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Abstract. We study an inverse boundary spectral problem for the hyperbolic
equation

��������
	 ������ � ������� �������� ��� �����������! �"�$#�%
in a bounded domain

in &('*)  ,+�-/.
. The corresponding time-harmonic equation

� ���0�1� ��� �
�2�435	768�96 � :�;# %

can be written to a non-selfadjoint eigenvalue problem��< ��6 >=9#?%
. We assume that the boundary spectral data, i.e., the eigenvalues

and the boundary values of the generalized eigenfunctions of
<

are known. (This
assumption is equivalent to that the singularities of the Neumann-to-Dirichlet
mapping @$ACB ��DE�GFFF HJILKM �GFFF HJI of the time-harmonic equation are known.) The

main result is that the boundary spectral data determine 	 ���� uniquely and � ����
and � ���� within a generalized gauge transformation.
Keywords: Hyperbolic equations, Inverse problems, Inverse boundary spectral
problems.
AMS-classification: 35R30, 35P25

1 Introduction and results

The inverse boundary spectral problem for the Schrödinger operator �4�
� is the
following: Can the potential � be recovered from the boundary spectral data, that
is, from the Dirichlet eigenvalues 6ON and the Neumann-boundary values
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of the normalized eigenfunctions
P N . The problem for real � was solved in [14]

by using exponentially growing solutions. This was generalized for a non-real� in [11] and later the analogous problem was studied for a general elliptic non-
selfadjoint operator by the means of the boundary control method [10] (for the
boundary control method, see e.g. [1], [2], [7], [9]). For the studies for hyperbolic
inverse boundary problem closely related to the present topic, see [6] and [16].

In this paper we study the inverse boundary spectral problem for an operator
pencil raising from a hyperbolic equation with an Euclidean wave-operator and
a general first order term. Our approach is the following: From the boundary
spectral data we reconstruct first the Neumann-to-Dirichlet mapping and transform
the problem to a scattering problem. After this the operator is reconstructed by
using the Radon-transform technique as in [15], [16] and [17].

We consider the hyperbolic equation

� � �� " � � 35	
�
� " � �4� )�

N���� � N �� � N �
� :�����! �"� # %
in ��� &('
	  (1)

�
��� �����! �"�� HJI�������� #��2���! �"�  � ���! �"�� � ��� # %O � � ���! �"�� � ��� # %��

Here � � &(' )  + - .
is a connected � � -smooth domain with connected

complement and � #
div grad is the Laplacian. Moreover, we assume that

the coefficient functions of the equation are complex valued functions satisfying	  � N  �"! � �� � �  (Observe that they vanish at the boundary). By taking Fourier
transform respect of time, we get the corresponding ’time-harmonic’ equation

� ���4� )�
N#��� � N ��Q� N � � ��	762� 6 � :� # %O �Q��$� FFF HJI #�%(2)

where we assume that
% !'& �)( � ��� �  where & �)( � ��� �  is the standard Sobolev

space. We use the operators

�+* � # � �! -, � # )�
N#��� � N �� � N � �
� �! </. � 021 #3. % &���+* � , 	

1 . � 041
defined in the domains5 � �+*  # 6 � !7& � � �  B ������ FFF HJI # %98 �': B #<; � � �   5 �),  # & � � �   5 � <*�# 5 � �+*  �=:>�?:@�A: �
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Moreover, we define an operator pencil ' � 6  # ��� *
� , � 	76C� 6 � and its
adjoint pencil ' � � 6 G# �*�+* � , � � 	O6 � 6 � .

Next we recall some properties of operator pencils (see e.g. [13]). First we
linearize the pencil equation (2). Namely, the equations ' � 6 :� #�% and ' � � 6 

0
#

� are equivalent to

��< �
6  . �
6 �
1 # . %% 1  � < � � 6  . � 6 � 	 ���

1 #3. � % 1 �
The eigenvalues 67N !�� of the operator

<
are called the eigenvalues of the

pencil ' � 6  . For 6��# 67N the operator ' � 6  is invertible. A function
�

is called
a root function (or a generalized eigenfunction) of the operator

<
corresponding

to an eigenvalue 67N if
� < ��67N 

D � #�%
with some

� !�� 	 . We denote by 	 N and
	 �N the spaces of the root functions of

<
and

< �
corresponding to the eigenvalues

6 N and 67N . Obviously 	 N is orthogonal to 	 �N�
 if � �# �� . Since
<

defines in& � � �  �2: an unbounded operator with smoothing inverse, one can show by
using [13], Theorem 4.3 that the eigenvalues 6ON of ' � 6  form a discrete set, the
spaces 	 N are finite dimensional and the root functions of

<
(or

< �
) span a dense

set in :@�=: . For asymptotics of the eigenvalues, see e.g. [13].
Let � N���� # � P �N����  P �N����  be the basis of the space 	 N satisfying
��< �
67N  � N���� # � N���� �����  � #��� � � �  �� #��� � � �J �� N  �� #��� � � �J � N��  (3)

where we denote � N���� � #;%
. This means that matrix of

< B 	 N M 	 N respect of
the basis � N���� consists of Jordan blocks. Since 	 N"! 	 �N 
 for � �# �  and the root
functions span a dense set, we can choose for 	 �N the basis # N���� # �%$ �N����  �$ �N���� 
satisfying

� � N����  # N 
 � 
 � 
  #�& N�� N 
 & ��� � 
 & �'� D�(*) 	 �+�,� 
 �
Since 	 �N can be identified with the dual of 	 N , one see by studying the matrix of< � B-	 �N M 	 �N that

��< � � 6 N  # N���� # # N��.� �'���  � #��� � � �J �� #/�� � � �J �� N  �� #/�� � � �  � N��(4)

where # N���� � # % .
For selfadjoint inverse boundary spectral problem the boundary spectral data

is defined to be the boundary values of the eigenfunctions. In our non-selfadjoint
case the natural generalization is the following.
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Definition 1.1 The boundary spectral data (BSD) is the collection6 67N  � N���� FFF HJI  # N���� FFF HJI  � #/�  � � �  � #��� � � �  �� N  �� #��� � � �  � N�� 8
where 67N are the eigenvalues and � N���� FFF H I  # N���� FFF HJI are the Dirichlet-boundary
values of the root functions of

<
and

< �
To motivate Definition 1.1, we begin with the Neumann-to-Dirichlet mapping.

When 6 is not an eigenvalue, we define the mapping

@ A B & �)( � ��� �  M & � ( � � � �   ������ FFF HJI KM �GFFF HJI
which maps the Neumann boundary value to the Dirichlet boundary value of the
solution of the equation (2). We will see that the operator valued function 6 KM @ A
is meromorphic function having poles at the eigenvalues of ' � 6  . Near each
eigenvalue 67N we have a representation

@ A # < A �
� (�
� ��� � N �� 6 � 6 N  �

where 6 KM < A is analytic. The later part is equal to the singular part of the Laurent
series and we call it the principal part of the singularity or simply the singularity
of @ A at 67N . The singularity will be denoted by sing @ A .

In the case 	 # %
the boundary spectral data is known to be very natural

concept. By [10] it can be reconstructed from the knowledge of the singularities
of the boundary measurements, i.e., from the singularities of the boundary values
of the Green’s function � ���! ��  6  , �! �� ! � � , 6 ! � which are equivalent to the
the singularities of @ A . In the dispersive case, we have the analogous results:

Lemma 1.1 The BSD determines the singularities of the operator @ A , i.e., the
operators

� N � .
Remark 1. The converse is also true, i.e., the singularities of @ A determine

BSD. Namely, in the proof of Lemma 1.1 we see that the kernels of the operators� N � can be given as a sum of terms
P �N���� ���� $ �N���� �	�  . Thus

P �N���� FFF HJI and
$ �N���� FFF HJI can

be constructed from
� N � with the same method as in [10]. After this we can easily

obtain
P �N���� FFF HJI and

$ �N���� FFF H I by using (3) and (4).

Next we consider two pencils '�
 � 6 �# ��� � , 
 � 	 
 6 � 6 �  3 # �� .
corresponding to functions 	 
 ����  � 
N ����  � 
 ���� ! � �� � �  and the corresponding
Neumann-to-Dirichlet mappings @ �A and @ �A .
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Theorem 1.2 If ' � � 6  and ' � � 6  have the same BSD then @ �A # @ �A for all 6=! � .

Let now
% ! � �� � �   �� #����

. Then ' � 6 
D P # %

imply
��� ' � 6 �� ���  D ��� P �#%

and hence we see that BSD is invariant in the generalized gauge-transformation

���4� , KM � � �*� � , 	� ��� �(5)

Because of this we define the equivalence class of ��� � , within the group of
the generalized gauge-transformations (see [16]):
 ���4� ,���# 6� � � ���4� , 	� � � B % ! � �� � �  8 �
By using Theorem 1.2 we will prove our main result:

Theorem 1.3 The pencils ' � � 6  and ' � � 6  have the same BSD if and only if	 � # 	 � and the operators �*�0� , � and ��� � , � are the same within a
generalized gauge transformation, i.e.,

�
� � , � #�� � � �*� � , � �� � � for some
% ! � �� � �  �  �(6)

2 Singularities of � 6
Here we use the extension � of � * defined in the domain

5 � �  # & � � �  and
the extension �< of

<
with

5 � �<  # 5 � �  � ;�� � �  � Similarly, �' � 6  is the pencil
defined in the domain

5 � �  . First we observe that the equation (2) is equivalent
to

� �< �
6 >= # %O 
�Q�
��� FFF HJI #�%� where

= #3. �
6 �
1 �

(7)

Let & � #;��� �  >%  � where
� � ! & � � �  is a function for which

HH D � � FFF HJI # % . Then
(7) yields

= �2& � ! 5 ��<  and
= # & � � � < �
6  ��� � �< �
6  & � �(8)

Particularly, this shows that 6 KM @$A is analytic outside the eigenvalues. Let � N
be the Riesz projection of

<
corresponding to the eigenvalue 6 N , i.e., � N is the

projection into 	 N along the space spanned by 	 N 
  �  �# � . Obviously

� N � #
� (�
� ���

D�(*)�
� ��� ���! # N����  � N���� D ( ) 	 �+�,� �(9)
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By [8], Theorem III 6.17, � N defines an
<

-invariant non-orthogonal decomposition: � # ��� � � N  : ��� � N : � such that the operator
< � 6 B ��� � � N  : � M � � � � N  : �

is invertible for 6 near 67N . Next we prove that BSD determines the singularities of
@ A .
Proof. (of Lemma 1.1). We denote the solution of (7) by

= � � 6  . By using (8),� � � � N >= � � 6  is analytic near 6 N and we see that

sing
= � � 6  # sing � N = � � 6 �# sing

�
��� �
�(= � � 6   # N����  � N��.� D (*) 	 �+�,� �(10)

Since # N���� ! 5 � < �  we have
� HH D � � � �  # �N���� FFF H I # % and thus by Green’s formula,

% # ��� �< � 6 >= � � 6   # N���� G#;�5= � � 6   ��< � �
6  # N����  � �
HJI
% # �N���� +�� ���� �

Thus the formula (4) yields

(11)
�(= � � 6   # N���� G#

�
67N �
6��

�
HJI
% # �N���� +�� ���� � �(= � � 6   # N���� ����� 	�  �� #��� � � �J � N��

where # N���� �'��� # % for
� #/�

. Equations (11) form recurrence relations from which
the inner products

�(= � � 6   # N����  can be computed by using BSD. Since the positive
Laurent coefficients of

�(= � � 6   # N����  at 6 N vanish, we see that BSD determines

sing @ A % # � ��� � �(= � � 6   # N����  � N���� D (*) 	 �+�,� FFF HJI �

3 From BSD to � 6
Let 
 � be the space of the compact operators with s-numbers in � � (see [3]) and
let

� � ! & � � �  be a function depending continuously on
% ! & �)( � ��� �  and

satisfying
HH D � � FFF HJI # % . Then the equation (2) yields

� ���+* � , ��	76 �
6 � J� � � � � � �# � � ���4� , �
	 6 �
6 � 	� �
6



and thus
� # � � � ' � 6  ��� � ��� � , �
	76 �
6 � �� �  (12)

' � 6  ��� # � �*�+* � �  ��� � & � � � � 6 � � � 6 � � �  ���
where

� � # � , � � J� ��� * � �  ���  � � # 	 � �*�+* � �  ��� and
� � # � � ���+* � �  ���

are compact operators. Since the eigenvalues of the selfadjoint operator �"* have
asymptotics � � ( ) , we see that

� 
 ! 
 �  ��� +���.
where

+
is the dimension of � .

Next we denote by ��� the double cone
6 6 B  arg 6 ��
	

or

arg

� ��6 ���
	 8
.

By [13], Lemma 18.8, for any
	 � % there exists ��� and �� such that  � & � � � ��6 � � � 6 � � � ����� �� ���(13)

for 6 �! ��� and
 6  � ��� .

Since
� ���+* � �  ��� B ; � � �  M & � � �  is continuous, we have  ' � 6  ���   ��������� � ���  6 �! ���   6  � �� �(14)

Lemma 3.1 Assume that two Neumann-to-Dirichlet mappings @�� 
��A  3 #/�� .
have

the same singularities. Then @ � � �A � @ � � �A is a second order polynomial as an
operator-valued function of 6 .

Proof. By theory of Keldysh pencils (see [13], Lemma 18.5) there exist numbers � 
��� ! &(' 	 ,  � 
��� M !  3 #��� .
such that  � & � � � 
��� ��6 � � 
��� ��6 � � � 
���  ���  �� � � � � � �  6  " ) 	 � 

when
 6 E#  � 
��� . We can assume that

�#�  � 
��� � � � �
. Thus by (12) we have on

the circles
 6  #  �   @ � 
$�A  �� � � � � � �  6  " ) 	 �  �

Now @ � � �A � @ � � �A is an entire function of 6 . By applying the maximum principle
for analytic functions in the same way as in the proof of [11], Theorem 9.1, we see  @ � � �A � @ � � �A  �� � � � � � �  6  " ) 	 �   6=! � �(15)

Let
	%�'&(� �*) + � .  . For 6 �! ��� and

 6  � �� we see from (12) and (14) that for  @�� 
��A %  �� �  6  � . Thus by using Pragmen-Lindelöf theorem [4] and (15) we see in
an analogous way to [11], Theorem 9.7 that the analytic operator-valued function
@ � � �A � @ � � �A is a second order polynomial.
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Lemma 3.2 Let @ � 
��A  3 # �� .
be two Neumann-to-Dirichlet mappings corre-

sponding to pencils ' � 
�� . Then for any fixed
%

we have

������ � �   @ � � �
 � � @ � � �
 � #%   �����	� � HJI � # %O " ! &(' 	
Proof. We note that by [13], Lemma 3.1 there can be only a finite number of
eigenvalues in 3 &(' 	 and thus the above limit is well defined.

We study the difference @ � � �A % � @ � � �A % for 6 # 3 "  " � � � when � � is big enough
and

" M ! . Let
� � 
$� � 6  be the solutions

�' � 
�� � 6 :� � 
�� � 6 G# %O 
�
��� � � 
�� � 6  FFF H I # %  3 #��� .��

Then for

0
� 6 G#L� � � � � 6  � � � � � � 6  we have

(16)

' � � � � 6  0 � 6 G#;�), � � � � , � � � :� � � � � 6  ��6 � 	 � � � � 	 � � � :� � � � � 6   ���� 0 � 6  FFF HJI # %
We have by (12) for 6 # 3 "
� � � � � 6  # � � � ' � 3 "� ��� � ���4� , �
	 3 " � " � �� �  (17)

' � 3 "� ��� # � �*�+* � " �  ����
 & � , � �*�+*�� " �  ��� ��	 3 "J� �*�+*�� " �  ���� ��� �
By using the spectral representation of � * and an interpolation argument as
in [11], Lemma 4.5, one can easily show that  � ���+* � " �  ���   ������� � I � � � " � ���  G%���� � .9�
(18)

Thus in the equation (17) all inverse operators exist and we get
  � � � � � 6 �  � � � I � � �and

  � � � � � 6 �  ��� � �  6  � when 6 # 3 " is big enough. By using interpolation we
get

  � � � � � 6 �  � � � I � � �  6  . Thus from formulas (16) and (18) it follows that  0 � 6 �  � �   ' � � � � 6  ���   ����� � �   , � � � � , � � �   � � � I � ���   � � � �   � � � I ��  6 �  	 � � � � 	 � � �   �����   � � � �   � � � " ��� �
In the same way we see

  0 � 6 �  � ��� � " � By using interpolation we get  0 � 6 �  ��� ��� � I � � � � "� � (�� � � " ��� � (�� � � " ���)(�� �(19)
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Thus   � @ � � �A � @ � � �A �%   � ����� � I � �� 
0
� 6 �  � � ��� � I � � � " ���)(�� �

Now Theorem 1.2 follows immediately from Lemma 3.1 and Lemma 3.2.

4 From � 6 to the unknown coefficients

For the hyperbolic equation (1) we define the response operator

� B
�Q�
���  HJI ����� � KM �- HJI ��� ���  �Q����  H I�������� ! � � ��� � � &5' 	  �

Lemma 4.1 The mappings @$A  6=! � determine the response operator
�

.

Proof. Let
�����! �"�

be the solution of the initial value problem

� � �� " � � 35	
�
� " � �4� , :�����! �"� # %

in � � &('
	  (20) �
��� �����! �"�� HJI�������� #��2���! �"�  ������! �"�� � ��� # %O � � ���! �"�� � ��� # %��

Clearly it is enough to find
�- HJI���� ��� ��� with arbitrary

� � % . Thus we can assume
that the support of

�
is a compact subset of

� � � &(' 	 . By standard energy esti-
mates, the Laplace transform ������  ��  #
	 � �����:�  �"�� ���  is a & � � �  -valued function
defined in some half space Re

� � � � . Since the Laplace transform satisfies the
time-harmonic equation

��� � � 35	 � �
� � ,  �� ���! ��  # %O ���� ������! �  FFF HJI # �� ���! ��   
one see by using inverse Laplace transform that

���:�  �"� FFF HJI #
�
. & 3

�����
� � � ����� 	 
 �

��� � 
 �
� � � @ � �� ���! �� �+��  ' ��� ��� � � �

Thus the mappings @ �  �� ! � determine the response operator.
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Next we study the wave equation

� � �� " � � 3 	
�
� " �
� � , :�����! �"� # %  ���! �"� ! &5'*) �C&('
	  (21)

� ���! >%  # %� � � ���! % �# � �
Particularly we are interested of the solutions corresponding to the initial data

(22)% �����# & � � " � � �!���   � ���� #�& � � � � � " � � �!���   where
 � E#��

and
" ��� %

.

These solutions correspond to the incoming delta-waves
& ��" � " ��� �!���   " �%

. By [16], the solutions
� ���! �"  �� 

of (21) with above initial data have the
representations

� ���! �"  ��  # *�
N���� � � ���! �� �& � �EN � ��" � " � � �!���  mod � *����

for every 	 where
& � �EN � ��"��#L" N ���	 � � � � � ��

for � � % . Furthermore, by [16],

Theorem 4.2 The functions
� � ���! ��  and

� � ���! ��  in a domain
6 ���! ��  ! &(' D �� D ���  �!��� � � 8  � � %

determine uniquely the function 	 ���� and determine
uniquely the equivalence class


 ���4� ,���# 6� � � ���4� , �� � � B % ! � �� � &(' D  8 �
Therefore it is enough to show that the @ A -mappings determine the solutions

of the equation (21) outside � with an appropriate incoming initial data.

Lemma 4.3 The knowledge of the operators @ A  6 ! � determine the function�����! �"��
� ���	��
 I � ������� corresponding to initial data (22)

Proof. We start with the standard argument concerning the equivalence of the
hyperbolic boundary value problem and the scattering problem. Assume that ' � � �
and ' � � � have the same BSD. Let

� � % , %� � ! � � � &(' )� �  and
� � and

� � be the
solutions of the wave equations (21) with the coefficient functions corresponding
to ' � � � and ' � � � . Since the response operators

� � � � and
� � � � coincide, there

exist a solution

0
for ' � � � such that

0  H I���� ��� � � # � �  HJI���� ��� � � and
HH D
0  HJI ��� ��� � � #
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HH D � �  HJI ��� ��� � � . By defining �
���! �"��# � � ���! �"� for

���! �"� ! � &(' ) � �  � 
 %O � �
and

�
���! �"�2#

0
���! �"�

for
���! �"� ! � � 
 %  � �

we see that � is the solution of the
uniquely solvable initial value problem (21) for ' � � � with initial data

� %  �  . This
yields �

# � � and thus
� � # � � in

� &(' ) � �  � 
 %O � �
. Hence BSD determine

uniquely the values of the solution in
� &(' )� �  � 
 %  � �

.
Let now

+ N ! � �� � &('   � #/�� .7 � � �
be functions for which

+ N M &
in the space& ��� � &('  . Let

% � # &O� � " ��� �!���  , � � # & � � � � � " ��� �!���  and
% N # + N � � " ��� �!���  ,� N # + N � � " ��� �!���  and let

� N be the solution of the equation (21) corresponding
to the initial data

� % N  � N  . Since
% N M % � and � N M � � in & � ) � ������ � &(' )  , it follows

from [5], Lemma 23.2.1 and the finite speed of wave propagation that
� N M � � in

the space � � ��
 � �  � �  & � ) � � � � � for any ��� &('*) . From this the claim follows.

Finally, we prove our main result.

Proof.(of Theorem 1.3) If two operators are the same within a generalized gauge-
transformation then their BSD coincide. Next we prove the converse. We have
shown that if the BSD coincide then for the operators �*� � , 
 in

; � � &(' )  we
have

�
�4� , � #�� � � �*� � , � �� � � # ��� � . � � ��%�� � � � � � % � , �(23)

with some
% ! � �� � &(' D  . Since

, �
and

, �
are supported in � , we see that� % # %

outside � . Since the complement of � is connected, we see that supp% � � which proves the claim.
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