The inverse boundary spectral problem for a hyperbolic equation with first order perturbation

M. Lassas Rolf Nevanlinna -institute¹

Abstract. We study an inverse boundary spectral problem for the hyperbolic equation $(\partial_t^2 - a(x)\partial_t - \Delta + p(x) \cdot \nabla + q(x))u(x,t) = 0$ in a bounded domain in IR^d , $d \ge 2$. The corresponding time-harmonic equation $(-\Delta + p \cdot \nabla + q - ia\lambda - \lambda^2)u = 0$ can be written to a non-selfadjoint eigenvalue problem $(A - \lambda)U = 0$. We assume that the boundary spectral data, i.e., the eigenvalues and the boundary values of the generalized eigenfunctions of A are known. (This assumption is equivalent to that the singularities of the Neumann-to-Dirichlet mapping $A_\lambda : \partial_n u \Big|_{\partial\Omega} \mapsto u \Big|_{\partial\Omega}$ of the time-harmonic equation are known.) The main result is that the boundary spectral data determine a(x) uniquely and p(x)and q(x) within a generalized gauge transformation.

Keywords: Hyperbolic equations, Inverse problems, Inverse boundary spectral problems.

AMS-classification: 35R30, 35P25

1 Introduction and results

The inverse boundary spectral problem for the Schrödinger operator $\Delta + q$ is the following: Can the potential q be recovered from the boundary spectral data, that is, from the Dirichlet eigenvalues λ_j and the Neumann-boundary values $\frac{\partial}{\partial n}\phi_j\Big|_{\partial\Omega}$

¹ University of Helsinki, P. O. Box 4(Yliopistonkatu 5), FIN-00014, Finland

of the normalized eigenfunctions ϕ_j . The problem for real q was solved in [14] by using exponentially growing solutions. This was generalized for a non-real q in [11] and later the analogous problem was studied for a general elliptic non-selfadjoint operator by the means of the boundary control method [10] (for the boundary control method, see e.g. [1], [2], [7], [9]). For the studies for hyperbolic inverse boundary problem closely related to the present topic, see [6] and [16].

In this paper we study the inverse boundary spectral problem for an operator pencil raising from a hyperbolic equation with an Euclidean wave-operator and a general first order term. Our approach is the following: From the boundary spectral data we reconstruct first the Neumann-to-Dirichlet mapping and transform the problem to a scattering problem. After this the operator is reconstructed by using the Radon-transform technique as in [15], [16] and [17].

We consider the hyperbolic equation

(1)
$$(\frac{\partial^2}{\partial t^2} - ia\frac{\partial}{\partial t} - \Delta + \sum_{j=1}^d p_j \frac{\partial}{\partial x_j} + q)u(x,t) = 0 \text{ in } \Omega \times IR_+,$$
$$\frac{\partial}{\partial n} u(x,t)|_{\partial\Omega \times IR_+} = F(x,t), \ u(x,t)|_{t=0} = 0, \ u_t(x,t)|_{t=0} = 0$$

Here $\Omega \subset IR^d$, $d \geq 2$ is a connected C^{∞} -smooth domain with connected complement and $\Delta =$ div grad is the Laplacian. Moreover, we assume that the coefficient functions of the equation are complex valued functions satisfying $a, p_j, q \in C_0^{\infty}(\overline{\Omega})$ (Observe that they vanish at the boundary). By taking Fourier transform respect of time, we get the corresponding 'time-harmonic' equation

(2)
$$(-\Delta + \sum_{j=1}^{d} p_j \frac{\partial}{\partial x_j} + q + a\lambda - \lambda^2) u = 0, \ \frac{\partial u}{\partial n}\Big|_{\partial\Omega} = f$$

where we assume that $f \in H^{1/2}(\partial \Omega)$ where $H^{1/2}(\partial \Omega)$ is the standard Sobolev space. We use the operators

$$\Delta_N u = \Delta u, \ Bu = \sum_{j=1}^d p_j \frac{\partial}{\partial x_j} u + qu, \ A\begin{pmatrix} u\\ v \end{pmatrix} = \begin{pmatrix} 0 & I\\ -\Delta_N + B & a \end{pmatrix} \begin{pmatrix} u\\ v \end{pmatrix}$$

defined in the domains

$$\mathcal{D}(\Delta_N) = \{ u \in H^2(\Omega) : \frac{\partial u}{\partial n} \Big|_{\partial\Omega} = 0 \} \subset X := L^2(\Omega),$$

$$\mathcal{D}(B) = H^1(\Omega), \ \mathcal{D}(A) = \mathcal{D}(\Delta_N) \times X \subset X \times X.$$

Moreover, we define an operator pencil $R(\lambda) = -\Delta_N + B + a\lambda - \lambda^2$ and its adjoint pencil $R^*(\lambda) = -\Delta_N + B^* + \overline{a\lambda} - \lambda^2$.

Next we recall some properties of operator pencils (see e.g. [13]). First we linearize the pencil equation (2). Namely, the equations $R(\lambda)u = f$ and $R^*(\overline{\lambda})v = g$ are equivalent to

$$(A-\lambda)\begin{pmatrix} u\\\lambda u\end{pmatrix} = \begin{pmatrix} 0\\f \end{pmatrix}, \quad (A^*-\overline{\lambda})\begin{pmatrix} (\overline{\lambda}-\overline{a})u\\u \end{pmatrix} = \begin{pmatrix} g\\0 \end{pmatrix}.$$

The eigenvalues $\lambda_j \in \mathbb{C}$ of the operator A are called the eigenvalues of the pencil $R(\lambda)$. For $\lambda \neq \lambda_j$ the operator $R(\lambda)$ is invertible. A function x is called a root function (or a generalized eigenfunction) of the operator A corresponding to an eigenvalue λ_j if $(A - \lambda_j)^n x = 0$ with some $n \in \mathbb{Z}_+$. We denote by N_j and N_j^* the spaces of the root functions of A and A^* corresponding to the eigenvalues λ_j and $\overline{\lambda}_j$. Obviously N_j is orthogonal to $N_{j'}^*$ if $j \neq j'$. Since A defines in $H^1(\Omega) \times X$ an unbounded operator with smoothing inverse, one can show by using [13], Theorem 4.3 that the eigenvalues λ_j of $R(\lambda)$ form a discrete set, the spaces N_j are finite dimensional and the root functions of A (or A^*) span a dense set in $X \times X$. For asymptotics of the eigenvalues, see e.g. [13].

Let $\Phi_{jkl} = (\phi_{jkl}^1, \phi_{jkl}^2)$ be the basis of the space N_j satisfying

(3)
$$(A - \lambda_j)\Phi_{jkl} = \Phi_{jk,l-1}, j = 1, \dots, k = 1, \dots, m_j, l = 1, \dots, n_{jk},$$

where we denote $\Phi_{jk,0} = 0$. This means that matrix of $A : N_j \to N_j$ respect of the basis Φ_{jkl} consists of Jordan blocks. Since $N_j \perp N_{j'}^*$ for $j \neq j'$ and the root functions span a dense set, we can choose for N_j^* the basis $\Psi_{jkl} = (\psi_{jkl}^1, \psi_{jkl}^2)$ satisfying

$$(\Phi_{jkl}, \Psi_{j'k'l'}) = \delta_{j,j'} \delta_{k,k'} \delta_{l,n_{jk}+1-l'}.$$

Since N_j^* can be identified with the dual of N_j , one see by studying the matrix of $A^*: N_j^* \to N_j^*$ that

(4)
$$(A^* - \overline{\lambda_j})\Psi_{jkl} = \Psi_{jk,l-1}, j = 1, \dots, k = 1, \dots, m_j, l = 1, \dots, n_{jk}$$

where $\Psi_{jk,0} = 0$.

For selfadjoint inverse boundary spectral problem the boundary spectral data is defined to be the boundary values of the eigenfunctions. In our non-selfadjoint case the natural generalization is the following. Definition 1.1 The boundary spectral data (BSD) is the collection

$$\{\lambda_j, \left. \Phi_{jkl} \right|_{\partial \Omega}, \left. \Psi_{jkl} \right|_{\partial \Omega}, \ j = 1, \dots, \ k = 1, \dots, m_j, \ l = 1, \dots, n_{jk} \}$$

where λ_j are the eigenvalues and $\Phi_{jkl}\Big|_{\partial\Omega}$, $\Psi_{jkl}\Big|_{\partial\Omega}$ are the Dirichlet-boundary values of the root functions of A and A^*

To motivate Definition 1.1, we begin with the Neumann-to-Dirichlet mapping. When λ is not an eigenvalue, we define the mapping

$$\Lambda_{\lambda}: H^{1/2}(\partial \Omega) \quad \rightarrow \quad H^{3/2}(\partial \Omega), \ \frac{\partial u}{\partial n}\Big|_{\partial \Omega} \mapsto u\Big|_{\partial \Omega}$$

which maps the Neumann boundary value to the Dirichlet boundary value of the solution of the equation (2). We will see that the operator valued function $\lambda \mapsto \Lambda_{\lambda}$ is meromorphic function having poles at the eigenvalues of $R(\lambda)$. Near each eigenvalue λ_i we have a representation

$$\Lambda_{\lambda} = A_{\lambda} + \sum_{p=1}^{m_j} \frac{T_{jp}}{(\lambda - \lambda_j)^p}$$

where $\lambda \mapsto A_{\lambda}$ is analytic. The later part is equal to the singular part of the Laurent series and we call it the principal part of the singularity or simply the singularity of Λ_{λ} at λ_{j} . The singularity will be denoted by sing Λ_{λ} .

In the case a = 0 the boundary spectral data is known to be very natural concept. By [10] it can be reconstructed from the knowledge of the singularities of the boundary measurements, i.e., from the singularities of the boundary values of the Green's function $G(x, y, \lambda), x, y \in \partial\Omega, \lambda \in \mathbb{C}$ which are equivalent to the the singularities of Λ_{λ} . In the dispersive case, we have the analogous results:

Lemma 1.1 The BSD determines the singularities of the operator Λ_{λ} , i.e., the operators T_{jp} .

Remark 1. The converse is also true, i.e., the singularities of Λ_{λ} determine BSD. Namely, in the proof of Lemma 1.1 we see that the kernels of the operators T_{jp} can be given as a sum of terms $\phi_{jkl}^1(x)\overline{\psi_{jkh}^2(y)}$. Thus $\phi_{jkl}^1\Big|_{\partial\Omega}$ and $\psi_{jkh}^2\Big|_{\partial\Omega}$ can be constructed from T_{jp} with the same method as in [10]. After this we can easily obtain $\phi_{jkl}^2\Big|_{\partial\Omega}$ and $\psi_{jkh}^1\Big|_{\partial\Omega}$ by using (3) and (4).

Next we consider two pencils $R_i(\lambda) = -\Delta + B^i + a^i\lambda - \lambda^2$, i = 1, 2 corresponding to functions $a^i(x), p^i_j(x), q^i(x) \in C_0^{\infty}(\overline{\Omega})$ and the corresponding Neumann-to-Dirichlet mappings Λ^1_{λ} and Λ^2_{λ} .

Theorem 1.2 If $R_1(\lambda)$ and $R_2(\lambda)$ have the same BSD then $\Lambda^1_{\lambda} = \Lambda^2_{\lambda}$ for all $\lambda \in \mathbb{C}$.

Let now $f \in C_0^{\infty}(\overline{\Omega})$, $\kappa = e^f$. Then $R(\lambda)^n \phi = 0$ imply $(\kappa R(\lambda) \kappa^{-1})^n (\kappa \phi) = 0$ and hence we see that BSD is invariant in the generalized gauge-transformation

(5)
$$-\Delta + B \mapsto \kappa (-\Delta + B) \kappa^{-1}.$$

Because of this we define the equivalence class of $-\Delta + B$ within the group of the generalized gauge-transformations (see [16]):

$$[-\Delta + B] = \{ e^f (-\Delta + B) e^{-f} : f \in C_0^{\infty}(\overline{\Omega}) \}.$$

By using Theorem 1.2 we will prove our main result:

Theorem 1.3 The pencils $R_1(\lambda)$ and $R_2(\lambda)$ have the same BSD if and only if $a_1 = a_2$ and the operators $-\Delta + B^1$ and $-\Delta + B^2$ are the same within a generalized gauge transformation, i.e.,

(6)
$$-\Delta + B^1 = e^f (-\Delta + B^2) e^{-f} \text{ for some } f \in C_0^\infty(\overline{\Omega}, \mathbb{C}).$$

2 Singularities of Λ_{λ}

Here we use the extension Δ of Δ_N defined in the domain $\mathcal{D}(\Delta) = H^2(\Omega)$ and the extension \tilde{A} of A with $\mathcal{D}(\tilde{A}) = \mathcal{D}(\Delta) \times L^2(\Omega)$. Similarly, $\tilde{R}(\lambda)$ is the pencil defined in the domain $\mathcal{D}(\Delta)$. First we observe that the equation (2) is equivalent to

(7)
$$(\tilde{A} - \lambda)U = 0, \ \frac{\partial u}{\partial n}\Big|_{\partial\Omega} = f, \text{ where } U = \begin{pmatrix} u \\ \lambda u \end{pmatrix}.$$

Let $H_f = (h_f, 0)^t$ where $h_f \in H^2(\Omega)$ is a function for which $\frac{\partial}{\partial n} h_f \Big|_{\partial \Omega} = f$. Then (7) yields $U - H_f \in \mathcal{D}(A)$ and

(8)
$$U = H_f - (A - \lambda)^{-1} (\tilde{A} - \lambda) H_f.$$

Particularly, this shows that $\lambda \mapsto \Lambda_{\lambda}$ is analytic outside the eigenvalues. Let P_j be the Riesz projection of A corresponding to the eigenvalue λ_j , i.e., P_j is the projection into N_j along the space spanned by $N_{j'}$, $j' \neq j$. Obviously

(9)
$$P_{j}x = \sum_{k=1}^{m_{j}} \sum_{l=1}^{n_{jk}} (x, \Psi_{jkl}) \Phi_{jk, n_{jk}+1-l}.$$

By [8], Theorem III 6.17, P_j defines an A-invariant non-orthogonal decomposition $X^2 = (1-P_j)X^2 \oplus P_j X^2$ such that the operator $A - \lambda : (1-P_j)X^2 \to (1-P_j)X^2$ is invertible for λ near λ_j . Next we prove that BSD determines the singularities of Λ_{λ} .

Proof. (of Lemma 1.1). We denote the solution of (7) by $U_f(\lambda)$. By using (8), $(1 - P_j)U_f(\lambda)$ is analytic near λ_j and we see that

(10) sing
$$U_f(\lambda) = \text{sing } P_j U_f(\lambda) = \text{sing } \sum_{k,l} (U_f(\lambda), \Psi_{jkl}) \Phi_{jk, n_{jk}+1-l}$$

Since $\Psi_{jkl} \in \mathcal{D}(A^*)$ we have $\left(\frac{\partial}{\partial n} - n \cdot p\right) \Psi_{jkl}^2 \Big|_{\partial \Omega} = 0$ and thus by Green's formula,

$$0 = ((\tilde{A} - \lambda)U_f(\lambda), \Psi_{jkl}) = (U_f(\lambda), (A^* - \lambda)\Psi_{jkl}) - \int_{\partial\Omega} f \overline{\Psi_{jkl}^2} \, dS(x).$$

Thus the formula (4) yields

$$(U_f(\lambda), \Psi_{jkl}) = \frac{1}{\lambda_j - \lambda} \Big[\int_{\partial \Omega} f \overline{\Psi_{jkl}^2} \, dS(x) - (U_f(\lambda), \Psi_{jk,l-1}) \Big], \ l = 1, \dots, n_{jk}$$

where $\Psi_{jk,l-1} = 0$ for l = 1. Equations (11) form recurrence relations from which the inner products $(U_f(\lambda), \Psi_{jkl})$ can be computed by using BSD. Since the positive Laurent coefficients of $(U_f(\lambda), \Psi_{jkl})$ at λ_j vanish, we see that BSD determines

sing
$$\Lambda_{\lambda} f = \sum_{k,l} (U_f(\lambda), \Psi_{jkl}) \Phi_{jk, n_{jk}+1-l} \Big|_{\partial \Omega}.$$

3 From BSD to Λ_{λ}

Let \mathfrak{S}_p be the space of the compact operators with s-numbers in ℓ^p (see [3]) and let $h_f \in H^2(\Omega)$ be a function depending continuously on $f \in H^{1/2}(\partial\Omega)$ and satisfying $\frac{\partial}{\partial n}h_f\Big|_{\partial\Omega} = f$. Then the equation (2) yields

$$(-\Delta_N + B + a\lambda - \lambda^2)(u_f - h_f) = -(-\Delta + B + a\lambda - \lambda^2)h_f$$

and thus

(12)
$$u = h_f - R(\lambda)^{-1} (-\Delta + B + a\lambda - \lambda^2) h_f,$$
$$R(\lambda)^{-1} = (-\Delta_N + 1)^{-1} (I + T_0 + \lambda T_1 + \lambda^2 T_2)^{-1}$$

where $T_0 = (B-1)(-\Delta_N+1)^{-1}, T_1 = a(-\Delta_N+1)^{-1}$ and $T_2 = -(-\Delta_N+1)^{-1}$ are compact operators. Since the eigenvalues of the selfadjoint operator Δ_N have asymptotics $j^{2/d}$, we see that $T_i \in \mathfrak{S}_p$, p > d/2 where d is the dimension of Ω . Next we denote by D_{α} the double cone $\{\lambda : |\arg \lambda| < \alpha \text{ or } |\arg (-\lambda)| < \alpha\}$. By [13], Lemma 18.8, for any $\alpha > 0$ there exists C_{α} and c_{α} such that

(13)
$$||(I + T_0 + \lambda T_1 + \lambda^2 T_2)^{-1}|| \le C_a$$

for $\lambda \notin D_{\alpha}$ and $|\lambda| > c_{\alpha}$. Since $(-\Delta_N + 1)^{-1} : L^2(\Omega) \to H^2(\Omega)$ is continuous, we have

(14)
$$||R(\lambda)^{-1}||_{X \to H^2} \le cC_{\alpha}, \ \lambda \notin D_{\alpha}, \ |\lambda| > c_{\alpha}.$$

Lemma 3.1 Assume that two Neumann-to-Dirichlet mappings $\Lambda_{\lambda}^{(i)}$, i = 1, 2 have the same singularities. Then $\Lambda_{\lambda}^{(1)} - \Lambda_{\lambda}^{(2)}$ is a second order polynomial as an operator-valued function of λ .

Proof. By theory of Keldysh pencils (see [13], Lemma 18.5) there exist numbers $r_m^{(i)} \in I\!\!R_+, r_m^{(i)} \to \infty, \ i = 1, 2$ such that

$$||(I + T_0^{(i)} + \lambda T_1^{(i)} + \lambda^2 T_2^{(i)})^{-1}|| \le c \exp(c|\lambda|^{4d+2})$$

when $|\lambda| = r_m^{(i)}$. We can assume that $m < r_m^{(i)} < m + 1$. Thus by (12) we have on the circles $|\lambda| = r_m$

$$||\Lambda_{\lambda}^{(i)}|| \le c \exp(c|\lambda|^{4d+2}).$$

Now $\Lambda_{\lambda}^{(1)} - \Lambda_{\lambda}^{(2)}$ is an entire function of λ . By applying the maximum principle for analytic functions in the same way as in the proof of [11], Theorem 9.1, we see

(15)
$$||\Lambda_{\lambda}^{(1)} - \Lambda_{\lambda}^{(2)}|| \le c \exp(c|\lambda|^{4d+2}), \ \lambda \in \mathbb{C}.$$

Let $\alpha < \pi/(4d+2)$. For $\lambda \notin D_{\alpha}$ and $|\lambda| > c_{\alpha}$ we see from (12) and (14) that for $||\Lambda_{\lambda}^{(i)}f|| \leq c|\lambda|^2$. Thus by using Pragmen-Lindelöf theorem [4] and (15) we see in an analogous way to [11], Theorem 9.7 that the analytic operator-valued function $\Lambda_{\lambda}^{(1)} - \Lambda_{\lambda}^{(2)}$ is a second order polynomial.

Lemma 3.2 Let $\Lambda_{\lambda}^{(i)}$, i = 1, 2 be two Neumann-to-Dirichlet mappings corresponding to pencils $R^{(i)}$. Then for any fixed f we have

$$\lim_{t \to \infty} ||\Lambda_{it}^{(1)} - \Lambda_{it}^{(2)})f||_{H^{1/4}(\partial\Omega)} = 0, \ t \in IR_+$$

Proof. We note that by [13], Lemma 3.1 there can be only a finite number of eigenvalues in iIR_+ and thus the above limit is well defined.

We study the difference $\Lambda_{\lambda}^{(1)}f - \Lambda_{\lambda}^{(2)}f$ for $\lambda = it, t > c_0$ when c_0 is big enough and $t \to \infty$. Let $u^{(i)}(\lambda)$ be the solutions

$$\tilde{R}^{(i)}(\lambda)u^{(i)}(\lambda) = 0, \ \frac{\partial}{\partial n}u^{(i)}(\lambda)\Big|_{\partial\Omega} = f, \ i = 1, 2.$$

Then for $v(\lambda)=u^{(1)}(\lambda)-u^{(2)}(\lambda)$ we have

(16)

$$R^{(1)}(\lambda)v(\lambda) = (B^{(1)} - B^{(2)})u^{(2)}(\lambda) + \lambda(a^{(1)} - a^{(2)})u^{(2)}(\lambda), \ \frac{\partial}{\partial n}v(\lambda)\Big|_{\partial\Omega} = 0$$

We have by (12) for $\lambda = it$

$$(17)u^{(2)}(\lambda) = h_f - R(it)^{-1}(-\Delta + B + ait + t^2)h_f,$$

$$R(it)^{-1} = (-\Delta_N + t^2)^{-1} \left(I + B(-\Delta_N + t^2)^{-1} + ait(-\Delta_N + t^2)^{-1}\right)^{-1}.$$

By using the spectral representation of Δ_N and an interpolation argument as in [11], Lemma 4.5, one can easily show that

(18)
$$||(-\Delta_N + t^2)^{-1}||_{X \to H^s(\Omega)} \le ct^{2-s}, \ 0 \le s \le 2$$

Thus in the equation (17) all inverse operators exist and we get $||u^{(2)}(\lambda)||_{L^2(\Omega)} \leq c$ and $||u^{(2)}(\lambda)||_{H^2} \leq c|\lambda|^2$ when $\lambda = it$ is big enough. By using interpolation we get $||u^{(2)}(\lambda)||_{H^1(\Omega)} \leq c|\lambda|$. Thus from formulas (16) and (18) it follows that

$$\begin{aligned} ||v(\lambda)||_{X} &\leq ||R^{(1)}(\lambda)^{-1}||_{X \to X} \cdot (||B^{(1)} - B^{(2)}||_{H^{1}(\Omega) \to X}||u^{(2)}||_{H^{1}(\Omega)} \\ &+ |\lambda| \, ||a^{(1)} - a^{(2)}||_{X \to X}||u^{(2)}||_{X}) \\ &\leq ct^{-1}. \end{aligned}$$

In the same way we see $||v(\lambda)||_{H^2} \leq ct$. By using interpolation we get

(19)
$$||v(\lambda)||_{H^{3/4}(\Omega)} \leq (ct)^{3/8} (ct^{-1})^{5/8} \leq ct^{-1/8}.$$

Thus

$$||(\Lambda_{\lambda}^{(1)} - \Lambda_{\lambda}^{(2)})f||_{H^{1/4}(\Omega)} \le ||v(\lambda)||_{H^{3/4}(\Omega)} \le ct^{-1/8}.$$

Now Theorem 1.2 follows immediately from Lemma 3.1 and Lemma 3.2.

4 From Λ_{λ} to the unknown coefficients

For the hyperbolic equation (1) we define the response operator

$$\mathcal{R}: \frac{\partial u}{\partial n}|_{\partial \Omega \times IR_{+}} \mapsto u|_{\partial \Omega \times IR_{+}}, \quad \frac{\partial u}{\partial n}|_{\partial \Omega \times IR_{+}} \in C^{\infty}(\partial \Omega \times \overline{IR}_{+}).$$

Lemma 4.1 The mappings Λ_{λ} , $\lambda \in \mathbb{C}$ determine the response operator \mathcal{R} .

Proof. Let u(x, t) be the solution of the initial value problem

(20)
$$(\frac{\partial^2}{\partial t^2} - ia\frac{\partial}{\partial t} - \Delta + B)u(x,t) = 0 \text{ in } \Omega \times IR_+, \frac{\partial}{\partial n}u(x,t)|_{\partial\Omega \times IR_+} = F(x,t), \ u(x,t)|_{t=0} = 0, \ u_t(x,t)|_{t=0} = 0.$$

Clearly it is enough to find $u|_{\partial\Omega\times[0,T]}$ with arbitrary T > 0. Thus we can assume that the support of F is a compact subset of $\partial\Omega \times IR_+$. By standard energy estimates, the Laplace transform $\tilde{u}(\cdot,\xi) = \mathcal{L}_t(u(\cdot,t))(\xi)$ is a $H^2(\Omega)$ -valued function defined in some half space Re $\xi > c_0$. Since the Laplace transform satisfies the time-harmonic equation

$$(\xi^2 - ia\xi - \Delta + B)\tilde{u}(x,\xi) = 0, \ \frac{\partial}{\partial n}\tilde{u}(x,\xi)\Big|_{\partial\Omega} = \tilde{F}(x,\xi),$$

one see by using inverse Laplace transform that

$$u(\cdot,t)\Big|_{\partial\Omega} = \frac{1}{2\pi i} \lim_{M \to \infty} \int_{\xi_0 - iM}^{\xi_0 + iM} e^{\xi t} \Lambda_{\xi} \tilde{F}(x,\xi) d\xi, \ Re \ \xi_0 > c_0.$$

Thus the mappings $\Lambda_{\xi},\;\xi\in\mathbb{C}$ determine the response operator. \square

Next we study the wave equation

(21)
$$(\frac{\partial^2}{\partial t^2} - ia\frac{\partial}{\partial t} - \Delta + B)u(x,t) = 0, \ (x,t) \in IR^d \times IR_+, u(x,0) = f, \ u_t(x,0) = g.$$

Particularly we are interested of the solutions corresponding to the initial data

(22)

$$f(x) = \delta(-t_0 - x \cdot \omega), \quad g(x) = \delta^{(1)}(-t_0 - x \cdot \omega), \text{ where } |\omega| = 1 \text{ and } t_0 \ll 0.$$

These solutions correspond to the incoming delta-waves $\delta(t - t_0 - x \cdot \omega)$, t < 0. By [16], the solutions $u(x, t, \omega)$ of (21) with above initial data have the representations

$$u(x,t,\omega) = \sum_{j=0}^{N} u_k(x,\omega) \delta^{(-j)}(t-t_0-x \cdot \omega) \mod C^{N-1}$$

for every N where $\delta^{(-j)}(t) = t_+^{j-1}/(j-1)!$ for j > 0. Furthermore, by [16],

Theorem 4.2 The functions $u_0(x, \omega)$ and $u_1(x, \omega)$ in a domain $\{(x, \omega) \in IR^n \times S^{n-1} \mid x \cdot \omega > C\}, C > 0$ determine uniquely the function a(x) and determine uniquely the equivalence class

$$[-\Delta + B] = \{ e^f (-\Delta + B) e^{-f} : f \in C_0^{\infty}(IR^n) \}.$$

Therefore it is enough to show that the Λ_{λ} -mappings determine the solutions of the equation (21) outside Ω with an appropriate incoming initial data.

Lemma 4.3 The knowledge of the operators Λ_{λ} , $\lambda \in \mathbb{C}$ determine the function $u(x,t)|_{(IR^d \setminus \overline{\Omega}) \times IR_+}$ corresponding to initial data (22)

Proof. We start with the standard argument concerning the equivalence of the hyperbolic boundary value problem and the scattering problem. Assume that $R^{(1)}$ and $R^{(2)}$ have the same BSD. Let T > 0, $f, g \in C^{\infty}(IR^d \setminus \Omega)$ and u_1 and u_2 be the solutions of the wave equations (21) with the coefficient functions corresponding to $R^{(1)}$ and $R^{(2)}$. Since the response operators $\mathcal{R}^{(1)}$ and $\mathcal{R}^{(2)}$ coincide, there exist a solution v for $R^{(1)}$ such that $v|_{\partial\Omega\times[0,T]} = u_2|_{\partial\Omega\times[0,T]}$ and $\frac{\partial}{\partial n}v|_{\partial\Omega\times[0,T]} =$

 $\frac{\partial}{\partial n}u_2|_{\partial\Omega\times[0,T]}$. By defining $V(x,t) = u_2(x,t)$ for $(x,t) \in (IR^d \setminus \Omega) \times [0,T]$ and V(x,t) = v(x,t) for $(x,t) \in \Omega \times [0,T]$ we see that V is the solution of the uniquely solvable initial value problem (21) for $R^{(1)}$ with initial data (f,g). This yields $V = u_1$ and thus $u_2 = u_1$ in $(IR^d \setminus \Omega) \times [0,T]$. Hence BSD determine uniquely the values of the solution in $(IR^d \setminus \Omega) \times [0,T]$.

Let now $d_j \in C_0^{\infty}(IR)$, j = 1, 2, ... be functions for which $d_j \to \delta$ in the space $H^{-1}(IR)$. Let $f_0 = \delta(-t_0 - x \cdot \omega)$, $g_0 = \delta^{(1)}(-t_0 - x \cdot \omega)$ and $f_j = d_j(-t_0 - x \cdot \omega)$, $g_j = d'_j(-t_0 - x \cdot \omega)$ and let u_j be the solution of the equation (21) corresponding to the initial data (f_j, g_j) . Since $f_j \to f_0$ and $g_j \to g_0$ in $H^{-d-2}_{loc}(IR^d)$, it follows from [5], Lemma 23.2.1 and the finite speed of wave propagation that $u_j \to u_0$ in the space $C^1([-T, T], H^{-d-2}(V))$ for any $V \subset IR^d$. From this the claim follows.

Finally, we prove our main result.

Proof. (of Theorem 1.3) If two operators are the same within a generalized gauge-transformation then their BSD coincide. Next we prove the converse. We have shown that if the BSD coincide then for the operators $-\Delta + B^i$ in $L^2(IR^d)$ we have

$$(23) - \Delta + B^1 = e^f (-\Delta + B^2) e^{-f} = -\Delta - 2e^f \bigtriangledown f \cdot \bigtriangledown - e^f \Delta f + B^2$$

with some $f \in C_0^{\infty}(I\mathbb{R}^n)$. Since B^1 and B^2 are supported in Ω , we see that $\nabla f = 0$ outside Ω . Since the complement of Ω is connected, we see that supp $f \subset \overline{\Omega}$ which proves the claim. \Box

Acknowledgements. The author is grateful for prof. Y. V. Kurylev and Dr. Petri Ola for many valuable discussions. The research was partly supported by Finnish Academy project 37692.

References

- [1] M. I. Belishev, On an approach to multidimensional inverse problems for the wave equation. *Dokl. Akad. Naum. SSSR* 297(1987), 711-736.
- [2] M. I. Belishev and Y. V. Kurylev, To the reconstruction of a Riemannian manifold via its boundary spectral data (BC-method). *Comm. PDE* 17(1992), 767-804.

- [3] I. Gohberg and M. Krein, *Introduction to the theory of linear nonselfadjoint operators*, American Mathematical Society, 1969.
- [4] E. Hille, Analytic function theory, Vol 2, Ginn and Company, 1962.
- [5] L. Hörmander, *The analysis of linear partial differential operators*, Vol. 3, Springer Verlag, 1985.
- [6] V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problem. *Inverse Problems* 8(1992), 193-206.
- [7] A. Katchalov and Y. Kurylev, Multidimensional inverse problem with incomplete boundary spectral data. *Comm. Partial Differential Equations* 23 (1998), 55-95.
- [8] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966.
- [9] Y. V. Kurylev, An inverse boundary problem for the schrodinger operator with magnetic field. *J. Math. Phys* 36(1995), 2761-2776.
- [10] Y. V. Kurylev and M. Lassas, The multidimensional Gelfand inverse problem for non-selfadjoint operators. *Inverse Problems* 13 (1997), 1495-1501
- [11] M. Lassas, Non-selfadjoint inverse spectral problems and their applications to random bodies. *Ann. Acad. Sci. Fenn. dissertations* 103(1995).
- [12] B. Ja. Levin, Distribution of zeros of entire functions, American mathematical society, Providence 1964.
- [13] A. S. Markus, *Introduction to the spectral theory of operator pencils*, American Mathematical Society, 1988.
- [14] A. Nachman, J. Sylvester and G. Uhlmann, An n-dimensional Borg-Levinson theorem. *Comm. Math. Phys.* 115(1988), 593-605.
- [15] Rakesh and W. Symes, Uniqueness for an inverse problem for the wave equation, *Comm. PDE* 13(1988), 87-96.
- [16] T. Shiota, An inverse problem for the wave equation with first order perturbation, Amer. J. Math. 107(1985), 241-251.

[17] P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in ansiotropic media, preprint.