (0;w,(T1), ) = 0 for
7 LY, it is enough to verify (34) on d;w9(T}), g € F*°. In the future, we refer
to the described sequences {fp} as focusing sequences.

Further information about A, is given in the following Theorem.

Theorem 3.1 Let {f,} be a focusing sequence, i.e. Owwp(Th) - A,. Assume,
in addition, that, for any g € F?, there exists the limit (35). Then,

Ay = (8a(A,),0), (36)

where A € AQT;M and §,, is the delta-function at y,

1
/M Ewo A4, = (wo,éy) =uw(y), w®e’M.

Proof: ',
It follows from (32), (34) that

Ay =(4,,0), 6,4, =0, supp(dA4}) = {y}, (37)
so that
supp(AnAy) = {y}, Aq =dbs + dad. (38)
As, due to (32),

Ow(Ty) =0 in M)\
J

P +.p
M(T%,777) |,
1

3
(33) implies that

Ab=0 in M\ (ﬂ M(Zj:T(yazj))) :

IProof of this Theorem in [10] is incomplete.




By unique continuation for elliptic systems, this yields, together with (38), that
supp(4,) € {y}-
Furthermore, by our assumptions,
Ay € (DIM2))' c HT(M),

so that AQ}, may contain only d, and its derivatives of the 1—st order,

3 3
Ay = o, da’ + Y %6, dat (39)

ij=1 i
Substituting (39) into identity d, A, = 0, we obtain (36). O

We note that, for any A\ € A2T;M, there is a focusing sequence, {f,}, such
that the corresponding waves 9;w,(T1) converge to (64 (g, ),0). Indeed, let ¢,
be a usual §,-sequence. Then, by Theorem 2.2, 3., there are f, € F> with

Oww’? (T1) = (60 (Mpp),0). Then {f,} is a desired focusing sequence.

Let vary y, i.e. consider a family {fY}, y € M int’ of focusing sources with
Ay = (0a(Xy9,),0), Ay € A2T;M. (40)

Lemma 3.2 Given Z, it is possible to verify if the map y — A\, determines a
nowhere vanishing differential 2—form n € Q>M,

ny) =Ay.

Proof: Let ¢ € Q> M has compact support. By Theorem 2.2, 3., there is h € F>®
with 8;w"(T1) = (6a0,0) By (34), (36),

plgglo (8tw;;’(T1), Otwh(Tl)) = (5a(/\yéy),5a¢) = </\ya d6a¢)y7 (41)
where w(t) is the wave generated by f7 and (:,-), stands for the inner product
in AT M.

As ¢ is arbitrary, in a vicinity of any y € M1t we can choose ¢Y,i=1,2,3,s0
that the 2—forms dd, ¢! are linearly independent near y. Indeed, if (z', 22, 2%), z(y) =
0, are normal coordinates,

bir = x(x)(x")? dzt A dz*, i < k,

where () is a cut-off function, satisfy desired conditions. Therefore, n € Q>M
iff, for any h € F°°, the rhs in (41) defines a C°°— function. O

It follows from this proof that, using 3 families, {f;;”i}, i = 1,2,3 of focusing
sequences, we can verify via Z, if the corresponding 2—forms 7; form a basis in

10



A*Ty M for any y € Mt Choosing & € Q2(M), i = 1,2,3, which are linearly
independent at any y, consider

3 .
K@@ (£)” = Y (), (0 (£)%)y &) € 2(M™), £ > Ty (42)

i=1

Lemma 3.3 Given Z, it is possible to evaluate, for f € F°°, the 2—form
K (y) (0w (t))?, where K (y) is a smooth section of End(Q2M).

We note that, at this stage, K(y) is unknown. Clearly, being able to identify
families {f¥'}, i = 1,2,3 with K (y) = id,, where id,, is the identity in A>T, M,
makes possible to find «. This will be done in the next section.

4 Green’s form and reconstruction of o

Let again {h,} be a focusing sequence,

lim 9" (1)) = (3a(1,8,),0), € ATy M. (43)
Then,

l.i)m 8twhp (t + Tl) = Gm(mat;y) = Gm,u(m,t;y), (44)

p—00

where G, (2, t;y), called the magnetic Green’s function, solves the problem
(O + M)Gm(z,t;y) =0, tGp(z,ty) =0, Gm(z,t;y)lt=0 = (da(pydy),0). (45)
Using the WKB-method, we show the following lemma.

Lemma 4.1 For 0 <t < 7(y,0M),

Gm7u(m,t;y) = ((Gm7u(wat§y))1a (Gm7u(mat§y))2) )

where

(Gm,u(xa t; y))l = [*(*Q(l', y):u‘y A dIT)] é@) (t - T(xa y)) + rt (xa t; y)7 (46)

(G, 59))” = [(+Q(@, y)py A do) Ady7] 87 (t = 7(,)) + 1 (2, 15y). (47)

Here Q(z,y) € End(AQT;Mmt, AT M) is smooth outside diag(M ™) and
8@ (t — 1) is the second derivative of the 6-function on the sphere Sy(t). Singu-
larities of r', 7% contain only 8V (t — 1) and &(t — 7).

11



Using (41) and Lemma 3.3, we see that Z determines
K(z) [*(xQ(z,y)py AdyT) AdyT],
for any p, of form (43). If it happens that K (z) = id,, then
K (z) [*(*Q(z,y) iy A deT) AdyT] (v,w) =0, for any v,w € T,S,(t). (48)

Using this, we can impose (48) as a condition for the focusing sources {f¥},
that define endomorphism K (z). Then we have

K(z) = c(z)id,,
for a nowhere vanishing c € C’°°(Mint). Furthermore, if K(z) = id,, then
d [K(x) (Btwh)2 (x,t)] =0, foranyhe F™. (49)
Imposing conditions (49) on {f¥*'}, we obtain that
c(x) = const.

Returning to (42), we see that Z determine, for h € F*,
& / (D)2 (. £) A +(Bp) (1),
M

Dividing it by &, (0:w™)?)(T1) evaluated by Theorem 2.1, 1., and taking a se-
quence {h,} with supp(diw,(T1)) = {y}, we find 2c2a(y).

As Z(ca) = ¢7'Z(a), where Z(ca) is the impedance map corresponding to
(M, g,ca), we find «. This completes the proof of Theorem 1.1.

5 Proof of Theorem 1.2

Let ai (z), ,ufc(:v) and éﬂk(m), ﬁi(m), z € N C R®. Tt then follows from assump-
tions of Theorem 1.2, that, due to Theorem 1.1,

W.g9,0) = (N, 3,d),
where ~ stands for isometry. Therefore, there is a diffeomorphism X,
X:N =N, Xl|on =idlan,
such that
g=X.g9, a=X.a. (50)
As, due to (5),

8?@ = a\/gg]n 5nka l’tlljc = a\/gg]n 5nka

12



(50) yields (19).
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