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Abstract

This paper considers an inverse problem for wave propagation in a per-
turbed, dissipative half-space. The perturbation is assumed to be compactly
supported. This paper shows that in dimension three, the perturbation is
uniquely determined by knowledge of the Dirichlet-to-Neumann map on an
open subset of the boundary.

1 Introduction

In this paper, we consider an inverse problem for wave propagation modeled
by the equation

(V* +q(@))u(z) = 0, (1)

where z is in R? and ¢ can be complex-valued. This equation arises in the
propagation of electromagnetic [1], [4] and acoustic [7], [10] waves.
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We consider the problem in the half-space 3 < 0. In the lower half-space,
q(z) differs from the constant ¢g_ only in a region of compact support. Here
the imaginary part of ¢(z) and ¢_ are assumed to be positive.

For this wave propagation problem we consider an inverse boundary value
problem for the lower half-space. In particular, we specify Dirichlet data on
the top surface:

Ules=0 = f, (2)

together with an outgoing radiation condition in the lower half-space. We
assume that the boundary data f is in the Sobolev space H'/? defined by

H* = {f: / FOR(L+ |€2)72de < oo}

For boundary data in this space, it is known that the boundary value problem
(1), (2), together with radiation conditions, has a unique solution [1].
Thus the normal derivative du/dz3 on the surface x3 = 0 is uniquely

determined. The mapping from HY? to H~'/?
ou
A ufgy—o — 6—:103‘9”3:0 (3)

is called the Dirichlet-to-Neumann map. Such maps have been used a great
deal recently in the study of inverse problems [15], [9], [13], [11], [14]. Knowl-
edge of the Dirichlet-to-Neumann map is equivalent, in a certain sense, to
scattering data [1].

The inverse boundary value problem is to determine ¢(x) in the lower half-
space from knowledge of A. In the case in which the Dirichlet-to-Neumann
map is defined on the boundary of a compact region, it is known [15] that
knowledge of A uniquely determines ¢(z). The purpose of this paper is to
extend this result to the half-space geometry. For the case in which ¢ is
purely real, the half-space uniqueness question was studied in the unpub-
lished manuscripts [17] and [5]. Here we consider the complex case.

2 The theorem and proof

We consider two equations of the form (1). We denote the two ¢gs by ¢
and ¢, and we will use subscripts to denote the corresponding associated
solutions, Green’s functions, Dirichlet-to-Neumann maps, etc..
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We assume that the general region of space containing the possible per-
turbations ¢; and g is known. We denote by B a large open set containing
the supports of ¢; and ¢,. We also assume that the perturbation is strictly
contained in the lower half-space, so that the closure of B does not intersect
the boundary x5 = 0.

The proof of the theorem will make use of the Dirichlet Green’s function,
which can be defined as follows by the method of images. We use a tilde
to denote the image point, so that ¢ is the point obtained by reflecting y
across the y3 = 0 plane. First we recall that the free-space outgoing Green’s

function corresponding to the medium parameters in the lower half-space is
x,y) = ———. 4

For a source located at the image point § we define the function éo(x, y) =
Go(z,y). Thus the Green’s function of the homogeneous half-space is de-
fined by GP(x,y) = Go(z,y) — Go(z,y). This function satisfies the Dirichlet
boundary condition GP(z,¥)|z,—0 = 0 and the Sommerfeld radiation condi-
tion

ik)Gg (z,y) = 0. (5)

lim |z|(z— —

Thus we can define the perturbed free-space Green’s function as the unique
solution of the Lippmann-Schwinger equation

GP(z,y) = Gy (z,y) +/Gé7(w,Z)(q(Z) —q-)G"(2,y) dz. (6)

By construction, this Dirichlet Green’s function satisfies (in the distribution
sense)

(V2 +4q(2))G"(2,y) = =6(z —y) in R (7)

Moreover, simple calculations show that this GP satisfies the boundary con-
dition

G (,Y)|z4=0 = 0, (8)

and the Sommerfeld radiation condition (5). Moreover, general facts about
Green’s functions [3] imply that GP also satisifies the reciprocity relation

GP(z,y) = GP(y,x). 9)



Proposition 2.1 The kernel of the Dirichlet-to-Neumann map A is

A A Ta— =0- 1
axs ayB G (IL‘, y)| 3=0,y3=0 ( O)

Proof. We apply the divergence theorem and radiation condition (5) to
J(GPV?u — uV?GP) = u, where u denotes a solution of (1), (2), with radi-
ation conditions in the lower half-space. O

We denote by R3 the lower half-space {r : z3 < 0}, and by A the set
R3\B. In the following we say that A; = A, on some open subset I' of the
boundary z3 = 0 if the kernels of the operators coincide on I' x I, i.e.,

for z and y in T'.

Theorem 2.1 Suppose the set B containing the supports of ¢ — q_ and
Q2 — q_ 1S strictly contained in the lower half-space. If A = Ay on some open
subset I of the boundary x3 = 0, then q1 = qs.

Proof. The proof involves a series of five lemmas. The first two show that
knowledge of the Dirichlet-to-Neumann map suffices to determine the Dirich-
let Green’s function outside the perturbation in ¢. The third and fourth
lemmas establish a version of the Green’s theorem identity that is often
used for uniqueness arguments. The last lemma, which is roughly based on
the uniqueness proof in [8], shows that linear combinations of the Dirichlet
Green’s functions can be used to approximate the Sylvester-Uhlmann solu-
tions.

Lemma 2.2 Suppose the hypotheses of the theorem are satisfied. Then
0y, G (z,y) = 0y, GY (z,y) fory in T and z in A.

Proof. For a fixed y in ', we denote by F;(x) the function 8,,GP (x,y) for
i =1,2. Each F; satisfies the Helmholtz equation (V2 + ¢_)F;(x) = 0 in the
set A away from the perturbation. Because A; = Ay on I, from (11) we have
that the normal derivatives of F; coincide there: 0., Fi(x) = 0., F»(x) for z on



I'. Moreover, by taking ys derivatives of both sides of the boundary condition
(8) we see that for z on ', Fi(z) = Fy(x) = 0. Thus F; — F, satisfies the
unperturbed Helmholtz equation outside B, and has zero Cauchy data on I
The Holmgren uniqueness theorem [16] implies that F; and F, are identical
in a neighborhood of T'.

From this the claim follows from the unique continuation principle [2].
O

Lemma 2.3 Suppose the hypotheses of the theorem are satisfied. Then
GP(z,y) = GP(z,y) for x in A and y in A\{z}.

Proof. Let z in A be fixed. Then GP(z,y), i = 1,2 satisfies the Helmholtz
equation (V2+¢ )GP(xz,-) = 0 in the set A\{z}. By the boundary condition
(8) and reciprocity, GP(z,y) = 0 for y in I'. By Lemma 2.2, 0,,GP(z,y) =
0y G2 (z,y) for y in I'. Thus G and G satisfy the homogeneous Helmholtz
equation in A\{z} and have the same Cauchy data on I'. Again, by the
Holmgren uniqueness theorem GP(z,-) and G2 (z,-) are identical in a neigh-
borhood of I'. Thus by the unique continuation principle they coincide ev-
erywhere outside BU {z}. O

Lemma 2.4 Forxz in B, and y and z in A,
[ (@~ 0)@)GP (0,967 @, 2)ds
B
= /83 (GP(2,9)0,,G7 (2, 2) — G} (2, 2)0,,G7 (x,y)) Sy,

where 0, denotes differentiation with respect to the outward unit normal to
Bandi,j=1,2.

Proof. This follows from the divergence theorem. O

Lemma 2.5 Suppose the hypotheses of the theorem are satisfied. Then for
xin B, andy and z in A,

/B (@1 — @) (@)GP (2, 9) G2 (z, 2)dz = 0. (12)



Proof. From Lemma 2.4 with 1 = 1,7 = 2 we have
| (@~ )@)6P .96 (@, 2)da
B
= [ (62@)0,6(@,2) - G (2.2)0,.GY(@,))dS..  (13)
0B

However, by Lemma 2.3, GP(z,y) = GP(x,y) for z,y € A. Hence the
Dirichlet and Neumann boundary values of GP and G¥ coincide. By applying
Lemma 2.4 in the case ¢ = j see that the right hand side of (13) vanishes and
thus we obtain (12). O

Let next A; be an open set, A; C A and define U = span {GP(-,%)|p :
ye A} and V = {v € H¥B) : (V?>+ ¢q)v = 0}. We consider U and V as
non-closed subspaces of L?(B).

Lemma 2.6 The set U is a dense subset of V in the relative L?(B)-topology.

Proof. First, U is certainly a subset of V', because by elliptic regularity,
GP(-,y) is smooth in B when the source y is outside B. To show that
U is dense in V, it is enough to show that any f € V that is orthogonal
to U in L?(B) must be zero (see, for example, [12], section 53). Accord-
ingly, we consider an f € V that is orthogonal to U, i.e., an f for which

J5GP(z,y)f(z)dz =0 for all y € A;. Let

w(y) = —/BGD(ac,y)mda:, y € R3.

The assumption on the orthogonality of f is precisely that w is identically
zero in A;. By reciprocity (9) and (7), (V2 + ¢)w = f where f is the zero-
continuation of f to R3. Since w = 0 in 4; and f = 0 in A, the unique
continuation principle [2] yields that w must vanish everywhere in A. In
particular, the Dirichlet and Neumann boundary values of w vanish on 0B.
Thus for any v € V, the boundary terms vanish in the second equality of

/Bv7:/BU(V2+q)w:/Bw(V2+q)v:0.

The third equality follows from the definition of V. Since f € V, this yields
f=0in B. O



Let vy, v9 € V. Since formula (12) is true for all functions in U, Lemma
2.6 and the Schwarz inequality yield

/B(Ch — @2)v1vedz = 0. (14)

Thus we can conclude the proof of the theorem by using the following stan-
dard arguments (see [15]).

For any complex vector ¢ € C? such that ¢ - ( = 0 the equations (V?Z +
g;)u =0, i = 1,2 have so-called Sylvester-Uhlmann solutions (see Appendix
A) of the form

bi(z, () = (1 + O(1/[C]))-
Let now £ € R3, (; € C? and define ¢, = £—(;. By substituting v; = ¥;(z, §;)

into formula (14) we get

lim (g1 — @)1 (x, Gz, (o) dx = / (1 — q2)e® % dx = 0.

IGil—=o0 /B B
Thus the Fourier transform of ¢; — ¢, vanishes identically and ¢; = ¢5. O
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A Appendix: Sylvester-Uhlmann Solutions

Because our proof of Theorem 2.1 relies on the Sylvester-Uhlmann solutions
[15], we include here a brief outline of the construction of these solutions.

The key is to use a different Green’s function in the Lippmann-Schwinger
equation (6). In particular, we replace the usual outgoing unperturbed
Green’s function Gy by the Faddeev Green’s function [6]

Ge(x) = e ge(x) (15)

where

zw§
9¢() (27)3 /§2+2< ¢ (16)

Here ( is a three-dimensional complex vector satisfying ¢ - ( = 0.
A variety of estimates are available that exhibit the decay of g, for large
|C|. One such large-|(| estimate is [9]

llge * fll-s < |||f||5 (17)

[S

for 6 > 1/2, where the subscripts indicate the weighted norm

1715 = ( / (1 + o))’ f 2) Pdz) 2 (18)

This estimate suffices for proving that the Lippmann-Schwinger equation
has a unique solution 9 satisfying

le™™ (@, ¢) — 1|5 < (19)
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