Gelf'and Inverse Problem for a Quadratic Operator Pencil

Yaroslav Kurylev and Matti Lassas

1 Introduction and main result

In the paper we deal with an inverse problem for a quadratic operator pencil

$$A(\lambda)u = a(x, D)u - i\lambda b_0 u - \lambda^2 u, \tag{1.1}$$

$$Bu = \partial_{\nu} u - \sigma u|_{\partial M} = 0 \tag{1.2}$$

on a differentiable compact connected manifold M, dim $M=m\geq 1$, with non-empty boundary $\partial M\neq\emptyset$. Here a(x,D) is a uniformly elliptic symbol

$$a(x, D) = -g^{-1/2}(\partial_j + b_j)g^{1/2}g^{jl}(\partial_l + b_l) + q,$$

where $[g^{jl}]_{j,l=1}^m$ defines a C^{∞} -smooth Riemannian metric and $b=(b_1,...,b_m)$ and q are, correspondingly, C^{∞} -smooth complex-valued 1-form and function on M. σ is a C^{∞} -smooth complex-valued function on ∂M and ∂_{ν} stands for the normal derivative.

Let R_{λ} be the resolvent of $A(\lambda)$ defined in the domain $H^{2}_{\sigma}(M) = \{u \in H^{2}(M) : Bu = 0\}$. The operator $R(\lambda)$ is meromorphic for $\lambda \in \mathbb{C}$ (see Sect. 3 and [1]). Denote by $R_{\lambda}(x,y)$ its Schwartz kernel. A natural analog of the Gel'fand inverse problem [2] is

Problem I Let ∂M and $R_{\lambda}(x,y)$; $\lambda \in \mathbb{C}$, $x,y \in \partial M$ be given. Do these data, called Gel'fand boundary spectral data, determine $(M,a(x,D),b_0,\sigma)$ uniquely?

We note that the determination of a Riemannian manifold (M,g) means the determination of a Riemannian manifold which is isometric to (M,g).

Remark 1: Let \mathcal{G}_{λ} be the Neumann-to-Dirichlet map $\mathcal{G}_{\lambda}f := u_{\lambda}^{f}|_{\partial M}$ where

$$A(\lambda)u_{\lambda}^{f} = 0, \quad Bu_{\lambda}^{f} = f. \tag{1.3}$$

Then the Gel'fand boundary spectral data is equivalent to the knowledge of \mathcal{G}_{λ} for all λ .

Remark 2: Problem I is equivalent to the inverse boundary problem for the dissipative wave equation. Namely, assume that $u^f = u^f(x,t)$ is the solution

of the problem

$$u_{tt}^f + b_0 u_t^f + a(x, D) u^f = 0, (1.4)$$

$$Bu^{f}|_{\partial M \times \mathbb{R}_{+}} = f; \quad u^{f}|_{t=0} = u^{f}_{t}|_{t=0} = 0$$
 (1.5)

where $f \in C(\mathbb{R}_+, L^2(\partial M))$. We define the response operator \mathbb{R}^h .

$$R^h(f) := u^f|_{\partial M \times \mathbb{R}_+}. (1.6)$$

Since the Fourier transform of $u^f(x,t)$ with respect to t is u^f_{λ} , we see that R^h determines the Gel'fand boundary spectral data and vice versa.

This hyperbolic inverse problem and its analogs were considered e.g. in [3], [4] and [5]. Paper [3] dealt with the inverse scattering problem, $M = \mathbb{R}^m$, with $g^{jl} = \delta^{jl}$. It was generalized in [4] onto the Gel'fand inverse boundary problem in a bounded domain in \mathbb{R}^m , $g^{jl} = \delta^{jl}$. In [5] the uniqueness of the reconstruction of the conformally Euclidean metric in $M \subset \mathbb{R}^m$ and the lower order terms (with some restrictions upon these terms) was proven for the geodesically regular domains M. The case $b_0 = 0$ and self-adjoint a(x, D) was considered in [6] and [7].

In the paper we give the answer to Problem I assuming some geometric conditions upon (M, g). The main technique used is the boundary control (BC) method (see e.g. [8]) in its geometrical version [7], together with the technique elaborated in [9].

To use control theory, we assume the following geometrical condition (for details see [10]) which generalizes the condition that the rays of the geometrical optics hit the boundary transversally.

Definition 1.1 The Riemannian manifold (M,g) satisfies the Bardos-Lebeau-Rauch (BLR) condition if there is $t_* > 0$ and an open conic neighborhood \mathcal{O} of the set of not-nondiffractive points $(x,\xi) \in T^*(M \times [0,t_*]), \ x \in \partial M$ such that any generalized bicharacteristic of the wave operator $\partial_t^2 - \Delta_g$ passes through a point $(x,\xi) \in T^*(M \times [0,t_*]) \setminus \mathcal{O}, \ x \in \partial M$.

The main result of the paper is:

Theorem 1.2 Let $(\partial M; \mathcal{G}_{\lambda}, \lambda \in \mathbb{C})$ be the Gel'fand boundary spectral data for a quadratic operator pencil (1.1), (1.2). Assume that the corresponding Riemannian manifold (M,g) satisfies the BLR-condition. Then these data determine M and b_0 uniquely and also the equivalence class of the pair $(a(x,D),\sigma)$ with respect to the group of gauge transformations, that is, the class

$$\{(\kappa a(x,D)\kappa^{-1}, \sigma + \partial_{\nu}(ln\kappa)) : \kappa \in C^{\infty}(M;\mathbb{C}), \kappa|_{\partial M} = 1, \kappa \neq 0 \text{ on } M\}.$$

When $b_0 = 0$ Theorem 1.2 was proven in [13]. However the generalization of the methods of [13] to the quadratic operator pencils is far from straightforward which results, in particular, in a new sesquilinear form (4.9) corresponding to the wave equation (1.4).

2 Auxiliary constructions

In view of the gauge invariance we can assume that $\sigma = 0$. To transform the pencil equation to an eigenvalue problem, we define

$$U = (u, \lambda u)^t.$$

For pairs $P = (a, b)^t$ we denote $[P]^1 = a$ and $[P]^2 = b$. Then the pencil equation (1.1), (1.2) is equivalent to $(A - \lambda)U = 0$ where $A = A_0 + A_1$,

$$\mathcal{A}_0 = \begin{pmatrix} 0 & I \\ A_0 & 0 \end{pmatrix}, \quad \mathcal{A}_1 = \begin{pmatrix} 0 & 0 \\ a_1(x, D) & -ib_0 \end{pmatrix}.$$

Here $A_0 = -\Delta_g$ is the Laplace operator with Neumann boundary condition,

$$\mathcal{D}(A_0) = H_{\nu}^2(M) := \{ u \in H^2(M) : \partial_{\nu} u |_{\partial M} = 0 \}$$

and $a_1(x,D) = a(x,D) - A_0$ is a first order operator. Operators $\mathcal{A}_0, \mathcal{A}$ with

$$\mathcal{D}(\mathcal{A}_0) = \mathcal{D}(\mathcal{A}) = H_{\nu}^2(M) \times L^2(M)$$

are closed in $\mathcal{H} = [L^2(M)]^2$. Using the transformation $\lambda \to \lambda + di$; $A_0 \to A_0 + d^2$, $d \in \mathbb{R}$ we can assume that

$$||A_0^{-1}|| < 1 \text{ and } ||a_1(x, D)A_0^{-3/4}|| < 1/2.$$
 (2.1)

The adjoint operator, A^* , is then

$$\mathcal{A}^* = \begin{pmatrix} 0 & A^* \\ I & i\bar{b}_0 \end{pmatrix}, \quad \mathcal{D}(\mathcal{A}^*) = L^2(M) \times \mathcal{D}(A^*), \tag{2.2}$$

$$\mathcal{D}(A^*) = H_{\nu,b}^2 := \{ u \in H^2; \quad B^*u := \partial_{\nu}u - 2b_{\nu}u|_{\partial M} = 0 \}$$
 (2.3)

where $b_{\nu} = (\nu, b)$ is the conormal component of b.

Using A^* instead of A we define operators \mathcal{A}_{ad} and \mathcal{A}_{ad}^* ,

$$\mathcal{A}_{ad} = \begin{pmatrix} 0 & I \\ A^* & i\bar{b}_0 \end{pmatrix}, \quad \mathcal{D}(\mathcal{A}_{ad}) = H^2_{\nu,b}(M) \times L^2(M).$$

Our goal is to use eigenfunction expansions corresponding to \mathcal{A} , \mathcal{A}^* and \mathcal{A}_{ad} , \mathcal{A}^*_{ad} . To this end we introduce operators the T_0 and $T = T_0 + T_1$ where

$$T_0 = \begin{pmatrix} 0 & A_0^{1/2} \\ A_0^{1/2} & 0 \end{pmatrix}, \quad T_1 = \begin{pmatrix} 0 & 0 \\ A_0^{-1/4} a_1 A_0^{-1/4} & -i A_0^{-1/4} b_0 A_0^{1/4} \end{pmatrix} (2.4)$$

$$\mathcal{D}(T) = \mathcal{D}(T_0) = [\mathcal{D}(A_0^{1/2})]^2 = [H^1(M)]^2. \tag{2.5}$$

By (2.1) T has a bounded inverse. We have

$$T_{0}U = L^{-1}\mathcal{A}_{0}LU, \quad TU = L^{-1}\mathcal{A}LU \quad \text{for}$$

$$L = \begin{pmatrix} A_{0}^{-1/4} & 0\\ 0 & A_{0}^{1/4} \end{pmatrix}, \quad U \in \mathcal{D}(A_{0}^{3/4}) \times \mathcal{D}(A_{0}^{1/2}).$$
(2.6)

Abel-Lidskii expansion 3

The operator $T_0^{-1} \in \mathfrak{S}_p$, p > m where \mathfrak{S}_p is the Schatten-von Neumann class (see e.g. [11]). As T_1 is bounded $T = T_0 + T_1$ is a weak perturbation of T_0 . Due to the general theory of weak perturbations of self-adjoint operators (see e.g. [1], Sect. 6.2-6.4) the spectrum $\sigma(T)$ of T is normal, that is, the spectrum of T consists of discrete eigenvalues with finite multiplicities.

Let $\beta > m$ be an even integer, $\tau > 0$ and Γ be a contour in \mathbb{C} , $\Gamma \cap \sigma(T) = \emptyset$. Denote by $P_{\Gamma,\tau}^{\beta}(T)$ the modified Riesz projector for T;

$$P_{\Gamma, au}^{eta}(T) = -rac{1}{2\pi i}\int_{\Gamma}e^{- au z^{eta}}(T-z)^{-1}dz,$$

and by $P_{\Gamma,\tau}^{\beta}(T_0)$ the analogous projector for T_0 . Let Γ be a contour in $\mathbb C$ which consists of two segments Im $z=\pm a, \mathrm{Re}\ z\in$ [-b, b], and four semi-axes Im $z = \pm c \text{Re } z$ (see Fig. 1).

Figure 1: Contour Γ

By using asymptotics of the eigenvalues of T (see e.g. [1]), parameters a, b, care chosen so that

- i. $\sigma(T)$ lies inside Γ .
- ii. Re $z^{\beta} \geq c_0|z^{\beta}|, c_0 > 0$ for $|\text{Im } z| \leq c|\text{Re } z|$.

Let $P_{N,\tau}^{\beta}(T)$ be the modified Riesz projections corresponding to the contours Γ_N which are obtained from Γ by cutting them by the vertical lines Re $z=\pm\alpha_N$ (see Fig. 2).

Figure 2: Contour Γ_N

Theorem 3.1 (Abel-Lidskii convergence) There exist a series of real numbers $\alpha_N > 0$, N = 1, 2, ..., which depends only upon $\sigma(T)$ such that

$$Y = \lim_{\tau \to +0} \lim_{N \to \infty} P_{N,\tau}^{\beta}(T)Y. \tag{3.1}$$

The convergence in (3.1) takes place in $[H^s(M)]^2$, $s \in [-1/2, 1/2]$ when $Y \in [H^s(M)]^2$ and in the graph norm of T^n when $Y \in \mathcal{D}(T^n)$, n = 1, 2, ...

Proof. Since $T_0 \in \mathfrak{S}_p$, p > m and T_1 is bounded the results of ([1], Sect. 6.2-6.4; see also [12]) show the existence of α'_N which depend upon $\sigma(T_0)$ and $\sigma(T)$ such that

$$\operatorname{s-}\lim_{N o\infty}P_{N, au}^{eta}(T)=P_{ au}^{eta}(T),$$

where s-lim is the limit in the strong operator topology and $P_{N,\tau}^{\beta}$ and P_{τ}^{β} correspond to contours Γ_N and Γ , correspondingly. The proof of the strong convergence is based upon exponential estimates for $(T-z)^{-1}$ and $(T_0-z)^{-1}$. However, since $P_{N,\tau}^{\beta}(T)$ remains intact under small deviations of α_N' it is possible to choose α_N independent of $\sigma(T_0)$. Now

$$(T_0 - z)^{-1} - (T - z)^{-1} = (T - z)^{-1} T_1 (T_0 - z)^{-1}$$

and $||(T-z)^{-1}||_{s,s'} \le c|z|^{-1-s+s'}$, $s \le s'$ when z lies outside Γ and $||\cdot||_{s,s'}$ stands for the operator norm from $[H^s(M)]^2$ to $[H^{s'}(M)]^2$. Hence

$$P_{\tau}^{\beta}(T) - P_{\tau}^{\beta}(T_0) = -\frac{1}{2\pi i} \int_{\Gamma} e^{-\tau z^{\beta}} (T-z)^{-1} T_1 (T_0 - z)^{-1} dz, \quad (3.2)$$

$$||(T-z)^{-1}T_1(T_0-z)^{-1}||_s \le c_s|z|^{-3/2}$$
 (3.3)

where $s \in [-1/2, 1/2]$ and z lies outside Γ . The integrand in right-hand side of (3.2) is analytic outside the spectra of T_0 and T. Hence we can change the parameter a which defines Γ without changing the right-hand side of (3.2). Thus by choosing $a = \tau^{-1/\beta}$ with τ sufficiently small, we see from (3.3) that (3.2) goes to zero when $\tau \to 0$. By spectral theory of the self-adjoint operators, s-lim $P_{\tau}^{\beta}(T_0) = I$. This implies the statement for $Y \in [H^s(M)]^2$.

The last part of the theorem follows from the case s=0 since for $Y\in\mathcal{D}(T^n)$

$$T^n P_{N,\tau}^{\beta}(T)Y = P_{N,\tau}^{\beta}(T)T^nY.$$

Lemma 3.2 Let $U = (u^1, u^2)^t \in H^1(M) \times L^2(M)$ or $U \in [C_0^{\infty}(M)]^2$. Then

$$U = \lim_{\tau \to 0+} \lim_{N \to \infty} P_{N,\tau}^{\beta}(\mathcal{A})U,$$

where the convergence takes place in $H^1(M) \times L^2(M)$ when U lies in this space or in $C^N(\Omega)$ for any N > 0, $\Omega \subset\subset M$ when $U \in [C_0^\infty(M)]^2$.

Proof. By (2.6), $(T-z)^{-1}Y = L^{-1}(A-z)^{-1}LY$ for $Y \in \mathcal{D}(A_0^{3/2}) \times \mathcal{D}(A_0^{1/2})$. Integrating this equation along Γ_N we come to the equation

$$P_{N,\tau}^{\beta}(T)Y = L^{-1}P_{N,\tau}^{\beta}(\mathcal{A})LY.$$

Since the modified Riesz projectors are finite-dimensional operators this equation remains valid for $Y \in \mathcal{D}(L)$. As $Y = L^{-1}U \in [H^{1/2}(M)]^2$ when $U \in H^1(M) \times L^2(M)$, Theorem 3.1 with s = 1/2 proves the statement for this case. As $L^{-1}[C_0^{\infty}(M)]^2 \subset \mathcal{D}(T^n)$ for any n > 0 and $\mathcal{D}(T^n) \subset [H^n(M)]^2$ this case also follows from Theorem 3.1 and the fact that L is a pseudodifferential operator of the order 1/2.

Corollary 3.3 Let $U \in L^2(M) \times H^1(M)$ or $U \in [C_0^{\infty}(M)]^2$. Then

$$U = \lim_{\tau \to 0+} \lim_{N \to \infty} P_{N,\tau}^{\beta}(\mathcal{A}^*) U \tag{3.4}$$

where the convergence takes place in $L^2(M) \times H^1(M)$ and $C^N(\Omega)$ for any $N > 0, \Omega \subset\subset M$, respectively.

Proof. As $||(T^* - \bar{z})^{-1} - (T_0 - \bar{z})^{-1}||_s = ||(T - z)^{-1} - (T_0 - z)^{-1}||_{-s}$, estimate (3.3) remains valid for T^*, T_0 and s = 1/2 for z outside Γ . The same arguments as in Theorem 3.1 show that

$$Y = \lim_{\tau \to 0+} \lim_{N \to \infty} P_{N,\tau}^{\beta}(T^*) Y$$
 in $[H^{1/2}(M)]^2$.

As $Y = LU \in [H^{1/2}(M)]^2$ when $U \in L^2(M) \times H^1(M)$, (3.4) follows. The case $U \in [C_0^{\infty}(M)]^2$ is considered as in Lemma 3.2.

Using the representation

$$\mathcal{A}_{ad}^* = J\mathcal{A}J^{-1}, \quad \mathcal{A}^* = J^*\mathcal{A}_{ad}[J^*]^{-1},$$

$$J\left[(u^1, u^2)^t\right] = (u^2 + ib_0u^1, u^1)^t,$$
(3.5)

we come to

Corollary 3.4 The statement of Lemma 3.2 is valid for \mathcal{A}_{ad}^* . The statement of Corollary 3.3 is valid for \mathcal{A}_{ad} .

4 Root functions and boundary spectral data

Let $\mathcal{H} = [L^2(M)]^2$ and denote by $P_{\lambda_j}(\mathcal{A})$ the Riesz projector $P^0_{\Gamma_j,0}(\mathcal{A})$ where Γ_j encloses only one point λ_j of the spectrum. Let $\mu_j = \dim \mathcal{H}_j = \dim \mathcal{H}_j^*$ where $\mathcal{H}_j = P_{\lambda_j}(\mathcal{A})\mathcal{H}$ and $\mathcal{H}_j^* = P_{\bar{\lambda}_j}(\mathcal{A}^*)\mathcal{H}$. Moreover, let $r_j = \dim \operatorname{Ker}(\mathcal{A} - \lambda_j) = \dim \operatorname{Ker}(\mathcal{A}^* - \bar{\lambda}_j)$. Denote by

$$\Phi_{j,k,0} = (\phi_{j,k,0}^1, \phi_{j,k,0}^2)^t, \ \Psi_{j,k,0} = (\psi_{j,k,0}^1, \psi_{j,k,0}^2)^t, \ k = 1, \dots, r_j$$

the eigenvectors of \mathcal{A} and \mathcal{A}^* at eigenvalues λ_j and $\bar{\lambda}_j$, correspondingly, and by $n_{j,k}, \quad n_{j,1} \geq n_{j,2} \geq \ldots \geq n_{j,r_j}$ their partial null multiplicities. The total multiplicity of λ_j is denoted by $\mu_j = n_{j,1} + \ldots + n_{j,r_j}$. This means that there are vectors $\Phi_{j,k,l}, \Psi_{j,k,l}, l = 1, \ldots, n_{j,k}$, called the root functions associated with $\Phi_{j,k,0}, \Psi_{j,k,0}$, such that

$$(A - \lambda_j)\Phi_{j,k,l} = \Phi_{j,k,l-1}, \quad (A^* - \bar{\lambda}_j)\Psi_{j,k,l} = \Psi_{j,k,l-1}.$$
 (4.1)

It is possible to choose $\Phi_{j,k,l}$ and $\Psi_{j,k,l}$ for $j=1,2,\ldots,\ k=1,\ldots,r_j,\ l=1,\ldots,n_{j,k}$ so that

$$(\Phi_{j,k,l}, \Psi_{j',k',l'})_{\mathcal{H}} = \delta_{j,j'} \delta_{k,k'} \delta_{l,n_{j,k}-l'-1}$$
(4.2)

(see e.g. [13], Sect. 2 or [14], Sect. 1.2). The choice of $\Phi_{j,k,l}$, $\Psi_{j,k,l}$ with fixed j is non-unique. The group of admissible transformations \mathcal{P}_j form a subgroup in $GL(\mu_j,\mathbb{C})$ defined by conditions (4.1), (4.2) (see e.g. [13], Sect. 2).

Let $U, V \in \mathcal{H}$. The sequences

$$\mathcal{F}(U) = \mathcal{U} := \{U_{j,k,l}\}_{j,k,l}, \ U_{j,k,l} = (U, \Psi_{j,k,n_{j,k}-l-1})_{\mathcal{H}},$$

$$\mathcal{F}^*(V) = \mathcal{V}^* := \{V_{j,k,l}^*\}_{j,k,l}, \ V_{j,k,l}^* = (V, \Phi_{j,k,n_{j,k}-l-1})_{\mathcal{H}}$$

are the Fourier transforms of U and N with respect to the dual basis of the eigenfunctions of \mathcal{A} and \mathcal{A}^* , correspondingly. Using Lemma 3.2 and Corollary 3.4 we obtain

Corollary 4.1 Let $U \in H^1(M) \times L^2(M)$ and $V \in L^2(M) \times H^1(M)$. Then their Fourier transforms \mathcal{U} and \mathcal{V}^* determine the inner product $(U, V) = (U, V)_{\mathcal{H}}$ uniquely.

Due to relations (3.5), analogous results take place for A_{ad} , A_{ad}^* with the bases

$$\tilde{\Psi}_{j,k,l} = J\Phi_{j,k,l}; \quad \tilde{\Phi}_{j,k,l} = (J^*)^{-1}\Psi_{j,k,l}. \tag{4.3}$$

The bases $\Phi_{j,k,l}, \Psi_{j,k,l}$ makes sense to the following

Definition 4.2 The boundary spectral data of the pencil (1.1), (1.2) is the collection

$$\{\partial M; \lambda_j, \phi_{i,k,l}^1|_{\partial M}, \psi_{i,k,l}^2|_{\partial M}: j = 1, 2, ..., k = 1, ..., r_j, l = 1, ..., n_{j,k}\}$$
(4.4)

.

Theorem 4.3 The Gel'fand boundary spectral data determine boundary spectral data (4.4) to within the group \mathcal{P}_j of the transformations of the biorthogonal bases which preserve properties (4.1), (4.2).

Proof. Given $R_{\lambda}(x,y), x, y \in \partial M$ it is possible to find $u_{\lambda}^{f}|_{\partial M}$, where u_{λ}^{f} is the solution to (1.3). Consider $U_{\lambda}^{f} = (u_{\lambda}^{f}, \lambda u_{\lambda}^{f})^{t}$. Then

$$(a-\lambda)U_{\lambda}^{f}=0,$$

where a is an extension of A on $H^2(M) \times L^2(M)$;

$$a = \begin{pmatrix} 0 & I \\ a(x, D) & -ib_0 \end{pmatrix}, \ \mathcal{D}(a) = H^2(M) \times L^2(M).$$

Let $e \in H^2(M)$, $\partial_{\nu} e|_{\partial M} = f$ and $E = (e,0)^t$. Then

$$U_{\lambda}^{f} = E - (A - \lambda)^{-1} (a - \lambda) E.$$

 U_{λ}^{f} is a meromorphic function of λ with possible singularities only at $\lambda_{j} \in \sigma(\mathcal{A})$ and $U_{\lambda}^{f} - P_{\lambda_{j}}(\mathcal{A})U_{\lambda}^{f}$ is analytic at λ_{j} . Clearly,

$$[P_{\lambda_j}(\mathcal{A})U_{\lambda}^f]^1|_{\partial M} = \sum_{k=1}^{r_j} \sum_{l=0}^{n_{j,k}-1} U_{j,k,l}^f(\lambda) \phi_{j,k,l}^1|_{\partial M}.$$
 (4.5)

By Green's formula

$$(\lambda - \lambda_j)(U_{\lambda}^f, \Psi_{j,k,n_{j,k}-l-1})_{\mathcal{H}} = \int_{\partial M} f \, \psi_{j,k,n_{j,k}-l-1}^2 |_{\partial M} dS - (4.6)$$
$$-(U_{\lambda}^f, \Psi_{j,k,n_{j,k}-l-2})_{\mathcal{H}},$$

where $\Psi_{j,k,-1}=0$. Formulae (4.5), (4.6) show that $P_{\lambda_j}(\mathcal{A})U_{\lambda}^f$ is pure singular at λ_j , i.e. all its positive Laurent coefficients vanish. Thus (4.5) is exactly the singular part of the Laurent expansion of $R_{\lambda}f$ at λ_j . Hence by means of equation (4.5) (with different f's) it is possible to find all $\lambda_j \in \sigma(\mathcal{A}) = \sigma(A(\lambda))$ as well as the boundary values $\phi_{j,k,l}^1|_{\partial M}$, $\psi_{j,k,l}^2|_{\partial M}$ to within a linear transformation preserving (4.1), (4.2) (for details see e.g. [13], Sect. 3).

Let $u^f(x,t)$ be the solution to (1.4), (1.5) and $v^g(x,s)$ be the solution to the initial-boundary value problem

$$v_{ss}^g - \bar{b}_0 v_s^g + a^*(x, D) v^g = 0, (4.7)$$

$$B^*v|_{\partial M \times \mathbb{R}_+} = g; \quad v^g|_{s=0} = v^g_s|_{s=0} = 0$$
 (4.8)

which is associated with \mathcal{A}_{ad} . Let

$$U^f(t) = \begin{pmatrix} u^f(t) \\ iu_t^f(t) \end{pmatrix}, \quad V^g(s) = \begin{pmatrix} v^g(s) \\ iv_s^g(s) \end{pmatrix}.$$

Then

$$U_t^f + i\mathcal{A}U^f = 0, \quad V_s^g + i\mathcal{A}_{ad}V^g = 0.$$

Lemma 4.4 For any $f,g \in L^2(\partial M \times \mathbb{R}_+)$ the boundary spectral data $\{\lambda_j, \phi^1_{j,k,l}|_{\partial M}, \psi^2_{j,k,l}|_{\partial M}\}$ determine the Fourier coefficients $\mathcal{F}U^f(t)$ and

$$\mathcal{F}_{ad}V^g(s) = \mathcal{V}_{ad}^g(s) = \{ (V^g(s), \widetilde{\Psi}_{j,k,n_{j,k}-l-1})_{\mathcal{H}} \}_{jkl}.$$

Proof. Integration by parts together with the second of relations (4.1) yields that

$$i\partial_{t}(U^{f}(t), \Psi_{j,k,n_{j,k}-l-1}) = \lambda_{j}(U^{f}(t), \Psi_{j,k,n_{j,k}-l-1}) + (U^{f}(t), \Psi_{j,k,n_{j,k}-l-2}) + \int_{\partial M} f(t)\psi_{j,k,n_{j,k}-l-1}^{2}|_{\partial M} dS.$$

As $U^f|_{t=0}=0$ this equation proves Lemma for $U^f(t)$. Taking into account (4.3), the same considerations prove Lemma for $V^g(s)$.

Corollary 4.5 Let $f, g \in L^2(\partial M \times \mathbb{R}_+)$. Given boundary spectral data (4.4) and $t, s \geq 0$ it is possible to evaluate

$$(U^{f}(t), J^{*}V^{g}(s)) = (4.9)$$

$$= i \int_{M} [u_{t}^{f}(x, t)\overline{v^{g}(x, s)} - u^{f}(t)\overline{v_{s}^{g}(x, s)} + b_{0}(x)u^{f}(x, t)\overline{v^{g}(x, s)}]dx.$$

Proof. The statement is an immediate corollary of the fact that $U^f(t) \in H^1(M) \times L^2(M)$, $J^*V^g(s) \in L^2(M) \times H^1(M)$, Lemma 3.2, Corollary 3.3, formula (3.5), and Lemma 4.4.

5 Reconstruction of (M, g)

Denote by \mathcal{L}^s , $s \in \mathbb{R}$ the subspace in $H^{s+1}(M) \times H^s(M)$ of the functions which satisfy natural compatibility conditions for the hyperbolic problem (1.4), (1.5) (see e.g [15]) and by \mathcal{L}^s_{ad} the analogous subspace for (4.7), (4.8).

Theorem 5.1 [10] Let (M,g) satisfies the BLR-condition. Then

$$\{U^f(T): f \in H_0^s(\partial M, [0, T])\} = \mathcal{L}^s, \quad T > t_*, \ s \ge -1/2.$$

Corollary 5.2 Let (M, g) satisfies the BLR-condition. Then boundary spectral data (4.4) determine $\mathcal{F}(\mathcal{L}^s)$ and $\mathcal{F}_{ad}(\mathcal{L}^s_{ad})$ for $s \geq -1/2$.

Proof. The statement follows from Lemma 4.4 and Theorem 4.3. \Box

Let $\Gamma \subset M$ be open, $t \geq 0$. Denote by $d(\cdot, \cdot)$ the distance in M and

$$M(\Gamma, t) = \{x \in M : d(x, \Gamma) \le t\}.$$

Lemma 5.3 Let $\mathcal{U} \in \mathcal{F}(\mathcal{L}^s)$, $s \geq 0$, $\mathcal{U} = \mathcal{F}U$. Then for any $\Gamma \subset \partial M$ and $t_0 \geq 0$ boundary spectral data (4.4) determine whether $m_g(supp\ (U) \cap M(\Gamma, t)) = 0$ or not. Analogous statement takes place for \mathcal{V}_{ad} .

Here m_g is the Riemannian measure on (M, g).

Proof. Consider $\mathcal{U}(t) = \{U_{i,k,l}(t)\}$ where

$$\frac{d}{dt}U_{j,k,l}(t) + i\lambda_j U_{j,k,l}(t) + iU_{j,k,l+1}(t) = 0, (5.1)$$

$$U_{i,k,l}(0) = U_{0;i,k,l}, (5.2)$$

and $\{U_{0;j,k,l}\} = \mathcal{U}_0 = \mathcal{F}U_0, \ U_0 \in \mathcal{L}^s$. Then there is $U(t) = (u^1(t), u^2(t))$ such that $\mathcal{U}(t) = \mathcal{F}U(t)$ and U satisfies the wave equation

$$U_t(t) + i\mathcal{A}U(t) = 0, \quad U(0) = U_0.$$

Moreover, $\mathcal{U}(t) \in \mathcal{F}(\mathcal{L}^s)$. When $s \geq 0$ Lemma 3.2 and trace theorem show that

$$u^{1}(t)|_{\partial M} = \lim_{\tau \to 0+} \lim_{N \to \infty} [P_{N,\tau}^{\beta}(\mathcal{A})U(t)]^{1}|_{\partial M}, \tag{5.3}$$

where the convergence takes place in $L^2(\partial M)$. In view of the Holmgren-John theorem [16], the fact that $m_g(\text{supp }(U)\cap M(\Gamma,t))=0$ is equivalent to the fact that

$$\operatorname{supp} (u^1|_{\partial M \times \mathbb{R}}) \cap (\Gamma \times [-t_0, t_0]) = \emptyset. \tag{5.4}$$

However, $\phi_{j,k,l}^1|_{\partial M}$ are known so that equations (5.1) - (5.3) determine $u^1(t)|_{\partial M}$.

Corollary 5.4 Let $\Gamma \subset \partial M, t_0 \geq 0$ and $s \geq 0$. Then boundary spectral data (4.4) determine subspaces

$$\mathcal{F}(\mathcal{L}^s(\Gamma,t_0)), \ \mathcal{F}([\mathcal{L}^s(\Gamma,t_0)]^c) \ and \ \mathcal{F}_{ad}(\mathcal{L}^s_{ad}(\Gamma,t_0)), \ \mathcal{F}_{ad}([\mathcal{L}^s_{ad}(\Gamma,t_0)]^c),$$

where

$$\mathcal{L}^{s}(\Gamma, t_{0}) = \{ U \in \mathcal{L}^{s} : supp (U) \subset cl(M(\Gamma, t_{0})) \},$$
$$[\mathcal{L}^{s}(\Gamma, t_{0})]^{c} = \{ U \in \mathcal{L}^{s} : supp (U) \subset cl(M \setminus M(\Gamma, t_{0})) \}$$

and analogous definitions are valid for $\mathcal{L}^s_{ad}(\Gamma, t_0)$ and $[\mathcal{L}^s_{ad}(\Gamma, t_0)]^c$.

Proof. By Lemma 5.3, boundary spectral data (4.4) determine $[\mathcal{L}^s(\Gamma, t_0)]^c$ and $[\mathcal{L}^s_{ad}(\Gamma, t_0)]^c$. Since $U \in \mathcal{L}^s(\Gamma, t_0)$ if and only if $(U, J^*V) = 0$ for all $V \in [\mathcal{L}^s_{ad}(\Gamma, t_0)]^c$ the remaining part of Corollary 5.4 follow from Corollary 4.5. \square

Using intersections and unions of the sets described in Corollary 5.4 we obtain

Corollary 5.5 Let $\Gamma_i \subset \partial M, t_i^+ > t_i^- \geq 0, i = 1, ..., I$. Denote by M_I the set

$$M_I = \bigcap_{i=1}^{I} (M(\Gamma, t_i^+) \setminus M(\Gamma, t_i^-)). \tag{5.5}$$

Then boundary spectral data (4.4) determine whether $m_g(M_I) = 0$ or not.

Corollary 5.5 is the basic analytic tool in the reconstruction of (M, g). For this end introduce $\mathcal{R}: M \to L^{\infty}(\partial M)$ which maps $x \in M$ to the boundary distance function

$$\mathcal{R}(x): y \mapsto r_x(y) = d(x, y), \quad y \in \partial M.$$

It is shown in [7] that when the set $\mathcal{R}(M) \subset L^{\infty}(\partial M)$ is given, it is possible to define a Riemannian structure on $\mathcal{R}(M)$ such that $\mathcal{R}: M \to \mathcal{R}(M)$ is an isometry.

Theorem 5.6 Boundary spectral data (4.4) of operator pencil (1.1), (1.2) which satisfies the BLR-condition determine (M,g) uniquely.

Proof. In view of the above remark about isometry between (M, g) and $\mathcal{R}(M)$, it is sufficient to show that the boundary spectral data determine $\mathcal{R}(M)$. Choose $\varepsilon > 0$ and a collection of Γ_i , $i = 1, ..., I(\varepsilon)$ such that $\operatorname{diam}(\Gamma_i) \leq \varepsilon$, $\bigcup \Gamma_i = \partial M$. Let

$$p = (p_1, ..., p_{I(\varepsilon)}), \quad p_i \in \mathbb{Z}_+, \quad t_i^+ = (p_i + 1)\varepsilon, \quad t_i^- = (p_i - 1)\varepsilon.$$
 (5.6)

Denote by $M_I(p)$ the set M_I (see (5.5)) with t_i^{\pm} of form (5.6). For every p such that $m_g(M_I(p)) > 0$ define a piecewise constant function r_p by setting $r_p(y) = p_i \varepsilon$ when $y \in \Gamma_i$. Let $\mathcal{R}_{\varepsilon}(M)$ be the collection of these functions. Then

$$\operatorname{dist}_{M}(\mathcal{R}_{\varepsilon}(M), \mathcal{R}(M)) \leq 3\varepsilon$$

where $\operatorname{dist}_M(\Omega, \widetilde{\Omega})$ stands for the Hausdorff distance between arbitrary subsets $\Omega, \widetilde{\Omega}$ in $L^{\infty}(\partial M)$. Taking $\varepsilon \to 0$ we construct $\mathcal{R}(M)$. By [7] the set $\mathcal{R}(M)$ can be considered as a Riemannian manifold which is isometric to (M, g).

6 Reconstruction of the lower-order terms

Let $\mathcal{U} = \mathcal{F}(U), \ \mathcal{V} = \mathcal{F}_{ad}(V), \text{ for } U, V \in \mathcal{L}^0.$ We define an inner product

$$(\mathcal{U}, \mathcal{V}) = \sum_{j,k,l} \mathcal{U}_{j,k,l} \mathcal{V}_{j,k,n_{j,k}-l+1} = \left(J \sum_{j,k,l} \mathcal{U}_{j,k,l} \Phi_{j,k,l}, \sum_{j,k,l} \mathcal{V}_{j,k,l} \widetilde{\Phi}_{j,k,l}\right)$$

where the sums are understood as limits in the Abel-Lidskii sense. Let x_0 be an interior point of M and sets $M(\varepsilon) \subset M$,

$$M_I(\varepsilon) \longrightarrow x_0 \quad \text{when} \quad \varepsilon \to 0.$$
 (6.1)

Consider a family $\mathcal{V}(\varepsilon) \in \mathcal{F}_{ad}(\mathcal{L}^0)$, $\varepsilon > 0$, such that

supp
$$(V(\varepsilon)) \subset \operatorname{cl}(M_I(\varepsilon)), \quad \mathcal{V}^{\varepsilon} = \mathcal{F}_{ad}(V(\varepsilon)),$$
 (6.2)

and for any $\mathcal{U} \in \mathcal{F}(\mathcal{L}^s)$, s < m/2 < s + 1 there is a limit $\mathcal{W}^{x_0}(\mathcal{U})$,

$$\mathcal{W}^{x_0}(\mathcal{U}) = \lim_{\varepsilon \to 0} (\mathcal{U}, \mathcal{V}(\varepsilon)).$$

Such families exist, indeed it is sufficient to take C_0^{∞} -approximations to $(0, \delta(\cdot - x_0))^t$ where δ is the Dirac distribution. On the other hand,

$$(\mathcal{U}, \mathcal{V}(\varepsilon)) = (U, J^*V(\varepsilon))_{\mathcal{H}}.$$

Since the limit exists for every $U \in \mathcal{F}(\mathcal{L}^s)$ and, in particular, for every $U \in [C_0^{\infty}(M)]^2$, the Banach-Steinhaus theorem imply that there is $W^{x_0} \in [D'(M)]^2$ such that

$$\lim_{\varepsilon \to 0} (\mathcal{U}, \mathcal{V}(\varepsilon)) = W^{x_0}(U) = (J^*W^{x_0}, U)_{\mathcal{H}}.$$

By (6.1) supp $(W^{x_0}) \subset \{x_0\}$. Moreover, as the limit exists for all $U \in \mathcal{L}^s$, s < m/2 < s + 1, we must have $W^{x_0} = (0, \kappa(x_0)\delta(\cdot - x_0))^t$ for some $\kappa(x_0) \in \mathbb{C}$.

Lemma 6.1 Let boundary spectral data (4.4) of operator pencil (1.1), (1.2) be given, (M,g) satisfies the BLR-condition. Then for any s, s < m/2 < s + 1, and any $r_{x_0} \in \mathcal{R}(M)$ (corresponding some $x_0 \in M$) it is possible to construct a family $\mathcal{V}^{x_0}(\varepsilon)$, $\varepsilon > 0$ which has a limit $\mathcal{W}^{x_0}: \mathcal{F}(\mathcal{L}^s) \to \mathbb{C}$. Moreover, there is $\kappa(x_0)$ such that

$$\mathcal{W}^{x_0}(\mathcal{U}) = \kappa(x_0)u^1(x_0) \tag{6.3}$$

when $\mathcal{U} = \mathcal{F}(u^1, u^2)^t$. Finally, the families $\mathcal{V}^{x_0}(\varepsilon)$, $x_0 \in M$, can be constructed in such a way that

$$\kappa \in C^{\infty}(M), \quad \kappa|_{\partial M} = 1, \quad \kappa \neq 0 \quad on M.$$
(6.4)

Proof. To prove the lemma it is sufficient to show the existence of families $\mathcal{V}^{x_0}(\varepsilon)$, $x_0 \in M$, such that their limits \mathcal{W}^{x_0} satisfy the following conditions:

- i. For any $x_0 \in M$ there is \mathcal{U} such that $\mathcal{W}^{x_0}(\mathcal{U}) \neq 0$,
- ii. $\mathcal{W}^{x_0}(\mathcal{U}) \in C^{\infty}(M)$ when $\mathcal{U} \in \mathcal{F}(\bigcap_{s>0} \mathcal{L}^s)$.
- iii. $\lim_{x\to x_0} \mathcal{W}^x(\mathcal{U}) = u^1(x_0)$ when $x_0 \in \partial M$ and $\mathcal{U} \in \mathcal{F}(\mathcal{L}^s)$.

To prove the existence of such $\mathcal{V}^{x_0}(\varepsilon)$ we can take adjoint Fourier transforms of some smooth approximations to $(0, \delta(\cdot - x_0))^t$. On the other hand, conditions i.-iii. may be verified algorithmically due to Lemma 4.4, Corollary 4.5, Corollary 5.2, Lemma 5.3 and Lemma 3.2.

Note that Lemma 6.1 shows the existence of the function κ but its values are unknown.

Corollary 6.2 Boundary spectral data (4.4) of a pencil (1.1),(1.2) with (M,g) satisfying the BLR-condition determine the functions $\kappa(x)\phi_{j,k,l}^1(x)$, $j=1,2,\ldots,k=1,\ldots,r_j$ $l=1,\ldots,n_{j,k}$, where the function κ satisfies relations (6.4).

Proof. Obviously $\Phi_{j,k,l} \in \mathcal{L}^s$ for any s. By applying Lemma 6.1 to these functions, we can find the values

$$\kappa(x_0)\phi_{j,k,l}^1(x_0) = \mathcal{W}^{x_0}(\mathcal{E}_{(j,k,l)})$$

where $\mathcal{E}_{(j,k,l)}$ is the sequence with 1 at the (j,k,l)-place and 0 otherwise.

The functions $\kappa \phi_{i,k,l}^1$ are the root functions for the pencil $A_{\kappa}(\lambda)$:

$$A_{\kappa}(\lambda_{j})(\kappa\phi_{j,k,l}^{1}) = a_{\kappa}(x,D)(\kappa\phi_{j,k,l}^{1}) - i\lambda_{j}b_{0}(\kappa\phi_{j,k,l}^{1}) - \lambda_{j}^{2}(\kappa\phi_{j,k,l}^{1})$$
(6.5)
$$= \kappa\phi_{j,k,l-1}^{1}$$

$$B_{\kappa}(\kappa\phi_{j,k,l}^{1}) = (\partial_{\nu}(\kappa\phi_{j,k,l}^{1}) - \sigma_{\kappa}(\kappa\phi_{j,k,l}^{1}))|_{\partial M} = 0.$$
(6.6)

Here $A_{\kappa}(\lambda)$ is the pencil corresponding the pair

$$a_{\kappa}(x, D) = \kappa a(x, D)\kappa^{-1}, \quad \sigma_{\kappa} = \sigma + \partial_{\nu}[\ln \kappa],$$

which is the gauge transformation of a(x, D) and $\sigma(x)$.

Lemma 6.3 When κ satisfies (6.4), the functions $\kappa \phi_{j,k,l}^1$, $j=1,2,\ldots, k=1,\ldots,r_j,\ l=1,\ldots,n_{j,k}$ determine $a_{\kappa}(x,D),b_0(x)$ and $\sigma_{\kappa}|_{\partial M}$.

Proof. From Lemma 3.2 we see that the finite linear combinations of $\kappa \Phi_{j,k,l} = (\kappa \phi_{j,k,l}^1, \lambda_j \kappa \phi_{j,k,l}^1)^t$ are dense in $[C^N(\Omega)]^2$ for any $N \geq 0$, $\Omega \subset M$. In particular, when x_0 is an interior point of M the vectors

$$(\kappa(x_0)\phi_{i,k,l}^1(x_0), \nabla(\kappa\phi_{i,k,l}^1)(x_0), \lambda_i\kappa(x_0)\phi_{i,k,l}^1(x_0)) \in \mathbb{C}^{m+2}$$

span \mathbb{C}^{m+2} . Then equations (6.5) determine a_{κ} and b_0 .

On the other hand, for any $y \in \partial M$ there is $\phi_{j,k,l}^1$ such that $\phi_{j,k,l}^1(y) \neq 0$. Hence equations (6.6) determine σ_{κ} .

Theorem 1.2 is now a corollary of Lemma 6.3, Lemma 6.2 and properties (6.4) of κ .

7 Remarks

- i. The BLR-condition is always satisfied for $M \subset \mathbb{R}^m$ when $g^{jl} = \delta^{j,l}$ or is its C^1 -small perturbation (see e.g. [10] and [17]).
- ii. In particular the results of the paper are always valid for m=1 even when the Gel'fand boundary spectral data are prescribed only at one boundary point.
- iii. Using the non-stationary variant of the BC-method (see e.g. [8] and [18]) it is possible to prove an analog of Theorem 1.2 for the dynamic inverse problem. In this case the data is the response operator $R^h(t)$ of form (1.6) for the problem (1.4), (1.5) given for $0 \le t \le t_*$ where t_* is the same as in Definition 1.1.

Acknowledgements: The authors are grateful to M. S. Agranovich, C. Bardos, A. S. Markus and E. Somersalo for fruitful discussions and friendly support. The research was partly supported by Volkswagen-Stiftung (RiP-Program, Oberwolfach), EPSRC grant GR/M36595 and Finnish Academy grant 37692.

References

- [1] Agranovich M. S. Elliptic Boundary Problems, Encycl. Math. Sci. **79** (1996), 1-140.
- [2] Gel'fand I. M. Some aspects of functional analysis and algebra, Proc. Intern. Congress Math. 1 (1957), 253-277.
- [3] Shiota T. An inverse problem for the wave equation with first order perturbations, Amer. J. Math. 107 (1985), 241-251.
- [4] Lassas, M. The inverse boundary spectral problem for a hyperbolic equation with first order perturbation. Appl. Anal. **70** (1999), 219–231.
- [5] Romanov V. G. Uniqueness theorems in inverse problems for some second-order equations, Dokl. Math. 44 (1992), 678-682.
- [6] Kurylev Y. V. A multidimensional Gel'fand-Levitan inverse boundary problem, Differential Equations and Mathematical Physics (ed. I.Knowles), Intern. Press (1995), 117-131.

- [7] Kurylev Y. V. Multidimensional Gel'fand inverse problem and boundary distance map, Inverse Probl. Related with Geometry (ed. H.Soga) (1997), 1-15.
- [8] Belishev M. I. Boundary control in reconstruction of manifolds and metrics (the BC-method), Inverse Probl. 13 (1997), R1-R45.
- [9] Lassas M. Non-self-adjoint inverse spectral problems and their applications to random bodies, Ann.Acad. Sci. Fenn. Dissertations 103 (1995).
- [10] Bardos C., Lebeau G., Rauch J. Sharp sufficient conditionsfor the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024-1065.
- [11] Gohberg I. C., Krein M. G. Introduction to the Theory of Linear Non-selfadjoint Operators, Transl. Math. Monogr. 18 (1969), 378.
- [12] Katsnel'son V. E. Convergence and summability of series in root vectors for some classes of non-self-adjoint operators (in Russian), Candidate Thesis, Kharkov (1967).
- [13] Kurylev Y. V., Lassas M. The multidimensional Gel'fand inverse problem for non-self-adjoint operators, Inverse Problems 13 (1997), 1495-1501.
- [14] Nazarov S. A., Plamenevsky B.A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, W. de Gruyter (1994), 525.
- [15] Rauch J., Massey F. Differentiability of solutions to hyperbolic initial-boundary value problem, Trans. Amer. Math. Soc. **189** (1974), 303-318.
- [16] Tataru D. Unique continuation for the solutions to PDE's; between Hormander's theorem and Holmgren's theorem, Comm. Part. Diff. Eq. 20 (1995), 855-884.
- [17] Tataru D. Boundary controllability for conservative PDE's, Appl. Math. Optim. 31 (1995), 257-295.
- [18] Belishev M. I., Kurylev Y.V. Nonstationary inverse problem for the wave equation "in large" (in Russian), Zap. Nauchn. Semin. LOMI **165** (1987), 21-30.

Yaroslav Kurylev Department of Mathematical Sciences Loughborough University Loughborough LE11 3TU, UK

Y.V.Kurylev@lboro.ac.uk

Matti Lassas Rolf Nevanlinna Institute University of Helsinki Helsinki, P. O. Box 4 FIN-00014, Finland

Matti.Lassas@helsinki.fi