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Abstract. We study the inverse problem of determining a Riemannian
manifold from the boundary data of harmonic functions. This problem arises
in electrical impedance tomography, where one tries to find an unknown con-
ductivity inside a given body from voltage and current measurements made
at the boundary of the body. We show that one can reconstruct the conformal
class of a smooth, compact Riemannian surface with boundary from the set
of Cauchy data, given on a non-empty open subset of the boundary, of all
harmonic functions. Also, we show that one can reconstruct in dimension
n > 3 compact real-analytic manifolds with boundary from the same infor-
mation. We make no assumptions on the topology of the manifold other than
connectness.

1 Introduction

In this paper we study the inverse problem of determining a n-dimensional,
C*®-smooth, connected, compact, Riemannian manifold with boundary (M, g)
from the set of Cauchy data of harmonic functions given on I', an open
non-empty subset of the boundary. More precisely, let f € C*°(0M) with
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supp f C T. Let u € C*°(M) be the solution of
Agu=0in M, (1.1)

U|aM=f-

We assume that we know the Cauchy data on I' of all possible solutions of
(1.1), or, equivalently, the Dirichlet-to-Neumann mapping

Agr: fr—= Oyulp

where 0, is the exterior normal derivative of v and f € C§°(I'). In this paper
we address the question: Is it possible to determine (M, g) by knowing a
non-empty open subset of the boundary I' C M as a differentiable manifold
and the boundary operator Ay r?

This problem arises in Electrical Impedance Tomography (EIT). The
question in EIT is whether one can determine the (anisotropic) electrical
conductivity of a medium €2 in Euclidean space by making voltage and cur-
rent measurements at the boundary of the medium. Calderén proposed this
problem [C] motivated by geophysical prospection. EIT has been proposed
more recently as a valuable diagnostic tool since tissues in the human body
have quite different electrical conductivities. The electrical conductivity in
an open subset ) of R™ is represented by a positive definite matrix y = (y%).
The Dirichlet-to- Neumann map is the voltage to current map, that maps a
voltage potential at the boundary of the medium to the induced current flux
at the boundary of the medium. Note that in the study of EIT the usual met-
ric of R" plays usually a crucial role. We recall now some previous results on
the problem for the case of a Riemannian manifold (M, ¢g) and for the EIT
problem in Euclidean space. In all the cited results below I' is the whole
boundary and we denote A, = Ay p. In [LU] (page 1098) it is observed that
in dimension n > 3 the EIT problem is equivalent to the problem of deter-
mining a Riemannian metric g from A, with g;; = ( det y*)1/(n=2)(y4)~1,
Let us denote the closure of by Q. Then, if 1/ : Q@ — Q is a diffeomorphism
which is the identity at the boundary, Ay-; = A,. The natural conjecture is
that this is the only obstruction to unique identifiability of the Riemannian
metric (see Conjecture A in [LU], page 1098).

For isotropic metrics in R* (i.e. g¢;; = «(z)d;; with J;; the Kronecker
delta and « a positive function) the conjecture in dimension n > 3, is that
the metric can be identified uniquely from the Dirichlet-to-Neumann map.
This was proved for smooth isotropic metrics g;; in & C R*, n > 3 in [SU]
and for C*/? isotropic metrics in [B].



In the anisotropic case in dimension n > 3 Lee and Uhlmann proved in
[LU] that the conjecture is valid for simply connected real-analytic Rieman-
nian manifolds with boundary which are in addition geodesically convex.

In the two-dimensional case, since the Laplace-Beltrami operator is con-
formally invariant, we have that if v is a diffeomorphism of € which is the
identity at the boundary then Ayy-g = A4 for all smooth functions o having
boundary value one on QM. The natural conjecture is that this is the only
obstruction to unique identifiability of the metric (see conjecture B in [LU],
page 1099). Lee and Uhlmann proved in [LU] that this is the case for simply
connected domains of Euclidean space. We remark that the EIT problem
for domains of Euclidean space was solved in two dimensions by A. Nach-
man in [N] for C?-conductivities for domains Q C R?. This was extended to
Lipschitz conductivities in [BU]. The problem for anisotropic conductivities
can be reduced to the case of isotropic ones by using an analog of isothermal
coordinates as observed in [S].

In this paper we extend the results mentioned above of [LU] in two di-
rections. First we assume that the Dirichlet-to-Neumann map is measured
only on part of the boundary which is assumed to be real-analytic in the
case n > 3 and C'*°-smooth in the two dimensional case. Second we do not
assume any condition on the topology of the manifold besides connectedness.
Furthermore we do not assume that the manifold is geodesically convex or
that OM or I' C OM are connected.

Throughout the paper we assume that one of the following conditions is
satisfied:

i. M is a connected Riemannian surface

ii. n> 3 and (M, g) is a connected real analytic Riemannian manifold and
the boundary 0M is real analytic in the non-empty open set I' C OM.

Before stating the results, we explain what we mean by the reconstruction
of a Riemannian manifold (M, g). Since a manifold is an ’abstract’ collection
of coordinate patches our objective is to construct a representative of an
equivalence class of the set of isometric Riemannian manifolds to (M, g) or
a metric space X which is isometric to (M, g).

In the 2-dimensional case the inverse problem cannot be uniquely solved
for the following reason. Assume that we have two Riemannian surfaces
(M, g) and (M, g) with the metrics g and g in the same conformal class, i.e.
g = gij(z) and § = o()g;j(z), 0 € C®(M), o|r =1, o > 0. Since

Ajgu =0 "Ayu (1.2)



we see that the solutions of equations (1.1) corresponding to the metrics g
and g coincide, as well as the mappings A, and Ag . However, it turns out
that this is the only source of non-uniqueness. Our main result is

Theorem 1.1 Assume that condition (i) or (ii) is satisfied. Then

i. For dim M =2 the Ayr-mapping and I' determine the conformal class
of the Riemannian manifold (M, g).

ii. For a real-analytic Riemannian manifold (M,g), dim M > 2 which
boundary is real analytic in I', the Agr-mapping and I' determine the
Riemannian manifold (M, g).

The outline of the proof for the case I' = OM is the following. Using
[LU] we reconstruct the metric at the boundary and enlarge M to a manifold
M. For the corresponding problem in M using that we know the Dirichlet-
to-Neumann map, we can reconstruct the Green’s kernels in M \M In the
two dimensional case we use isothermal coordinates so that the Green’s ker-
nels are real-analytic in these local coordinates. In dimension n > 3, since
the manifold is real-analytic, the Green’s kernels are real-analytic in local
coordinates. We use these Green’s kernels to define local coordinates. Then
we continue the family of the Green’s kernels analytically in these coordi-
nates. More precisely, we consider the sheaf A of sequences of real-analytic
functions on R", define an equivalence relation in this sheaf and define the
space B of equivalence classes in A. After this the reconstruction procedure
of the manifold is very simple: Let p € B be the element corresponding to
the germs of the Green’s kernels at a point £ € M\ M. Then the unknown
manifold can be constructed by taking the path-connected component of B
containing p.

The outline of the paper is as follows. In section 2 we extend the metric
g to a manifold M so that the Green’s kernels are real-analytic in M in
appropriate coordinates. In section 3 we show that the Green’s kernels can
be used as local coordinates and in section 4 we introduce some sheaves
in order to obtain a maximal analytic continuation of the Green’s kernels.
In section 5 we continue analytically the Green’s kernels, reconstruct the
manifold as a path connected component of B, and we prove the main result.
In section 6 we discuss some possible extensions of the results.



2 Construction of the metric on the bound-
ary and continuation of the manifold

We assume first that [' = 0M and introduce later the modifications for the
case when the Cauchy data is given on a part of the boundary. Near oM
we use the boundary normal coordinates (s, h) where s € OM is the point
nearest to x and h = dist(z, s). Let £ = £(s) be local coordinates of OM near
a given boundary point so € M. Thus near sy we have in M coordinates
(£,h) € R x R,. In these coordinates we represent the metric by the
tensor g;;(&,h), 1,7 =1,...,n.

By results of [LU] (see pp. 1105-1106), the operator A, determines in the
2-dimensional case the tangential component go (&, 0) of the metric tensor g
on the boundary. Correspondingly, in the case of the real-analytic manifold
M, n > 3, A, determines all the normal derivatives %gij(f, 0), k > 0 of
the metric tensor at the boundary. Thus we define a manifold M by gluing
to M a boundary collar 0M x| — r,0] with metric described as follows. In
dimension n > 3, when r is small enough, we can continue the metric so that
the new metric is real-analytic. In the case n = 2 we use the product metric
in OM x| — r,0], which gives us a Lipschitz metric on the manifold M, that
is, M has C*-coordinates in where the metric tensor satisfies g;; € C%!(M).
We denote the new metric of M also by g. Next, let

Uc M\M (2.1)
be the closure in M of an open neighborhood of OM (see Fig. 1). We will
use later a family of open neighborhoods U, C M\ M,

U ={zeM: dz,U)<r}, 0<r<rg (2.2)

where 7o > 0 is small enough.
We use the Green’s functions of the Laplace-Beltrami operator which are
solutions of the equation

AG(-,y) = 8,in M, (2.3)
where y € M. As usual, we denote by J, the Dirac’s distribution which

satisfy (0y, f)r2(m,g) = f(y). In the following we consider y as a parameter
and use the notation

hy(z) = G(z,y). (2.4)



Figure 1: Extension M of M , the neighborhood U of &M and the neighbor-
hood V' where the continuation procedure is started (V' will be defined in
section 5).

Lemma 2.1 Every point x € M\ U has a coordinate neighborhood (W, ¢),
¢ : W — R"™ where the Green’s functions h, o ¢, y € U, are real-analytic.

Proof. For the real-analytic M , n > 3 by definition, each point has a neigh-
borhood with real-analytic coordinate function ¢. Since the metric is real-
analytic and the Green’s functions hy(z), = # y satisfy the Laplace-Beltrami
equation which is a differential equation with real-analytic coefficients, it
follows by [H] (Theorem 9.5.1) that h,(x) are real-analytic functions in the
¢-coordinates. .

In the 2-dimensional case the metric of M is Lipschitz. Then every (in-

terior) point = € M has a neighborhood W with isothermal coordinates

d(z) = (¢1(x), da(2)), p €CH*, a <1 (2.5)
such that the metric tensor is of the form
gm(a:) = O'(J?)éij, 0'(.’11‘) >0 (26)

(see [V], Sections I1.2. and IL.6.1, or alternatively, [S], Lemma 2.2 and [V],
Theorem 2.1). In these C'**-coordinates the Laplace-Beltrami operator is
well defined in weak sense, and particularly the formula (1.2) is valid. Thus
we obtain

Ahy o ¢ 1) (8(x)) = o(2)Aghy(z) = 0 for y ¢ W



where A = 07 + 03 is the Euclidean Laplacian. This implies that h, o ¢~ is
harmonic in R? with respect to the Euclidean metric. Thus h, is real-analytic
in the ¢-coordinates. O

Our first goal is to determine the Green’s functions in the boundary layer.

Lemma 2.2 The Dirichlet-to-Neumann map on OM and the metric g in
M\ M determine the values of the Green’s functions hy(x) for x,y € M\ M.

Proof. Let y € M \ M and u be a function in M \ M. Then u has a
continuation u; to M which satisfies the equation

Agu; = 6y in M, (2.7)
U1|3M = 0
if and only if
Agu = 6,in M\ M, (2.8)
Oyulon = Ag(ulom),
u\aﬁ = 0

where v is the unit normal vector of M pointing towards M \ M. In other
words, (2.8) means that u solves the equation (2.7) in M\ M and its Cauchy
data coincides with the Cauchy data of some solution in M. Thus we can
consider (2.7) and (2.8) as equivalent equations.

Since we know the metric ¢ in M \ M and we know the Dirichlet-to-
Neumann map A,, we can uniquely solve (2.8). Since this solution has an

extension to M solving (2.7), we have determined h,(z) for z,y € M\M. O

3 Properties of Green’s functions
First we show that the values of Green’s functions at  determine x uniquely.
Lemma 3.1 The mapping

z € M (hy(2))yev

18 tnjective.



Proof. Assume that G(z,y) = G(2',y) for all y € U. By the symmetry
of the Green’s kernel, G(y,z) = G(y,z') for all y € U. By the unique
continuation principle, this holds for all y € M\{z,z'}. Moreover, G(z,y) is
at least C*-smooth when x # y and when y is near to a given z it has the
asymptotics ([T2], Section 7.11 using the coordinates (2.5) in the case n = 2)

Gly,r) = cpd(y,z)>"+ O0(d(y,z)*™),n > 3, (3.1)
G(y,z) = calogd(y,z)+ O(1), n=2

where the constants ¢, # 0 depend only on n and d is the distance in M.
Thus for given z, G(y, ) is singular at y = x and at this point only. Similarly,
G(y, «') is singular at the unique point y = z’ which implies that z = z’. O

We denote by SM the sphere bundle of vectors (z,&) € TM, |¢| =1 and
we use the notation d,h = dh|, for differential of h at x. In the following two
lemmas, r €]0, o[ is a fixed number.

Lemma 3.2 There is ¢ > 0 such that for any (z,€) € S(M\U,) there is
y € U such that

|dzhy(§)| > Cp.

Proof. In the case n > 3 the Riemannian manifold is a real-analytic. Thus
for a given (z,£) € S(M\U,) there is a real-analytic path v : [0,¢1] — M
such that

1(0) =z, (0) =¢&, y(t) € U™. (3.2)

Correspondingly, in the case n = 2, let 7; be a smooth simple path from
y € U™ to x and V be a small neighborhood of the path ;. Since M is a
C*°-manifold, we can consider V" as a coordinate neighborhood (V%) with a
coordinate function ¢ € C'*°. For instance, when V' is small enough, we can
define tubular coordinates in V. Then 7, has a neighborhood V; C V one
which we can construct isothermal coordinates ¢ satisfying (2.5) and (2.6).
Indeed, if ¢;;(2), z € (V) is the metric tensor in the i-coordinates, there
are functions f;; € C%(R?) which coincide with g;;(2) in ¥(V;) and with
bi; in R% \ ¢(V). The existence of the isothermal coordinates coordinates
near v, follows then from [V] (see Section II.2 and Theorem 2.12). Indeed,
by solving a Beltrami equation in R? corresponding to the metric f;;, we
can construct in V; coordinates in which g;; has the form (2.6). In these
isothermal coordinates the Green’s functions are real-analytic. By using
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Weierstrass theorem, we find in these coordinates a real analytic path
which approximates vy, and satisfies conditions (3.2).
Thus in both cases n = 2 and n > 3 we can define a real-analytic function

b:t— dxh,y(t) (€), t €[0,t4].

Assume that this function vanishes identically for all ¢ such that v(¢) € U.
Since U™ is an open set, b vanishes identically and in particular near ¢t = 0.
However, the function G(z,y) has asymptotics (3.1). This is a contradiction
if b vanishes for all ¢ near zero. Thus for every (z, &)

H(z,&) = sup |dzhy ()| > 0.
yelU

The claim follows since H is continuous in S (M \U,) which is a compact set.
U

Next we denote B(z,r) = {2z’ € M : d(z',z) <r}.
Lemma 3.3 There exist points 4y, ...,4, € U such that
Q: M\UT - R,z (hﬂk (x))zzl
is bi-Lipschitz mapping to its image. In particular, Q) is injective.

Proof. Obviously, for any ¢i,...,7, the mapping () is Lipschitz. Next we
show the existence of 9, ..., ¥, such that @ is injective and its left inverse is
Lipschitz.

Let z € M\U,. Then there are points y; = y1(2),...,Yn = yn(x) € U
such that the vectors d;h,;, 7 =1,...,n are linearly independent in T M.
Indeed, in the opposite case we obtain a contradiction with Lemma 3.1 when
¢ is a vector vanishing in the space spanned by d;h,, y € U. Since hy,
are at least C'"®smooth, it follows from the inverse function theorem that
the function z — (hy,)?_, has a local inverse function which is C"**-smooth.
Hence there is p, > 0 such that for 2/, 2" € B(x,2p;)

Crd(a', 2") < |[(hy; (2') = hy; (@) [ < Cod(a’, 2") (3.3)

where C;, Cy > 0. Since M \U, is compact, we can choose a finite cover of
balls B(zy, ps,), | = 1,..., L such that (3.3) is valid with uniform C; and Cs.



Let p = min p,;,. Moreover, by using the compactness of M \U, and Lemma
3.1 we can choose points 21, ..., 2, and € > 0 such that

[|(he; (@) = Py (&)L R > & (3.4)

when d(z',z") > p. Thus by choosing {gx : k=1,...,p} = {yj(z): j =
L...,n, l=1,...,L} U{z;: j=1,...,m} we prove the claim. O

4 Sheaf of families of analytic functions

In this section we do the preliminary work so that we can use real-analytic
continuations of the Green’s functions in the next section. We first explain
informally the ideas on how the construction of a manifold from the Dirichlet-
to-Neumann map can be done in the 2-dimensional case

The basic idea can be seen in Figure 2. For every fixed x € M there is
a neighborhood W of = and points y;,y, € U such that h,, and h,, form
regular coordinates

H:W — R,
2 (hy(2), hy,(2))-

Moreover, in W we have isothermal coordinates ¢ : W — R2. Then the
functions hy, o ¢! and hy, o ¢~ are real-analytic. Hence by the inverse
function theorem the mapping

$o H™': (hy, (2), hyy(2)) = (2)

is real analytic in the neighborhood H(W) C R? of (hy,(z), hy,(z)). Let
y € U be an arbitrary point. Since h,o¢ ' : ¢(W) — R and ¢po H ! :
H (W) — R? are real analytic, we see that also their composition w, =
hyoH ' :HW)—R,

wy : (hy, (2); by, (2)) = hy(2) (4.1)

is real analytic (see Fig. 2). In other words, the Green’s functions correspond-
ing to points y; and y, form coordinates in which all other Green’s functions
h, are real-analytic. Hence the all the Green’s functions h, (y € U) can be
analytically continued as functions of the given Green’s function A, (x) and
hy,(z) as long as these Green’s functions form a coordinate system. When
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R2

Figure 2: Isothermal coordinates ¢ on a coordinate neighborhood W and the
Green’s functions h,,.

Green’s functions hy, (z) and hy,(z) do not form any more regular coordi-
nates, we choose new points y; and y), use the corresponding Green’s func-
tions as coordinates, and continue analytically the other Green’s functions.
This procedure can be repeated arbitrarily many times until the constructed
neighborhoods cover the whole manifold. In other words, we continue the
Green’s functions analytically as function of themselves and show that the
maximal analytic continuation is equivalent to the desired manifold which
we want to construct.

To make this approach rigorous we analyze the maximal real-analytic
continuation by applying the theory of sheaves which is very useful in going
from local information to global information.

Now we return to rigorous analysis in dimension n = dim(M) > 2. Since
U is compact, for any r; > 0 there is m < oo with

m =m(ry) = max{|h,(z)|: ye€ U, z€dl,}.
By (3.1), m(r1) — oo when 71 — 0. We define the set
Kp={z € M\U: |hy(z)| <mforall y € U}. (4.2)

Since U is compact, for any x ¢ U the function y — h,(z) attains its
maximum at some y. Since the differentials d h, are uniformly bounded
when y € U and d(z,U) > ¢, we see that K,, is open. Moreover, when
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x € 0K,,, this shows that there is y € U such that
hy(z) = m. (4.3)
When m is large enough, M C K,,. Thus we can define
Let M,, be the connected component of K, containing M. (4.4)

Next we define the sheaf which is needed for maximal real-analytic con-
tinuation (for the standard definitions and properties of sheaves, we refer to
[Te]). As usual, the maximal analytic continuation is a connected component
of the sheaf of analytic functions.

We denote by S a pair ((fy)yev,w) corresponding to the family of real-
analytic functions f, : w —] —m, m[ which are indexed by y € U and defined
in a domain w C R*, n = dim(M). For instance, in the case n = 2 the
Green’s functions w, : H(W) — R given in formula (4.1) define the pair
((wy)yer, w) with w = H(W).

These pairs define a pre-sheaf H = (H,,, p. ) Where

Hey = {((fy)yev,w) : fy : w— R are real-analytic, |f,(2)| <m, z € w}.
(4.5)

Here w C R* are open connected sets and p,s, w' C w are the restriction
mappings Pu’ w (fy) = (fy|w’)7 Pu’ w Hw — Hw’-

Let S be the associated sheaf corresponding to H with stalks §,, z € R™.
We recall that the sheaf S is the disjoint union of stalks S, and the elements
of §,, called germs, are the direct limits

§= li_I)n((fy)yEUa w) = wl\illg}((fy)yEUa w).

Roughly speaking, s corresponds to the Taylor expansions of the functions
fy at z. We define the natural projections

7T:S—R", s—zforses,
and

Pow i Hy — S,y = ((fy)yEan) = s = w,li\r?z}((fy)yEan,)

where z € w. We recall that the usual sheaf topology in S is the topology
generated by the sets

Ysw={p:w(S)€S: 2z €w}
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corresponding to an open domain w C R* and a pair S = ((fy),w) € H,.
We define the evaluation mappings

£:8—=RY, s= Pao((fy)yev,w) € Sz = (fy(2))yev (4.6)

and Y : s — f,(z). The mapping € is continuous where RV has the usual
product topology.

Next we do the constructions which enables us to use the Green’s func-
tions as coordinates. For this, let us define

HY: M =R, x5 (hy,(2), (4.7)

where § = (y1,...,Yn) is a n-tuple of n different points y; € U. We denote
by Y the set of i’s and use the notation H = HY when there is no danger
of confusion. Assume now that H? : W — R defines regular coordinates in
W C M\ U. We consider the pair S = ((wy)yev,w) where w, = h, o (HY)™!
and w = HY(W). In other words, S corresponds the Green’s functions h,
in the HY%-coordinates. Then for ¢t = (¢1,...,t,) € HY(W) C R* we have
hy, o H7'(t) = t;. This means that (wy,,...,w,,) is the identity mapping
H(W) — H(W). Motivated by this observation, we define the set AY C S
as follows. Let

AV ={s: s=p,,((f,),w) where fy;(t) =tjfortew, j=1,...,n}.

Also, we denote by A the disjoint union

A=]JA" (4.8)
yey
Using the sheaf topology of S, the topology of A is generated by the open
sets

Yswg={s: = p.w(S) € AV 2 € w} (4.9)

where w C R is open, S = ((fy),w) and 7 € Y.

We are going to use certain equivalence classes of the sheaf as the points
of the desired reconstructed manifold. This equivalence relations reflects the
fact that we can represent a manifold using different coordinate systems.

For s1, s5 € A we define the following relation: We say that s; ~ s, if and
only if there exist representations s; = p,r o/ ((fy), W), s2 = prwr((gy),w")
and there is a real-analytic diffeomorphism F : w" — ', F(2") = 2’ such
that

fyoF =g, forallyeUl. (4.10)

13



Note that if s;, so € A7, i € Y then the relation s; ~ s, yields

fy'w’ﬂw” = gy'w’ﬂw"a Yy e U. (411)

The relation ~ is clearly an equivalence relation. Let us denote by [s]| the
equivalence classes, B = A/ ~ and

e: A— B, s—[s].

The set B has the topology co-induced by e: the set B C B is open if its
pre-image in A is open. This makes e continuous and open mapping. Since
for s; ~ s we have £(s1) = £(s2), we can define the evaluation mapping &
also on B.

5 Construction of the unknown manifold

After the previous preparations we now realize our ’construction procedure’.

In the first place, let x € M,,\M. Then by Lemma 3.2 there are § =
(Y1,---,yn) € Y such that H(z) = (hy,(x),..., hy,(x)) given in (4.7) form
regular coordinates in some neighborhood V; of x. Moreover, by Lemma
2.1 there is a coordinate neighborhood (V5, #) of x such that H o ¢! and
hyo ¢!, y € U are real-analytic. Thus there is a neighborhood V' C Vi NV,
of z in where h, o H™! are real analytic for all y € U. The set V is where
the analytic continuation is started (See Figure 1). Secondly, let

w=H(V), z=H(z)
and define a germ

So = pz,w(SO)a SO = ((fg?)yEU:w)’ fg? = hy OH_l

where h, are the Green’s functions defined in formula (2.4). So, this germ s
corresponds to the Green’s functions at z.

With the above preliminaries our reconstruction procedure of the un-
known manifold is quite simple.

Definition 5.1 Let N be the connected component of B containing [sq]. We
call N the mazximal analytic continuation of sg.

We will show that N is homeomorphic to the manifold M,, defined in
formula (4.4) and construct later an appropriate metric on N.

14



First we show that the set NV has a manifold structure. Since N is open,
any [s] € N has a neighborhood e(Y) where Y C A7 is as in (4.9). In the set
e(Y) we have coordinates

U:ls]—m(s), seY (5.1)

Notice that every ¢ such that [s] € e(AY) defines coordinates near [s]. If
[s] € NV has two representations s; ~ sz, s; € A?Y and s, € AY, the function
F given in formula (4.10) define the real-analytic transition function between
the corresponding coordinate charts. Thus N has a real-analytic manifold
structure.

Theorem 5.1 There is a homeomorphism R : M,, — N. Moreover, in N
the evaluation mapping £ gives the values of the Green’s functions,

E[R(x)] = (hy(2)))yev, = € M. (5.2)

Proof. The proof consists of several steps.

Step 1: For every x € M, there are points y; = y1(z),...,yn = yn(z) €
U and i(x) = 4 = (y1,...,Yn) such that HY forms regular coordinates in
neighborhood W of x. We denote next H = HY. Now the Green’s functions
define the family

S(x,?j) = ((fy)yEU,w)a fy = hy o H_la W= w(m) = H(W) (5'3)
Also, we denote z(z) = H(x).
For given i = (y1,...,yn) we consider the set of x at which HY defines

regular coordinates. This set we denote by
MY = {z € M, : det (d,HY) #0}. (5.4)

Step 2: We define R to be the mapping which maps x to the germ of the
Green’s functions at =z,

R: M, = B,z = [pya)wa) (S(z, 7(z)))].

Obviously R(z) is independent of the choice of §(z).

Next we show that R is continuous and open in M,,. Let 2" € W. Then
also the point z' has a neighborhood where the coordinates Hj corresponding
to ¥ = y(z) are regular. Hence

R(.TI) = e(pH(x’),w(m) (S(.T, y_‘(i))))
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with e as in section 4. By the definition of topology of B, R is continuous
and open in M,,.

Step 3: Next we study the bijectivity of R. By Lemma 3.1, the mapping R
is injective. We show the surjectivity of B in the next steps. We note that the
connected components of B coincide with the path-connected components.
Thus, let [s] € N and let v : [0,1] — B a path from [sq] to [s]. Let

K ={te[0,1]: for all ¢ €[0,t[ we have (') € R(My,)}. (5.5)

Obviously K is a closed set. We are going to show that it is also open. Let
t; = sup K and B C B be a neighborhood of (). The path - defines a
path £(y(t)) on RYV. Our aim is to map this path to a path x on the manifold
M,,.

Our construction procedure of finding the maximal analytic continuation
can be now interpreted as continuation along paths on M,,. However, there
are two problems which can be schematically shown in the Figure 3. In the
first place, the path p can leave M, as in case i. Secondly, as in case ii.
the path p([0,t'[) can have infinite length. In this case the Green’s functions
hy(14(t)) might have a continuation over the point ¢ = ¢’ which would not
correspond to the Green’s functions on M,,. These two problems will be

dealt with below.

oM,,
Figure 3: Paths which can cause the wrong kind of continuations of h,,.

Step 4: We show that the path ([0, ¢;[) has a limit point. Let @ be the
mapping defined in Lemma 3.3, with corresponding points ¢, ..., J,. Next,
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let P:RY — R? is the projection (fy)yev — (fi1,---, fg,)- Let

7(t) = PE(Y(1)) (5.6)

be a path on RP. Since 7(¢) is in the range of @ when ¢ < t;, we can define
a path

pt) = Q7 PE(Y(Y), t<t (5.7)

on M,,. Note that now we have three corresponding paths, namely the path
v on the sheaf B, the path 4 in R and the path p on M,,.

Since P&+ is continuous near t; and () is bi-Lipschitz, we see that y maps
Cauchy sequences of [0, ;] to Cauchy sequence of M,,. Hence there exists a
limit

lim pu(t) € M. (5.8)

T ot

pu(t)

We denote x1 = u(ty).

Step 5: Next we show that x; € M,,. Since M,, is open, it is enough to
show that z; ¢ OM,,. Since £v is continuous, we know by definition (4.5) of
sets H,, that

lim E(v(t) = £(y(t1)) €] —m,m[” (5.9)

t—t,—

exists. However, if z; € OM,,, by formula (4.3) there is y such that |h,(z)| =
m. Then we would have

lim 1€%(y(8))] = Jim_ |hy(y(2))| = m

t—t1—

which is a contradiction with (5.9). Thus z; € M,,. This means that the
case 1. in Figure 3 cannot happen.

Step 6: Next we choose a representative for (¢1). By definition, there is
a ¢ € Y such that

")/(tl) = [81], S1 € A:l7 (510)

Let B C N be a neighborhood of (¢;). We can assume that B = e(Y),
where
Y = {p2w,(S0) : z € wp} C A,

wo C R" is open, and
So = ((9y)yev wo) € Huo- (5.11)
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In the next steps 7, H = HY and B are fixed.

Step 7: We know that v(t) € R(M,,) and y(t) € B C e(AY) fort =t, —¢
when € > 0 is small enough. To combine these facts we show next that
v(t) € R(MY). At first, let s; € AY be a representation of (¢), that is,
[s1] = y(t) where

S1= pm,m((.fg})awl)'

Since () € R(M,y,), there is 4, and sy € R(M?%) such that s; ~ s and
So = pzz,wg((hy © (HgZ)_l)yEUa wa).
By using the diffeomorphism F in formula (4.10), we see that
hy, o (H?)™" = fpoF, j=1,....n.

Since fylj(zlj-.-gzn) = Z]; Z = (Zl,..-,Zn) E wl, J = 1,---,” Where g‘:
(Y1, - -, Yn), this implies

F=H%0(H")™', or HY = F o H®.

Y

Since H? is invertible near u(t), also HY is invertible and it defines regular
coordinates at u(t). Thus v(t) € R(MY).

Step 8: Next we show that near x; = u(t;) we can use the coordinates
H = HY. For this it is enough to consider the differential

dH : TM,, - TR"

and show that d,, H is invertible. Assume that this is not true. Then there is
¢ € Ty, (M,y,) such that d, H(§) = 0. By Lemma 3.2, there exists h,, y € U
such that d, h,(§) # 0.

Let t =t —¢, € €]0,e;1[ where & is so small that v(¢) € B. By step 7 we
know that v(t) € R(MY), that is,

V() = lpr@)w((hy o H ) w)]. (5.12)
Moreover, v(t) € B and formula (5.11) imply that
7(t) = [pr(ar) w0 ((9y)yer, wo)- (5.13)

The relations (5.12) and (5.13) together with (4.11) show that the point
H(z) € R" has a neighborhood w; C R™ such that

gy(z) =hyo H_I(Z), Z € Wy.
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Let
V= |J H'(w)cM,

tE]tl —51,t1[

be a neighborhood of the path p(]t; — ey, ¢1[). Then
gyo H(z) = hy(z), z € V. (5.14)

Note that z; is not necessarily in V. Let £(t) be a smooth vector field along
w(Jty —e1,t1]) such that £(¢1) = €. Since both sides of (5.14) are continuously
differentiable near x;, we conclude using the chain rule that

0 = du@)9y 0 de, H(E) = lim dy(u)) gy 0 duwy H(E(L))

t—t1—

= tggli d“(t)hy(f(t)) = dzlhy(g) #0

which is a contradiction. Hence d,, H is invertible implying that H forms
regular coordinates in some neighborhood of x;. This fact means that the
'wrong’ kind of continuations in the case ii. in the Figure 3 cannot happen
either.

Step 9: Let us define a germ corresponding to the Green’s functions at
T1,

52 = Pran (g 0 H™Y),0) € A7 (5.15)

where 2o = H(z1). Let w3 C wp Nws be a connected neighborhood of H(z4)
(see (5.11)) and ¢ be small enough. As we saw in step 8, there is a neighbor-
hood wy C w3 of H(u(t; — ¢€)) such that

9,(2) = h, 0 H'(2) (5.16)

for z € wy and y € U. Since both sides of equation (5.16) real-analytic func-
tions, this is valid for all z € ws. This implies that (¢;) has a neighborhood
in R(MY) C R(M,,). Thus t, is an interior point of K. Hence K is an open
set and K = [0, 1]. Thus we have shown that R is surjective.

Final step: We have shown that R is bijection. Since it is continuous and
open, it is a homeomorphism. O

Proof of Theorem 1.1
First we give the proof in the case I' = OM. By Theorem 5.1 we know
M,, up to a homeomorphism and the values of the Green’s functions. By
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Lemma 2.2, we know the values of the Green’s function in M,,\M. Hence
we can find the set

R(M) = N\ R(M,,\M).

Thus we can identify M and R(M) by using the homeomorphism R. More-
over, we can cover the manifold /V with finite number of coordinate neighbor-
hoods (e(Y;), ¥;) given in formula (5.1). By formula (5.2) these coordinates
define a real-analytic structure on N which makes the mapping R : M,, - N
real-analytic diffeomorphism.

Next we construct the metric on N, denote by letters X = R(z) and
Y = R(y) the points of N and write G(X,Y) = G(z,v).

Now, the Green’s function is symmetric in the sense that G(X,Y) =
G(Y, X). Therefore we can do continuation respect of parameter Y, too. By
Lemma 2.2 we know the values of G(X,Y) for each X,Y € N\ R(M). Since
G(X,Y) is real-analytic function of X when X # Y, we can find G(X,Y)
for X e N\{Y} and Y € N\ R(M) by using analytic continuations in ¥;-
coordinates. By using analytic continuation again and the fact that G(X,Y)
is analytic respect to Y when Y # X we find G(X,Y) for X, Y € N, X #Y.

Finally we show that the values of Green’s functions determine the metric
tensor. To keep the notations simple, we identify M and R(M) and construct
the appropriate metric tensor from the Green’s functions.

In dimension n > 3, we see from (3.1) that the Green’s function has a
singularity of the type c,d(x,y) "*?, with ¢, # 0, when z is near to y. Thus
by studying the behavior of G(z,y) when z goes to y along a smooth path, we
can find the metric tensor at y. In two dimensions the Green’s function has
a singularity of the type clogd(z,y) with ¢ # 0. To construct the conformal
class of the metric, let us choose some smooth positive measure p on M. This
measure corresponds to the Riemannian volume measure of some unknown
metric 0g, o(z) > 0. Then for any f € L?(M) the function

u(z) = /M Gz, 2)f(2) dp(2)

satisfies Ayyu = f. Let U C M be a neighborhood where the pair h =
(hy,, hy,) defines coordinates. By choosing f with supp(u) C U and v €
C§°(U) we can compute the integral



where g;; is the metric tensor in the h-coordinates. By choosing f and v such
that the supports of u and v shrink to one point appropriately, we find the
function ¢'/?¢%. Thus we can find the conformal class of the metric.

In the case where the Dirichlet-to-Neumann map is given only on a non-
empty open subset I' of the boundary we just need a small modification of
the arguments in the previous sections. Namely we define a smooth extension
M by gluing to M a set V C I'x] —r,0] in the boundary normal coordinates.
Then we choose a compact U C V' and define the pre-sheaf #,, as in (4.5)
with the additional condition that

For any z € w there is y € U such that f,(z) #0 (5.17)

By using the asymptotics of the Green’s functions near their singularity and
the maximum principle, we see that the Green’s functions are strictly negative
in the interior of M. This modification implies that the point x; in the
formula (5.8) cannot be a boundary point. Otherwise the proof is analogous
to the case I' = OM. Thus Theorem 1.1 is proven. O

6 Remarks and open problems

First we consider a possible extension of Theorem 1.1 part i).

Remark 6.1 The method of proof of Theorem 1.1 given above is quite
flexible and can be applied to other inverse problems involving a real-analytic
structure. We mention, for instance, the problem of finding obstacles inside
real-analytic structures. Indeed, a real analytic manifold M with obstacle
D can be considered as a manifold M; = M \ D where the Dirichlet-to-
Neumann mapping is given on the known part of the boundary, that is on
['=0M C 0M;. Hence the construction of the boundary M, gives the the
boundary 0D of the obstacle. For other results in this direction, see e.g. [I].
Another likely extension of the result is to piecewise-analytic Riemannian
manifolds. See [KV] for the corresponding result in the isotropic case in two
dimensions for domains in Euclidean space.

Remark 6.2 The method of proof of Theorem 1.1 in two dimensions depends
on the fact that we can use local coordinates so that the Green’s kernel is
real-analytic in these coordinates and the fact that the Laplace-Beltrami op-
erator is conformally invariant. In dimension n > 3 the conformally invariant
Laplacian is given by

n—2

Aot = 4Ty

Ryu=0 (6.1)
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where R, denotes the scalar curvature. Here conformally invariant means
that

n—2 n—2

(Agg — mRag)(leu) =0 (Ay - ng)U (6.2)

where o > 0 and wy, w, are appropriate powers.

We can define the Dirichlet-to-Neumann map A; for (6.1) as before un-

der the assumption that 0 is not a Dirichlet eigenvalue for the conformally
invariant Laplacian (6.1). This is the case, for instance, if R, > 0. Using
(6.2) it is easy to see that Ayy = Ay if o|op = Oy0lom = 1.
Conjecture 6.3 Assume that (M, g) is an n-dimensional, n > 3, smooth,
connected Riemannian manifold with boundary, locally conformal to a real-
analytic manifold. Assume that 0 is not a Dirichlet eigenvalue for the confor-
mally invariant Laplacian (6.1). Then Aj determines a Riemannian manifold
N which is conformal to (M, g).

Remark 6.4 In dimension n > 3 we only used the fact that in local coordi-
nates the Green’s kernel is real-analytic. Einstein manifolds are real-analytic
in harmonic coordinates [P]. Therefore it is natural to conjecture the follow-
ing result:

Conjecture 6.5 Assume that (M, g) is an Einstein manifold, dim(M) > 3,
Then A, determines a Riemannian manifold N which is isometric to (M, g).
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