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1 Introduction and main result
In the paper we deal with an inverse problem for a quadratic operator pencil

ANu = a(z,D)u —irbou — Nu, (1.1)
Bu = 0,u—oulsgy =0

on a differentiable compact connected manifold M, dim M = m > 1, with
non-empty boundary M # 0. Here a(z, D) is a uniformly elliptic symbol

a(z,D) = —g~2(8; + b;)g"*g" (& + bu) + g,

where [g7']7_, defines a C°°-smooth Riemannian metric and b = (by, ..., bm)
and q are, correspondingly, C*°-smooth complex-valued 1-form and function on
M. o is a C*°-smooth complex-valued function on OM and 0, stands for the
normal derivative.

Let Ry be the resolvent of A(\) defined in the domain H2(M) = {u €
H?(M) : Bu = 0}. The operator R()) is meromorphic for A € C (see Sect.
3 and [1]). Denote by Rx(x,y) its Schwartz kernel. A natural analog of the
Gel'fand inverse problem [2] is

Problem I Let OM and Ry(z,y); A\ € C, z,y € OM be given. Do
these data, called Gel’fand boundary spectral data, determine (M, a(z, D), by, o)
uniquely?

We note that the determination of a Riemannian manifold (M, g) means the
determination of a Riemannian manifold which is isometric to (M, g).

Remark 1: Let Gy be the Neumann-to-Dirichlet map G, f := u’;|aM where
ANul =0, Bul="f. (1.3)

Then the Gel’fand boundary spectral data is equivalent to the knowledge of Gx
for all A.

Remark 2: Problem I is equivalent to the inverse boundary problem for the
dissipative wave equation. Namely, assume that u/f = u/(z,t) is the solution



of the problem

ul, + bou! + a(z, D)’ = 0, (1.4)

BUf|8M><R+ =f; w0 = U{lt:o =0 (1.5)
where f € C(Ry,L?(OM)). We define the response operator R",
RMf) == u [omxm,. (1.6)

Since the Fourier transform of uf(z,t) with respect to t is uf\, we see that R"
determines the Gel’fand boundary spectral data and vice versa.

This hyperbolic inverse problem and its analogs were considered e.g. in [3],
[4] and [5]. Paper [3] dealt with the inverse scattering problem, M = R™, with
g?" = 87!, Tt was generalized in [4] onto the Gel’fand inverse boundary problem in
abounded domain in R™, g% = §7. In [5] the uniqueness of the reconstruction of
the conformally Euclidean metric in M C R™ and the lower order terms (with
some restrictions upon these terms) was proven for the geodesically regular
domains M. The case by = 0 and self-adjoint a(z, D) was considered in [6] and
[7]-

In the paper we give the answer to Problem I assuming some geometric
conditions upon (M, g). The main technique used is the boundary control (BC)
method (see e.g. [8]) in its geometrical version [7], together with the technique
elaborated in [9)].

To use control theory, we assume the following geometrical condition (for
details see [10]) which generalizes the condition that the rays of the geometrical
optics hit the boundary transversally.

Definition 1.1 The Riemannian manifold (M, g) satisfies the Bardos-Lebeau-
Rauch (BLR) condition if there is ¢, > 0 and an open conic neighborhood O of
the set of not-nondiffractive points (z,§) € T*(M x [0,t.]), £ € OM such that
any generalized bicharacteristic of the wave operator 87 — A, passes through a
point (z,&) € T*(M x [0,t.]) \ O, =z € OM.

The main result of the paper is:

Theorem 1.2 Let (OM;Gx, A € C) be the Gel’fand boundary spectral data for a
quadratic operator pencil (1.1), (1.2). Assume that the corresponding Rieman-
nian manifold (M, g) satisfies the BLR-condition. Then these data determine
M and by uniquely and also the equivalence class of the pair (a(z, D), o) with
respect to the group of gauge transformations, that is, the class

{(ka(z, D)™, 0 +8,(Ink)) : k€ C®(M;C), klomr =1, k#0 on M}.

When by = 0 Theorem 1.2 was proven in [13]. However the generalization of
the methods of [13] to the quadratic operator pencils is far from straightforward
which results, in particular, in a new sesquilinear form (4.9) corresponding to
the wave equation (1.4).



2 Auxiliary constructions

In view of the gauge invariance we can assume that ¢ = 0. To transform the
pencil equation to an eigenvalue problem, we define

U = (u, u)’.

For pairs P = (a,b)? we denote [P]' = a and [P]? = b. Then the pencil equation
(1.1), (1.2) is equivalent to (A — A\)U = 0 where A = Ay + A4,

0 1 (0 o
Ao = (AO 0)’ A= <a1(m,D) —ib0>'

Here Ay = —A, is the Laplace operator with Neumann boundary condition,
D(Ag) = H2(M) := {u € H*(M) : 8,ulonr = 0}
and aq(z, D) = a(z, D) — Ag is a first order operator. Operators Ag, A4 with
D(Ao) = D(A) = H;(M) x L*(M)

are closed in # = [L?>(M)])?. Using the transformation A\ — X\ + di; A9 —
Ao + d?, d € R we can assume that

1451 < 1 and ||as (z, D) A5 */*|| < 1/2. (2.1)
The adjoint operator, A*, is then
* 0 A* * 2 *
A* = 5 |, D(A*)=L*(M) x D(A¥), (2.2)
I lbo
D(A*) = H.,:={u€ H* B*u:=0u—2buloy =0} (2.3)

where b, = (v, b) is the conormal component of b.
Using A* instead of A we define operators A,q and A,
Aui= (0 1Y), D) = B2, (M) x L2(M)
a A* 2b0 ) a v,b -

Our goal is to use eigenfunction expansions corresponding to A, A* and A,q, A,
To this end we introduce operators the Ty and T' = Ty + T where

0 A2 0 0
To = 0 T, = _ _ _ 2.4
0 (A(l)/2 0 ’ 1 (Ao 1/4a1A0 1/4 —iAO 1/4b0A(1]/4) ( )

D(T) = D(To) = [D(4,*)* = [H' (M), (25)
By (2.1) T has a bounded inverse. We have
ToU = L 'ALU, TU=L"'ALU for (2.6)
ASYE 0
L = ( 00 i) Ue D(AY*) x D(AY?).
0



3 Abel-Lidskii expansion

The operator Ty ' € &,, p > m where &, is the Schatten-von Neumann class
(see e.g. [11]). As Ty is bounded T' = Ty + T; is a weak perturbation of Tp.
Due to the general theory of weak perturbations of self-adjoint operators (see
e.g. [1], Sect. 6.2-6.4) the spectrum o(T") of T is normal, that is, the spectrum
of T consists of discrete eigenvalues with finite multiplicities.

Let 3 > m be an even integer, 7 > 0 and T be a contour in C, TNa(T) = 0.
Denote by PFB’ +(T') the modified Riesz projector for T

1

Py (T) = ~9

/ e (T — 2) tdz,
r

and by Prﬁ’ ~(To) the analogous projector for Tj.
Let T be a contour in C which consists of two segments Im 2z = +a,Re z €
[—b, b], and four semi-axes Im z = +cRe z (see Fig. 1).

Im 2 =

Figure 1: Contour I'

By using asymptotics of the eigenvalues of T (see e.g. [1]), parameters a, b, ¢
are chosen so that

i. o(T) lies inside T'.
ii. Re 2”7 > ¢g|2P|,co > 0 for [Im 2| < ¢|Re z|.

Let Pf,’T(T) be the modified Riesz projections corresponding to the contours
I'n which are obtained from I" by cutting them by the vertical lines Re z = tan
(see Fig. 2).



I'n

Imz=xa

Re z = an

Figure 2: Contour I'y

Theorem 3.1 (Abel-Lidskii convergence) There exist a series of real numbers
any >0, N=1,2,..., which depends only upon o(T') such that

— ; 3
Y= TI—IEII-O 1\llg>noo PN’T(T)Y (31)
The convergence in (3.1) takes place in [H*(M)]?, s € [-1/2,1/2] when Y €
[H*(M)]? and in the graph norm of T™ whenY € D(T"),n = 1,2, ....

Proof. Since Ty € &,, p > m and T; is bounded the results of ([1], Sect.
6.2-6.4; see also [12]) show the existence of a/y which depend upon o(Tp) and
o(T) such that

- lim Py _(T)=P5(T

s Jim P§_(T) = PA(T),
where s-lim is the limit in the strong operator topology and Pf,J and P? cor-
respond to contours I'y and I', correspondingly. The proof of the strong con-
vergence is based upon exponential estimates for (T — z)~! and (Tp — 2)!.
However, since PJ’ZE,’T(T) remains intact under small deviations of oy it is possi-
ble to choose ay independent of o(Tp). Now

(To—2)"t=(T =27 =(T=2)""T(Ty —2)~*

and ||(T — 2)™Y|s,s < c|z|7'7, s < s’ when 2 lies outside T and || - ||,¢
stands for the operator norm from [H®(M)]? to [H* (M)]2. Hence
1
P(T) — PY(Ty) = =5~ (T — )T (T — 2)"tdz,  (3.2)
r
(T = 2) 7' T1(To — 2) 7|5 < csl2| 7%/ (3.3)



where s € [-1/2,1/2] and #z lies outside I'. The integrand in right-hand side
of (3.2) is analytic outside the spectra of Ty and T. Hence we can change
the parameter a which defines I without changing the right-hand side of (3.2).
Thus by choosing a = 7~'/# with 7 sufficiently small, we see from (3.3) that
(3.2) goes to zero when 7 — 0. By spectral theory of the self-adjoint operators,
s-lim P?(Ty) = I. This implies the statement for Y € [H*(M)]2.

The last part of the theorem follows from the case s = 0 since for Y € D(T")

TPy (T)Y = Py (T)T"Y.

Lemma 3.2 Let U = (u',u?)! € HY (M) x L?>(M) or U € [C§°(M))?. Then

U= lim lim Py (A,

T—04+ N—oo

where the convergence takes place in H' (M) x L?>(M) when U lies in this space
or in CN(Q) for any N >0, Q CC M when U € [C$(M)]?.

Proof. By (2.6), (T —2)~'Y = L~'(A—2)"'LY for Y € D(4Y?) x D(4L/?).
Integrating this equation along I'yy we come to the equation

Py (T)Y = L7'Py_(A)LY.

Since the modified Riesz projectors are finite-dimensional operators this equa-
tion remains valid for Y € D(L). As Y = LU € [HY?(M)]?> when U €
H(M) x L?(M), Theorem 3.1 with s = 1/2 proves the statement for this case.
As L7YCg°(M)]? € D(T™) for any n > 0 and D(T™) C [H™(M))? this case also
follows from Theorem 3.1 and the fact that L is a pseudodifferential operator
of the order 1/2. O

Corollary 3.3 Let U € L>(M) x H' (M) or U € [C$*(M)]2. Then

U= lim lim Py (AU (3.4)

70+ N—oo

where the convergence takes place in L2(M) x H'(M) and CN(Q) for any N >
0, CC M, respectively.

Proof. As ||[(T*=2)" = (To = 2)7Y|s = |(T — 2) 7t = (Tp — 2) 7| =5, estimate
(3.3) remains valid for T, Ty and s = 1/2 for z outside I. The same arguments
as in Theorem 3.1 show that

Y= lim lim PS (T*)Y in [HY2(M)].

70+ N—oo ’



AsY = LU € [H'/?(M)]? when U € L?*(M) x H'(M), (3.4) follows. The case
U € [C§°(M)]? is considered as in Lemma 3.2. a

Using the representation

= JATTY AT = T AT (3.5)
J [(u',u?)f] = (u® +ibout,u'),

we come to

Corollary 3.4 The statement of Lemma 3.2 is valid for A} ;. The statement
of Corollary 3.3 is valid for Agq.

4 Root functions and boundary spectral data

Let % = [L?(M)]? and denote by Py, (A) the Riesz projector P, (A) where T
encloses only one point A; of the spectrum. Let p; = dim H; = dim H] where
H; = Py;(A)H and H; = P5,(A*)H. Moreover, let r; = dim Ker(A — };) =
dim Ker(A* — ;). Denote by

1 2 t 1 2 t
‘I’j,k,O = (¢j,k,0= j,k,O) > ‘I’j,k,o = (wj,k,0=¢j,k,0) , k=1,.. 5Ty

the eigenvectors of A and A* at eigenvalues \; and A;, correspondingly, and
by njr, mj1 > nj2 > ... > nj; their partial null multiplicities. The total
multiplicity of A; is denoted by p; = nj1 + ... + nj ;. This means that there
are vectors ®; 51, ¥;11,! = 1,...,n,, called the root functions associated with
'*I)j,k,o; ‘I’j,k,o; such that

(A=X)®jks = Pjri—1, (A" = X)¥)r1=Tjpa-1. (4.1)

It is possible to choose ®;; and ¥, for j = 1,2,..., k =1,...,r;, | =
1,...,nj so that

(®jokets Yo b 1 )1 = 05 O,k Oty g 17 —1 (4.2)

(see e.g. [13], Sect. 2 or [14], Sect. 1.2). The choice of ®; 1, ¥; r; with fixed j
is non-unique. The group of admissible transformations P; form a subgroup in
GL(u;,C) defined by conditions (4.1), (4.2) (see e.g. [13], Sect. 2).

Let U,V € H. The sequences

FU)=U = A{Ujritirts Uikt = U, ¥k, 0—1-1)%,
F V)=V = AVirdikts Vika =V, Rjkmu—i-1)n
are the Fourier transforms of U and N with respect to the dual basis of the

eigenfunctions of 4 and A*, correspondingly. Using Lemma 3.2 and Corollary
3.4 we obtain



Corollary 4.1 LetU € HY(M)x L3*(M) andV € L?2(M) x H'(M). Then their
Fourier transforms U and V* determine the inner product (U, V) = (U,V)y
uniquely.

Due to relations (3.5), analogous results take place for Aqq, A%, with the bases
Ui = JOjkt; ®jna = (J) 7 Wy (4.3)
The bases ®; 1, ¥, makes sense to the following

Definition 4.2 The boundary spectral data of the pencil (1.1), (1.2) is the
collection

{OM; N, 65 palona, 3, s i=12,.,k=1,.,r;,l=1,.,n;r} (4.4)

Theorem 4.3 The Gel’fand boundary spectral data determine boundary spec-
tral data (4.4) to within the group P; of the transformations of the biorthogonal
bases which preserve properties (4.1), (4.2).

Proof. Given Ry(z,y),z,y € OM it is possible to find u{|aM, where uf\ is the
solution to (1.3). Consider U}: = (uA,Au)\) . Then

(a—NU{ =0,

where a is an extension of 4 on H?(M) x L?(M);

“= (a(x(,)D) —fbo) , D(a) = H*(M) x L*(M).

Let e € H2(M), Oye|lam = f and E = (e,0)t. Then
Ul =E—(A-XN"(a- NE.

U)’f is a meromorphic function of A with possible singularities only at \; € o(A)
and U { — Py, (AU jf is analytic at \;. Clearly,

ri njr—1

[P, (AU owr =D D UfiaN ) salon (4.5)

k=1 1[1=0

By Green’s formula

A= N)UL W) = /8 Bk ialowdS = (06)

_(U{7 \Ilj,k,nj,k*l*2)7'l7



where ¥;; 1 = 0. Formulae (4.5), (4.6) show that Py;(A)U /{ is pure singular
at Aj, i.e. all its positive Laurent coefficients vanish. Thus (4.5) is exactly the
singular part of the Laurent expansion of Ry f at A;. Hence by means of equation
(4.5) (with different f’s) it is possible to find all A; € o(A) = o(A(X)) as well
as the boundary values ¢}, lanr, 93 lons to within a linear transformation
preserving (4.1), (4.2) (for details see e.g. [13], Sect. 3). O

Let uf (x,t) be the solution to (1.4), (1.5) and v9(z, s) be the solution to the
initial-boundary value problem

v9, — bov? + a*(x, D)v? =0, (4.7
B*v|opmxr, = g5 v!]s=0 = vJ|s=0 =0 (4.8)

which is associated with A,q. Let
f g
f _ u (t) g _ v (3)
w0 = (i) 7= ()

Ul +iAU =0, VI +iAaVI=0.

Then

Lemma 4.4 For any f,g € L*(0M x Ry ) the boundary spectral data {)\;,
¢},k,l|3M7 ¢]2,k,l|3M} determine the Fourier coefficients FU'(t) and

FadV?(s) = Vig(s) ={(VI(s), Ujkom;n—1-1) 2 }ib-

Proof. Integration by parts together with the second of relations (4.1) yields
that

iU (), Cikmymtim1) = NUTE), )k —ie1) + (UL (), U kom; m1—2) +

+ / FOU s o1 1lomdS.
aM

As Uf|y=o = 0 this equation proves Lemma for U/ (). Taking into account
(4.3), the same considerations prove Lemma for V9(s). O

Corollary 4.5 Let f,g € L?(OM x Ry). Given boundary spectral data (4.4)
and t,s > 0 it is possible to evaluate

Ul (), JVI(s)) = (4.9)
=i [ fuf @, 075) — uf (0 @,5) + bo(o)u (2,072, 5) ).
M
Proof. The statement is an immediate corollary of the fact that U7(t) €

HY(M) x L?>(M), J*V9(s) € L>(M) x H'(M), Lemma 3.2, Corollary 3.3, for-
mula (3.5), and Lemma 4.4. O



5 Reconstruction of (M, g)

Denote by £?, s € R the subspace in H*+t1(M) x H*(M) of the functions which
satisfy natural compatibility conditions for the hyperbolic problem (1.4), (1.5)
(see e.g [15]) and by L£Z, the analogous subspace for (4.7), (4.8).

Theorem 5.1 [10] Let (M, g) satisfies the BLR-condition. Then
{(UNT): feHOM,[0,T))} =L, T >t s>—1/2.

Corollary 5.2 Let (M, g) satisfies the BLR-condition. Then boundary spectral
data (4.4) determine F (L) and Foqa(L3,) for s > —1/2.

Proof. The statement follows from Lemma 4.4 and Theorem 4.3. O

Let T' C M be open, ¢t > 0. Denote by d(-,-) the distance in M and
M(T,t)={z € M :d(z,T) < t}.

Lemma 5.3 LetUd € F(L%),s >0, U = FU. Then for anyT C OM andty >0
boundary spectral data (4.4) determine whether mgy(supp (U) N M(T',t)) =0 or
not. Analogous statement takes place for Vygq.

Here m, is the Riemannian measure on (M, g).

Proof. Consider U(t) = {U, r,(t)} where

d

%Uj,k,l(t) + i\ Ujka(t) +iUj ka1 (t) = 0, (5.1)

Ujei(0) = Uoyjhyts (5.2)

and {Up;j .k} = Uo = FUy, Uy € L5. Then there is U(t) = (u'(t),u*(t)) such
that U(t) = FU(t) and U satisfies the wave equation

Ut(t) + Z.AU(t) = 0, U(O) = U().
Moreover, U(t) € F(L?). When s > 0 Lemma 3.2 and trace theorem show that

u'(t)lom = lim lim [Py _(A)U®)] lom, (5.3)

7—0+ N—o0

where the convergence takes place in L2(8M). In view of the Holmgren-John
theorem [16], the fact that my(supp (U) N M(T',t)) = 0 is equivalent to the fact
that

supp (u'|aarxr) N (T x [—to, to]) = 0. (5.4)

However, ¢;,k,l|3M are known so that equations (5.1) - (5.3) determine u' (¢)|ans-
a

10



Corollary 5.4 Let T' C OM,tq > 0 and s > 0. Then boundary spectral data
(4-4) determine subspaces

F(L(T,t0)), F(L(T,t0)]°) and Faa(L34(T,%0)), Faa([Loq(T,t0)]%),
where
L3(D,t9) ={U € L% : supp (U) C cl(M(T',t9))},
[L3(T,t0)] ={U € L% : supp (U) C (M \ M(T,t0)}
and analogous definitions are valid for L3 ,(T',t9) and [L (T, to)]°.

Proof. By Lemma 5.3, boundary spectral data (4.4) determine [L£%(T,t9)]¢
and [£5 (T, t)]¢. Since U € L*(T,to) if and only if (U,J*V) = 0 for all V €
[£:4(T,t0)]¢ the remaining part of Corollary 5.4 follow from Corollary 4.5. O

Using intersections and unions of the sets described in Corollary 5.4 we
obtain

Corollary 5.5 LetT; C OM,t] >t; >0, i =1,...,I. Denote by My the set

T
My = ((M(T,¢5)\ M(T,t;)). (5.5)

=1
Then boundary spectral data (4.4) determine whether mgy(Mr) =0 or not.

Corollary 5.5 is the basic analytic tool in the reconstruction of (M, g). For this
end introduce R : M — L*°(0M) which maps z € M to the boundary distance
function

R(z) 1y = raly) = d(z,y), ye€ M.
It is shown in [7] that when the set R(M) C L*®°(0M) is given, it is possible
to define a Riemannian structure on R(M) such that R : M — R(M) is an
isometry.

Theorem 5.6 Boundary spectral data (4.4) of operator pencil (1.1), (1.2) which
satisfies the BLR-condition determine (M, g) uniquely.

Proof. In view of the above remark about isometry between (M, g) and R(M),
it is sufficient to show that the boundary spectral data determine R(M). Choose
€ > 0 and a collection of T';,i = 1,..., I(€) such that diam(T;) <e, |JT; = M.
Let

p=P1,DPr(e)s DPi € Ly, tf =(pi+1)e, t7 =(pi—1)e. (5.6)

Denote by M;(p) the set M (see (5.5)) with ¢ of form (5.6). For every p
such that my(Mr(p)) > 0 define a piecewise constant function r, by setting
rp(y) = pie when y € T';. Let R.(M) be the collection of these functions. Then

distpr (Re (M), R(M)) < 3¢

11



where dist (2, Q) stands for the Hausdorff distance between arbitrary subsets
0,Q in L*(O0M). Taking € — 0 we construct R(M). By [7] the set R(M) can
be considered as a Riemannian manifold which is isometric to (M, g). O

6 Reconstruction of the lower-order terms

Let U = F(U), V = Foq(V), for U,V € L°. We define an inner product

UYV) = Uik iViknsmtitr = (T Y Uski®jns, D Vika®ini)

Jikt Jikt 3.kl

where the sums are understood as limits in the Abel-Lidskii sense.
Let zo be an interior point of M and sets M () C M,

Mir(e) — 20 when ¢ — 0. (6.1)
Consider a family V() € Foa(L°), € > 0, such that
supp (V(e)) C cl(Mr(e)), V= Faua(V(e)), (6.2)
and for any U € F(L?%), s <m/2 < s+ 1 there is a limit W* (i),
W (U) = lim (U, V().

Such families exist, indeed it is sufficient to take C§°-approximations to (0, (- —
79))! where § is the Dirac distribution. On the other hand,

U, V() = (U, TV (e))n-

Since the limit exists for every & € F(L£®) and, in particular, for every U €
[C8°(M)]?, the Banach-Steinhaus theorem imply that there is W=° € [D'(M)]?
such that

lim (U, V(e)) = W™ (U) = (J*W™, U)y.

By (6.1) supp (W®°) C {x¢}. Moreover, as the limit exists for all U € £L%,s <
m/2 < s+ 1, we must have W = (0, k(x0)d(- — z0))? for some x(zo) € C.

Lemma 6.1 Let boundary spectral data (4.4) of operator pencil (1.1), (1.2) be
given, (M, g) satisfies the BLR-condition. Then for any s, s < m/2 < s+ 1,
and any 14, € R(M) (corresponding some xg € M ) it is possible to construct a
family V¥ (g), € > 0 which has a limit W*® : F(L%) — C. Moreover, there is
k(o) such that

WoU) = k(xo)u' (o) (6.3)

when U = F(u',u?)t. Finally, the families V®°(e), o € M, can be constructed
in such o way that

k€ C®(M), klom=1, K#0 on M. (6.4)

12



Proof. To prove the lemma it is sufficient to show the existence of families
V¥ (g), zo € M, such that their limits W?®° satisfy the following conditions:

i. For any zg € M there is U such that W=®e (i) # 0,
ii. Wro(U) € C°(M) when U € F((,50 L")
iii. lim,_,,, WT(U) = u'(z0) when zo € OM and U € F(L?).

To prove the existence of such V*°(¢) we can take adjoint Fourier transforms
of some smooth approximations to (0,5(- —zo)). On the other hand, conditions
i.-ili. may be verified algorithmically due to Lemma 4.4, Corollary 4.5, Corollary
5.2, Lemma 5.3 and Lemma, 3.2. O

Note that Lemma 6.1 shows the existence of the function  but its values
are unknown.

Corollary 6.2 Boundary spectral data (4.4) of a pencil (1.1),(1.2) with (M, g)
satisfying the BLR-condition determine the functions H(ﬂf)(f)},k,l(ﬂf), ji=12,...,
k=1,...,r; l=1,...,n;, where the function  satisfies relations (6.4).

Proof. Obviously ®;;; € £° for any s. By applying Lemma 6.1 to these
functions, we can find the values

'i(ﬂvo)‘f’;,k,l(fﬂo) =W (k)

where &(; ;. ;) is the sequence with 1 at the (j, k,1)-place and 0 otherwise. O
The functions x¢; , ; are the root functions for the pencil A,()):

AN(AJ)(H¢},k,l) = GN(waD)(K¢},k,l) - i)‘jbO(’W},k,l) - /\? (K'¢},Ic,l) (6.5)
K ;,k,lfl
Bu(k¢j 1) = (8u(K0j 1) — 0n(Kdj 4 1))loar = 0. (6.6)

Here A, () is the pencil corresponding the pair
ax(z,D) = ka(x,D)k ', ox=0+8,[Ink],

which is the the gauge transformation of a(z, D) and o(z).

Lemma 6.3 When k satisfies (6.4), the functions mﬁ;’k’l, i=12,..., k=
1,...,r;, L=1,...,n; determine a.(z,D),bo(z) and ox|an.

Proof. From Lemma 3.2 we see that the finite linear combinations of kK®; j ;

= (K} s Ak} 4, are dense in [CN(Q)]? for any N > 0, @ cC M. In
particular, when xq is an interior point of M the vectors

(K(0) b5 1 1 (o), V(K] 1) (T0), Aj K (w0)B) 4 (o)) € C™F?
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span C™*2. Then equations (6.5) determine a, and bg.
On the other hand, for any y € M there is ¢}, ; such that ¢}, ,(y) # 0.
Hence equations (6.6) determine o. O

Theorem 1.2 is now a corollary of Lemma 6.3, Lemma 6.2 and properties
(6.4) of k.

7

ii.

iii.

Remarks

. The BLR-condition is always satisfied for M C R™ when ¢! = 6% or is

its C'-small perturbation (see e.g. [10] and [17]).

In particular the results of the paper are always valid for m = 1 even when
the Gel’fand boundary spectral data are prescribed only at one boundary
point.

Using the non-stationary variant of the BC-method (see e.g. [8] and [18])
it is possible to prove an analog of Theorem 1.2 for the dynamic inverse
problem. In this case the data is the response operator R"(t) of form (1.6)
for the problem (1.4), (1.5) given for 0 < t < t, where t, is the same as in
Definition 1.1.
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