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1 Introduction

The goal of this paper is to establish global uniqueness and obtain reconstruc-
tion, in dimensions n > 3, for the Calder6n problem in the class of potentials
conormal to a smooth submanifold A in R"”. In the case of hypersurfaces, the
potentials considered here may have any singularity weaker than that of the delta
function 84 on the hypersurface H; in general, these potentials correspond to con-
ductivities that are in C'*¢ and thus fail to be covered by previously known results.

Let 2 C R”" be a bounded Lipschitz domain, H C 2 a smooth submanifold
of codimension k, and ¢ € [*(H) a real conormal distribution of order p with
mw < 1—k. Thus,ift H ={x: Fj(x) =0, 1 < j <k} is alocal representation of
H by means of defining functions with {VF; : 1 < j < k} linearly independent on
H, then locally g (x) has the Fourier integral representation

(1.1) q(x) = feiZfFf'(x)'gfa(x,G)dQ, acSt,,
Rk

where Sﬁ o denotes the standard class of symbols of order u and type (1, 0) on
R"” x (R*\ 0). (Here we use the order convention of [12] rather than [14].) A
general element ¢ € I*(H) is a locally finite sum of such expressions. We assume
throughout that supp(q) is compact in Q. If —k < u < 0, then g satisfies |g(x)| <
C - dist(x, H)**, so that ¢ € Lﬁ_G(Q) Ve > 0, and no better in general;
in particular, a general element of /#(H) is unbounded. For comparison, surface
measure 8y € I°(H) and, in the hypersurface case, a Heaviside discontinuity
across H belongs to I~ (H).

Rather than working with the Dirichlet-to-Neumann map A, we state our main
results in terms of the Cauchy data CD, of sufficiently regular solutions of the
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Schrédinger equation
(1.2) (A+gx)u(x)=0 on€2.

This is more flexible, since CD, can be defined for potentials g for which A, is
either not defined (for example, if A = 0 is a Dirichlet eigenvalue) or not known to
be defined (due to the low regularity of g (x)); it is perhaps more natural as well.

It will be convenient to write # = v — k. Assume that vy(k) < v < 1 where

def 2 k
k) = —1—=).
vo(k) = max <3, 4>
Fix p and r satisfying
k

< —_—

2(1 —v)
(If v < vy(k), just pick p and r for some v’ > vy(k).) Fixing a smooth function
Y e CP[MRY), v =1, near 02 and int{yy = 0} N 2 # &, define the norm

(1.4) [ fllxrr =1 fller@ + IAS @) + 1 fllwzr )

where p’ is the dual exponent to p and W’ is the standard Sobolev space of
f € D'(2) having two derivatives in L"(£2). Set

(1.5) X&) ={f € D(Q) : || fllxrr < o0}

and note that the Schrodinger operator A 4+ g maps X?"(2) — LP/(SZ) continu-
ously. Throughout this paper we denote by n the unit outer normal to 2.

def 2k

(1.3) 2<r défro(k,v)<po(k,v)=k—<p<oo.
—v

DEFINITION 1.1 For a potential ¢ € I#(H) with H N supp(g) C int{yy = 0}, the
Cauchy data of the Schrodinger operator A + g relative to X" (2) is

ou
”|asz’ on

(1.6) CD, =CD!" = {(

):ueX””(Q), (A—l—q)u:OonQ}.
P19

By Sobolev embedding, CD, is a subspace of W27 (92) x W=+ (92). Ob-
serve that if the Dirichlet-to-Neumann map A, is defined (on WZ*%”(BQ), say),
then CD, is simply its graph. We will construct certain nontrivial, exponentially
growing solutions u € X?*"(2) so that, for the potentials considered, CD, is in fact
nontrivial. We can now state our first result.

THEOREM 1.2 Suppose that for j = 1,2, H; € Q2 are submanifolds of codimen-
sion k;. Suppose further that q; € 1" (H;) are real potentials with vy(k;) — k; <
wj < 1 —k; and supp(g;) € 2. Let p and r satisfy

2 <r < min(ro(ki, v1), ro(ka, v2))
and
max(po(ki, vi), po(ka, 12)) < p < 00,

and suppose that y = 0 on a neighborhood of H; U H,. Then CD,, = CD,,
relative to XP-" (2) implies that g, = g, on 2.
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We also show that under the same assumptions as in Theorem 1.2 for the po-
tential we have a reconstruction procedure; that is, we can reconstruct ¢ from CD,
(see Theorem 3.1 for more details).

Global uniqueness was established in [28] for n > 3 (for smooth potentials) and
[23] for n = 2; for n > 3 this was extended to g € L* in [24]. The regularity was
further lowered to ¢ € L"/? in unpublished work of R. Lavine and A. Nachman
and to potentials of small norm in the Fefferman-Phong class in [4]. Note that for
—%k <u<0k< %, a general element of /#(H) fails to be in L*(Q).

The isotropic conductivity problem, where one considers the Dirichlet-to-Neu-
mann map for L, = V(y - V), can be reduced to the Schrodinger problem via the
substitution

Ay

— W ’

and thus the analogue of the theorem holds for conductivities y; € I ¥ "¢(H;) —
C'*¢(Q) YO < € < 1. Currently, the best general global uniqueness result known
for n > 3 is for y € C3/2, proven in [25], building on [2] and using the general
argument of [28], while the best result known forn =2 is y € whr(Q), p > 2,
proven in [3] using the 3 technique of [1, 22, 23]. Global uniqueness for piecewise-
analytic conductivities was proven [18], and special types of jump discontinuities
were treated in [15].

Here, we will follow the general argument of [28], although employing a dif-
ferent integral identity so as to avoid difficulties when applying Green’s theorem.
It is this identity that makes X?" a convenient space for the problem; indeed, both
sides of

/Au-v—u-Avdx=f8nu-v—u-8,1vdo
Q a0
are continuous with respect to || - || x» and thus Green’s theorem holds for u, v €
XPr(Q).
We now start the proof of Theorem 1.2, so as to motivate the technicalities that
follow.

PROOF OF THEOREM 1.2: Given a submanifold H of codimension k and a po-
tential ¢ € I*(H) with u < 1 — k, we will construct exponentially growing solu-
tions of (1.2) belonging to X?"(2), of the form v(x) = ¢**(1 4+ ¥ (x, p)), with
p € C" satisfying p - p = 0.

Let v; € X?"(2) be a solution of (A + g;)v; = 0. By the hypothesis of
Theorem 1.2, there is a solution v, € X7 (2) of (A + ¢g2)v, = 0 with
82)2
on .

Let w, € X7 (2) be any other solution to (A + g)w, = 0. Then

(A+q)(v —v2) = (A+g)v =(A+q1+ (g2 — q)vi = (g2 — qD)vr,

81)1
(17) v2|3$2 = Ul|8$2 and =

20 on
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so that
f(q:z —qviwrdx
Q
= /(A + @) (v —v2) - wrdx
Q
(1.8) = /(A +gq2) (V1 —v2) c w2 — (1 —v2) - (A + @)wrdx
Q

=/A(v1 — ) - wy — (V] — V) - Awrdx
Q
d 0
= —(i —v)-wr— (v — ) - —wrdo =0,
an on
aQ

where the application of Green’s theorem is valid since v; — v, and w, € X?°" and
the last equality holds by (1.7). If we carry this out for the solutions v; and w,
constructed below for complex frequencies p; and p, satisfying p; + o, = —ié&,
with £ € R" \ 0, then we have, as in [28],

0= /(611 — g)e? TP+ gy (x, p)) (L + Ya(x, p2))dx
Q

— (@ ) + / (g — @)W + ¥ + ¥

Q

(1.9)

If one can do this for pairs (p;, p2) with |p;j| — oo and show that the last
integral — 0 as |p| — 00, then ¢ (§) = ¢»(€); doing this for all & € R”" will finish
the proof of Theorem 1.2. 0

As is well-known, v(x) = e”*(1 4+ ¥ (x)) is a solution of the Schrodinger
equation if and only if ¥ is a solution of

(1.10) (A, +q)¥ = —q(x) where A, =A+2p-V.

We will show in Proposition 2.6 that (1.10) is uniquely solvable, with some decay
in |p|, in a Banach space of finite-regularity conormal distributions associated with
H, yielding exponentially growing solutions v; € X?*" to (1.2) that allow the argu-
ment above to be carried out. In Section 3, this result is extended to a hybrid global
space, and this is applied to obtain reconstruction of the potential from the Cauchy
data, following the general argument of [22]. Finally, in Section 4 we show that
uniqueness can fail in a weak formulation of the problem for potentials with very
strong singularities on a hypersurface, with blowup rates corresponding to those of
distributions conormal of order greater than 1 for H.
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2 Uniqueness for Conormal Potentials

As described in the introduction, to prove Theorem 1.2, it suffices to construct
exponentially growing solutions to (1.2) of the form v(x) = e”* (1 + ¥ (x, p)) for
p-p=0,|p| = oo, so that the second integral in (1.9) tends to 0 as |p| — oo. To
do this for potentials ¢ € I*(H), the standard space of (infinite-regularity) conor-
mal distributions of order u associated with the codimension k submanifold H,
we will also need to formulate Banach spaces of finite-regularity conormal distri-
butions in R” associated with H. Rather than working in unnecessary generality,
we will restrict ourselves to the spaces needed here; unlike [20, 21], where several
other types of finite-regularity conormal spaces are defined using iterated regularity
with respect to Lie algebras of tangent vector fields, we impose the finite-regularity
assumption directly on the symbols in the oscillatory representations of the distri-
butions, using symbol classes modeled on those of [29].

For [ € R, let C. denote the Zygmund space of order / on R" [29]. Thus, if
Yo(D) + Zﬁl Y; (D) = I is a Littlewood-Paley decomposition, with ¥;(§) =
Yi1(555). i > 1, then

lull et = sup 2" 1y (DYu ooy -
l

Recall that if [ > 0,1 ¢ Z, then C. = CI=UI(R").
Now fix an order m € R, an N € N, and a sequence § = (81,...,0y) of

numbers 0 < §; < 1,1 < j < N. For any multi-index a € Z’fH let 6 (o) =

}.“:ll d;, setting §(0) = O for convenience, and |§ | = ZN d;.

j=1
DEFINITION 2.1
(i) We define
CL™S®R" x RY) = {a(x,0) : [35a (- 0)]cr < Call + 18" V]a| < N}
and

L 1 —m+d(a) || 9o, (. .
||a||cism.6 Og(lxafo( + |6|) H aea( s 9) ||C>/‘<

(i) If H is a smooth, codimension-k submanifold with compact closure, then
CLI™3(H) is the space of locally finite sums of distributions of the form u(x) =
Joe €7 %a(x, 6)do witha € CiS”"g, where F(x) = (Fy(x), ..., Fx(x)) are local
defining functions for H.

Remarks. 1. CL §™3 is a Banach space with respect to the norm defined in (i),
and CLI™*(H ) inherits this structure.

2. 3 : CL§mS - CLgm=518 with &' = (8,,...,6y) and 9, : CLS™ —
C!=15™8 continuously.

3. CL1 ’”’S(H ) is well-defined, since changing the defining functions of H
locally corresponds to a change of variable in x, which leaves the symbol class
invariant.
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4. The usual (infinite-regularity) conormal space /™ (H) has a continuous in-
clusion with respect to its Fréchet structure: I™(H) «— C il m3(H) for any I, N,
and 3.

PROPOSITION 2.2 Let H C Q € R", with codim(H) = k, | ¢ Z and § =
1,y 8N).

G Ifl>1,—k<m< —%,N >1,6y >0, andm — |§| < —k, then

k
m4+k’

() Ifl>2,N>2,6;,>1— %, and |§| > 1, then for each smooth function F
vanishing on H,

2.1) CiI"”g(H) — L?(2) continuously forall 1<p <

(2.2) ve CLIM(H) = F.ve W' (Q) forl<p<

1—68°
and thus, for G € 5\ H, Cil‘k'g(H) < W'P(G) continuously.
(iii) Supposel > 3. Formax(2,1— %) L vk) < v < 1, set
So=w,1—v,2v—1,1—v,1—v,3v—2).

Then, for any F vanishing on H,

23)  veCU™ " H) = F-veW> Q) forl<r< St
—V

and thus, for G € 5\ H, Ci]’k’SO(H) < W?2"(G) continuously.

PROOF: (i) Since L? and C i[ M. (H) are diffeomorphism-invariant, it suf-
fices to assume that, with respect to coordinates x = (x’, x”) € R" % x Rk,

H = {x// — 0} and u(x) — /e,'x”.ga(x’ Q)dQ, ae CiS’”’g.
Rk
We then have
u(x’,x”) — /eixu.e |:a(x/’ 0’ 9)

1 " '
+ Yy (a,,)'a_g/,a(x’,o, 0)(x")*" + Ry (x', x", 9)]d0,
0<l|a|<[1] ’

where
R, 0) = Y bur(x, )N with [byr(x, 0)] < C(1+16])" Vol
lo”|=[1]
Since a(x',0,-) € LI(RY) Vg > —% and —£ < 2, the Hausdorff-Young in-
equality implies that [ ¢*"?a(x’,0,0)d6 € L1 (R%,) V2 < ¢’ < A uniformly
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in x’, and thus belongs to L?(£2) forall 2 < p < e
ported, the range is in fact 1 < p < mLH For the second term, note that for each
def

function a,» (x’, 0) = ﬁa‘xﬁa(x’, 0,0),

ix"-0 ’ ma” 1 “ ix"-0
e Vag(x',0)(x")* db = ~0g ) (e Vagr(x,0)do
l

"

- —1 ¢
= /6” K (—.39) (aor(x,0))d0 ,
1

whose amplitude is < C(1+ |60])"~%@") and hence is treated by the same argument
as foragp = a(x’, 0, 0).
In the final term, we integrate by parts:

/ e b (x, ) (x")*" db = f e (10)" bur (x, 0)d6

since it is compactly sup-

and since |32 b(x, 0)| < C(1 + 0" e L'(R¥) uniformly in x’, this yields a
bounded function of x € Q.

(i) Ifve Cil‘k’g(H), then v € L? Vp < oo by part (i). From
v(x) = /ei-*‘”-f)a(x’ 0)do, ac CiS‘k*g,
one finds
Iy v(x) = /eix”'g(ié’ja +3,a)d0 € CLI'™ 5 (H) + CI=' 7 (H)

forn —k+1 < j <n;ifl < j < n —k, only the second term is present.
The second term is covered by part (i) and hence is in L? Vp < oo. If the first
term is multiplied by some xj,, n — k + 1 < jo < n, and integrated by parts, it
becomes an element of CL1'~*-31.9"(H), with 8" = (83, ..., 8x), which by (2.1) is
inL?,1 <p< 1_"—51 Since any F vanishing on H can be represented as a linear
combination of x;,’s with smooth coefficients, F (x)Vv e L?,andsov € WP (G)
for any set G on which | F| is bounded below.

(iii) By (i) and (ii) above, both v and F Vv e L. Now, arguing as in (ii), for
n—k+1<j,j <n,wehave

0,0 = / " (~0;0pa + i(Ojas, + 0jay) +dge, )do

e CLPP ko) + Cl- 1=k gy + 12 Ry

with simpler expressions if one or both of j or j' is < n — k. By (i), the last term
isin L" Vr < o0, if [ > 3, N > 1. Integrating by parts and using (ii), x;, times
the second term is in L', 1 < r < =5 = % if 1 > 2, N > 2. As for the
first term, x;,x; x;, times it is seen, after integrating by parts three times, to be in



8 A. GREENLEAF, M. LASSAS, AND G. UHLMANN

CLIZ k= Grt0t89.5 () = CLI>*2% (H) for 8] = (1 —v, 1 —v, 3v —2), which,

by (), <> L' (@) V1 < r < g5 if > 2, since —k < 2 —k —2v < =4 if

11—k <v<land2—k—18 =2-3v—k < kifv > 2. Thus, forany F

vanishing on H, 3 - CLITF0(H) > W2N(Q)if 1 <7 < 351> 3.

g

We also have the following:

PROPOSITION 2.3 If A € W' (R") is properly supported with r < 0, then for any
[,m € R and any 6, and any € > 0,

A . Cilm,g(H) - Cilm+r+€’g(H)
and || A|| is bounded by a finite number of seminorms of o (A) in Sy ,(R" x (R"\0)).

PROOF: Write

Af(x) = / ¢ a(e,y, ) fO)dEdy, ae S,

and
u(y) = /e"””'@b(y,e)de, beClsms,
Then
Au(x) = / NENEFEDN O g (x y EYb(y, 0)dOdEdy
= / ™ 9¢(x,0)do,
where

Q4)  e(x,0) = f (T EHEOFO g (x y ENb(y, O)dE dy

and we need to show that ¢ = c[b] € CLS"*"+<% Ve > (. Furthermore, since H is
compact, we may assume that the symbol a(x, y, &) vanishes for x and y outside
some compact set.

Let (8) = (1 + [0%)"/2. Setting b;(y,0) = ¥;(D,)(b(y, 0)) and c;j(x,0) =
V(D) (c(x,0)), we have

|50 o = C27HO)" 2 Vi@l <N
and want to prove that

|5ci ) o0 < C279(0)" T V]a| < N.
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We first consider the case of o« = 0. LeNt {1},-}}’00 and {1;,-};?20 be bounded fami-

lies in S?,o with &,- = 1 on supp(y;) and &,- = 1lon supp(lﬁi); then one can write
c¢j = T;j(b;), where the operator 7;; has the Schwartz kernel

Kij(x,y;0) =
/ei[(.xz)-§+(zw)-§+(F(w)F(z))-0+(wy)-n]‘/,j O)a(z, w, f)‘]h(n)df dzdedwdn.

It suffices to show that Y 7o [ T;; (b;) || Lo < C27H (9)mtr+e,

As in the proof of Proposition 2.2, we may assume that F(x) = x”, where
x = (x',x") € R"* x R, for 6 € R, let 6* = (0,6) = DF*(x)(#) Vx. Thus,
the phase function of K;;(x, y; 0) is

p=x—-2-t+c-—w-E+W =)0+ w—-y) 7.
Let x € Ci°(R), x(t) =1, for |t] < % supp(x) C {|t] < %}. Write
] . —r —f* — ¢ —0*
Ky 3:0) = [ @9,000) [x (%) . x)(%)]
x a(z,w, &)dtdndé dzdw

= K} (x, y:0) + KY (x, y: 0)

with T;; = Tl(]) + T;3° the corresponding operator decomposition.
K;7 may be analyzed by noting that |§ — ¢ — 6% > cmax(|§ — ¢[,|6]) on
supp(l — x), and thus, using
— —0* . .
.%’C— -V, (ezqs) =¢'?,
il —¢ — 0%

we may integrate by parts n + M times in z and then integrate in £ to obtain
KZ'O(X’ y:0) = /ei[(X—z)-{+(w”—z”)-9+(w—y)-77]wj(;)&i(n)A(Z, w; 0)d¢ dndzdw

with [0205A(z, w; 0)| < Copm(0) ™ Vo, € Z", M € N. If max(2',2/) <
1(6), we then simply integrate in all variables to obtain KTl < 2D 9y =M If
(0) < ymin(2',2/), then ¢ 4 6*| > c|¢| = ¢2/ and |n + 6%| = c|n| > c2', so we
may first integrate by parts in z and w to obtain |K¥| < 2~ Gt gyM,

In the following, we denote a ~ b if either a, b < 4 or %a <b <4a.

If (9) ~ 20 > 27+ or (9) ~ 2/ > 21+l we may integrate by parts in z or w
alone to obtain |K | < c2~M1(9)yM or KTl < c2~M'i(9)~M  respectively, VM.
If 21 < (9) < 277!, then |¢ + 6% > 2/ and |n + 6% > c|6*|, so integration
by parts in z and w gives |[K;?| < 2~ Miey~M: similarly, for 2/ < (9) < 2i~1,

we obtain |KF| < c2~M'i9)=M  Finally, if (§) ~ 2/ ~ 2/, we simply integrate
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and get |[K7| < 2Dy M < (g)~ M=) Using ||b; || < ¢27(0)" and
summing in i yields 7, [ 7,°(bi)ll . < 2~ MOy MM, M.

On the other hand, Kg. may be analyzed using stationary phase in & and w:
First rewrite

Kl (x,y:0) = /e"“xZ>'“(“’)"7]w,~(§)¢i ()

6w & —w-€) g0 n
| [ efemiweng, a(z,z+w, |9|< +—>)
@.5) [ / St ol

9*
XX(QE—@—U )d’;‘dw:| H]dzdé‘dn.
o="5

The domain of integration for the inner integral contains a critical point only
if |o] < 2. In this case the unique nondegenerate critical point is & = %, w =
0. Applying the method stationary phase and analyzing error terms using [14,
theorem 7.7.7] for |o| < 2, or just using integration by parts for |o| > 2, we see

that the inner integral is

In — ¢ n ¢
a(Z,Z,ﬂ+9*)X< |9| + e Z,m,@,ﬂ‘f—@*

with e; € S| (R" x R" x R") x R\ 0), and thus

Kg. (x,y;0) = /ei[(x_Z)'§+(Z_'y)'n]1ﬁj )i ()

(2.6) X [a(z,z,n-l—@*)x('n';fl)

n g *
+€1<Z, —,—,n+0 )]d{dzdn.
o1 10]

Note that S} 51 seminorms of e; are uniformly bounded over compact subsets of
R" x R" x R". We observe for the phase that d,((x —z)- ¢ +(z—Yy)-n) = —¢+1n
and (d; +d,)((x —2)- ¢ +(z—y)-n) = x —y, and we may use these to integrate
by parts, M and M’ times, respectively, to obtain, fori < j — 2,

|Kijx, v 0)] = Cf2‘Mf<1 + 2 — YD) (©)40) Inl =M Y (md ¢ dzd
< C2—(M—n)j(1 + 2i|x — y|)—M’2—(M’—n)i 6.
Here, we have used [—¢ + 5| > 1[¢| > 277" and
|(d; +d)™ W(Oaz, 2, n+6)Pim)| <

{C|n|’M’«/7,-<;)x/i-<q>, 6] < c2'
CO) Inl™ % ()i (m), 16] = c2'.
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Thus, [ |Kl.0j(x, V|dy < C2~M=mip=M'igyr o that
j-2 j-2
Y TS ®) | = €D 27 Wi Mgy 2l gy < T gy
i=0 i=0
for M > n + 1. Similarly, fori > j + 2, we obtain the estimate
K (e, y)| < €M1 27 |x — y) M2y
leading to

o0 o0
Z H ]:(])(bz)HLoo < C Z 2—M’j2—(M—n)i (0>r2—1i <9>m < C2—lj <0>m+r
i=j+2 i=j+2
forM' >, M >n—1.

To analyze the contributions from |i — j| < 1, we perform in (2.6) an additional
stationary phase in z and ¢, with critical point z = x and { = n. Rewriting the
integral as in formula (2.5), we see that

K)(x,y) =
f eIy () [a(x, X, +6%) + ez(x, % % 0+ 9*)}&-@)@
with e; € SfBl((R" x R") x R" \ 0). Since v; are uniformly bounded in S?’O, the
S{Bl seminorms of e, are uniformly bounded over compact subsets of R* x R”".
Then

K} (x,y) =
e [ / &Iy — 0V, s ) (n — 0] 1 9*)dn]ei9*'-"
where A (-, -; 0) € S| ((R" x R"\ 0),

n—0* n—0°
h(x, n; 9)=a(x,x,n)+ez<x, , ,n),
6] 6]

is a symbol depending on the parameter 6, |6| > 1.
Note that multiplication by the exponentials does not affect the L>* — L*
operator norm, while
- ST (R x R™\ 0), 0] < c2/,
(= 0)h(x, n; )i (n —6%) € 1O .
Vi = 00RO = 67) {<9>’ LSO RY X RPN\ 0), 10] > €2/,

uniformly in 6. Acting on functions with Fourier transforms supported in B(0, R),
pseudodifferential operators of order 0 are bounded on L*° with norm < clog R
[29]. Hence, for |i — j| <1,

Cj2rj2—lj<9>m < C€2—Ij<9>m+r+e , |9| < c2J ,

Tij(b)lpe < ; i /
| ]( iz {Cjz—lj (9>m+r < C€2—IJ (9>m+r+e , 0] > 27,
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as desired.

To handle the derivatives 94 c, note first that the application of 9y to the right-
hand side of (2.4) yields two terms. Since dyb(x,6) € CLS™=1:G2) the oscil-
latory integral with amplitude a(x, y, £)dyb(x, 0) has Ci norm < C(6)"*" =% as
desired. On the other hand, because F(x) = x” here, we see that if the derivative
hits the phase, then the amplitude becomes i (F(y) — F(x))-a-b =i(y"—x")-a-b.

Writing y” — x” = —0g/[(x —y) - & + (F(y) — F(x)) - 0], we may then integrate
by parts in &. The resulting amplitude, id:a - b, gives a term whose C. norm is
< C(9)™""~'. Higher derivatives 95c, || < N, are handled similarly. Il

To obtain the boundedness of M, on some of the finite-regularity conormal
spaces, we will need the following (similar results are in [13, 26]):

LEMMA 2.4 Leta,b € C(R" x R¥) satisfy
laC, Ot = CO)" and |b(, 0l < co"

withl,I’ > 0,1,1' ¢ N, and m +m’ < —k. Then the partial convolution a *gr b
satisfies

la *gx OG-, O) [l r = CO)™,
with!” = min(/, ') and m" = max((m + k) +m',m + (m’ + k)7, m +m' + k).
Here, t; =t = max(t,0) ift # O0and t; = € fort = 0, with € > 0 arbitrarily
small.

SKETCH OF PROOF: This follows easily by decomposing

(a *gpr b)(x,0) = /a(x, o)b(x,0 —o)do

Rk
= ( / + / + / )a(x, o)b(x,0 —o)do
lo]<®  jg—o|<f o=
' T oz

and estimating each of the three terms using the fact that C. x C!' < C!" contin-
uously. U

This is then used in the proof of the following:

PROPOSITION 2.5 Let H C RY be codimension k. For g € I*(H), let M, denote
multiplication by q(x). Suppose % —k<wu<1—k. Then, foranyl > 0,1 ¢ N,

2.7 M, : Cil‘k’g"(H) — Cil’l’g‘)(H) continuously

where, if we write u = v — k with % <v<l, go is as in Proposition 2.2(iii):
(2.8) §0=(v,1—v,2v—1,1—v,1—v,3v—2)

and it = pu + € forany 0 < € < —pu.
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PROOF: As before, we can assume that for any I’ > 0, H = {x” = 0},

u(x) = /e””'%(x,e)de, be CLIkhomy,
Rk

q(x) = /e’*”ﬂa(x, 0)do. ae S, 'm0
RK

Hence, Myu(x) = [e*"?(a * b)(x,0)dd, where * denotes the k-dimensional
convolution in the 6-variable. By Lemma 2.4,

la*b(x,0)llc < C(O)™HHFR = C(H)**C Ve > 0.
Since dpa € CL$# 1) and p — 1 < —k,
106 (a % b) (x,0) [l = [[(3pa) * b(x, 0)|| 1 < C(O)"XTHrlTer=D = C(g)~*

(for € < —u), which gives a gain of > u — (—k) = v, consistent with §; = v.
(The additional gain of € we choose to ignore.) By Remark 2 above, noting that
ag)b e Cisfkfv,(lfv,val ..... 3\)72)’ we have

|95 (@* b)| o = 11(36@) % (Bsb) |1 < C(O)™ P F=b7AD = ¢y !
since v > %, whichisa gainof §o = -k — (v —k —1) = 1 — v. Since aga €
Cls#=2(.1-) and 3yb is as noted above,

|83 (@ % b)|| 0 = [ (33a) % (3D)| o« < CO)™™F T AD = o),

which gives a gain of 63 = v —k — 1 — (—k — v) = 2v — 1. Since d}a €
Ci’sufl(l,l,...) and aga e Cikafl,(val,lfU,...)’

|93(a +b)|| o = [ (3Fa) % (35D) || < COY™XTFTIVTHT2BTEED = C(g)~F,
which gives a gain of §4 = —k —v — (—k — 1) = 1 —v. Continuing in this fashion,
we may estimate

[93Ga D) o = [@ga) 5 @3D) | o < CO)" 2,

which is consistent with §s =1 —vif v > %, and

|05 D) ¢ = [ @3a) = @) = ClOVTT,
which is consistent with §¢ = 3v — 2. The x-derivatives, lowering the Zygmund

space index and not involving any gain in (f), are handled in the obvious way.
Hence, a x b € CLSH+<%, O

Now recall some facts concerning the Faddeev Green’s function G, [10]. As
is well-known (see, e.g., [28], where this is used implicitly), the families {|o|G, :
p-p =0}and {G, : p- p = 0} are uniformly bounded in WO(K) and ¥~ (K),
respectively, for K € R" and hence interpolation implies

(2.9) {lpl" "G, :p-p=0} C U '(K) isbounded V¢ el0,1].
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We can now state a local analogue for the finite-regularity conormal spaces
of the result of [28] concerning solvability of inhomogeneous equations involving
A, + g(x) in weighted L? spaces.

PROPOSITION 2.6 If g € I*(H) with % —k<u<l1l—kI>31¢N, and
0 <o <1, then for 50 as in (2.8), the inhomogeneous equation

(2.10) (A, +q)w =g € CLI'F=o%(f)
has, for |p| large, a unique solution w € Cil”""g0 (H), with ||w] < #Hg”.

PROOF: Applying G, to both sides of (2.10), and using (2.9) fort = 1 — o and
Proposition 2.3, we are reduced to showing that

(I +G,Mp)w = G,g € C.I™*%(H)

has a unique solution for |p| sufficiently large, with |[w] < C||G,g||. By Propo-
sition 2.5, M, : CLI7%%(H) — CLI#+%(H) for any 0 < € < —u. Note that
t = u+¢€— (—k) < 1, so we can use Proposition 2.5 and (2.9) with this value of
t to obtain

CLi*boy 2 clprredo(y 2 Lt (my

with norm < C(q)| o=+ 5 0as |p| — oo. Hence, for |p| sufficiently large,
IG,M,|l < Land I+ G,M, is invertible on CLI=%% (H). O

COMPLETION OF THE PROOF OF THEOREM 1.2: Construct two solutions v;,
J = 1,2, to (1.10) for potentials g; € I/ (H;). Note that —g;, the right-hand side
of (1.10), belongs to 1*i (H) < CL1'7%=91%(H), with 0; > O since p; < 1 — k;.
Thus, we may apply Proposition 2.6 with g = —¢;, j = 1, 2, and then form as
above the corresponding solutions v (x, p1) = e”*(1+v(x, p1)) of (A+g1)v; =
0 and wa(x, p2) = €™ (1 + Ya(x, p2)) of (A + g2)wy = 0, with ||1/fj||cifkj,s <
Clp|™%. The solutions v; and w, belong to X?"(£2), with p and r as in (1.3). In
fact, each is in L?(2) and in W27 (2) away from H by Proposition 2.2(i) and (iii),
respectively, since r < . Furthermore, since g € Lk/Vi—€ Ve > 0, we have

klljvl =
p < "j—i, we thus have Av, € L”,(Q), and similarly for w,. These solutions are
constructed for all large |p|. Since n > 3, for any £ € R" \ 0 and A > c|&|, one can
find p1, p2 € {p - p = 0} with |p| > |p2| = A and p; + p» = —i§.

By the assumption that CD,, = CD,,, there exists a vo € X?"(£2) such that
(1.7) holds. Applying (1.8) and (1.9), it suffices to show that

I
3(0-v)
Avy = —qv; € (LFM/V1=¢) x (L*) Ye > 0,Vs < oo. Since p >

(2.11) /e_is'x(% —q) (Y1 + Y2 +YY)dx — 0 ash — o0.

Q
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Since each ¢, € L5i/vi=€(Q) Ve > 0, and, by (1.3), p > (%),j =1, 2, we have
J

c
[a-al-Wlar < 5. g0,
as A — oo by Holder’s inequality. In fact, p > 2(1"—’:)’ by (1.3), so we have

/|CI1—612| Yl aldx < 5 e >0,

as well. Thus, we have shown that CD,, = CD,, implies that ql/—\qz (&) =0VE§,
and hence g; = ¢», concluding the proof of Theorem 1.2. O

3 Reconstruction of the Potential

In this section we prove that the potential g can be obtained constructively
from the Cauchy data of A + g. We follow here the general method of [22]; see
also [17, 23]. However, there are some additional difficulties in our case because
we deal with the set of Cauchy data instead of the Dirichlet-to-Neumann map.
Moreover, we work with more complicated function spaces due to the singularities
of the potential. We will show the following:

THEOREM 3.1 Suppose that 2 is Lipschitz and H € 2 is a submanifold of codi-
mension k. Suppose further that g € 1*(H) is a real potential with vo(k) — k <
w < 1 —k and supp(q) € Q. Let p and r satisfy 2 < r < ro(k,v) and
max(pg(k, v), —%) < p < 00. Then g can be reconstructed on Q2 from the Cauchy
data CD, of A + q on XP7 ().

PROOF: To start the discussion of reconstruction, we first show how to obtain
a global analogue of Proposition 2.6. For s € Rand —1 < § < 0, let Wy 2(R") be
the weighted Sobolev space denoted by Hy in [28], where it is shown that

C
(3.1 IGp [z = W”f”wgfl forO0<z=<1.

Now let supp(g) C @ € Q and let xo + xoo = 1 be a partition of unity
subordinate to the open cover 2 U ()¢ = R”. Fix % —k<pu<l1l—k,I>3,and

let 30 be asin (2.8). Form <1 —k and s < —2, define
(3.2) I s ey = xo = S ll e mo oy + 1 Xoo = S o2 oy -

Form < —k, elements of /™ (H) are in LIOC(R") Vp < oo, and hence Comp(H) —

W‘SS 2(]R”) Vm <1 —k,s < —1. Combining (3.1) with (2.9) and Proposition 2.3,
we have, for0 <t <1,

C
(3-3) ”pr||)/5’”_’~“+’(]]{/1) =< w—l—t||f||)’$’ﬂ(R") s

m<l—k—t,s<—1—t, —1<6§<0.
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Finally, since supp(g) € €2, it follows from (2.7) that
(3.4) M, : Y5 = v Ve > 0.

Arguing as in the proof of Proposition 2.6, but replacing the local finite-regularity
spaces with the global spaces Y;"* (R"), we obtain the following result:

PROPOSITION 3.2 Ifgq € I*(H) with % —k<pu<l—ks<-2-1<6<0,
and 0 < o < 1, then the inhomogeneous equation

(3.5) A, +uw=ge ¥ TR

has, for |p| large, a unique solution w € ng’Hl*o (R™) with || w] < #Hg”.

Next we will construct the boundary values of the exponentially growing solu-
tions on 9€2. For this purpose we use the Green’s function G¥(x, y) defined by

(3:6) (A+QGLC.y») =8 nR", ¢,()Gi(.y) €Y R,

where y € R"\ Q, e,(x) = exp(—p-x),and s < —n/2. When |p| is large enough,
equation (3.6) has a unique solution by Proposition 3.2. Next we consider the case
when p is fixed and sufficiently large.

As supp(g) € €2, we see that 0€2 has a neighborhood V such thatin V x V
Green’s function G?(x, y) has the same singularities as the Green’s function Gg
(for the zero potential and p = 0), thatis, G%(x, y) — Gg(x, y) € C®(V x V).

Using the Green’s function (3.6), we define the corresponding single- and dou-
ble-layer potentials

S,6() = / G(x. ) (0)dS, .

1]
d
Kq¢(y>=/(mG?,(x,y))w)dsx, vy #09,
aQ

which define continuous operators S, : Wl_%’r(BQ) — Xl ® Wlf)’cr (R™\ €2) and
K, : W2 (02) = X|q® Wlicr (R"\ ). Here X C D’'(R") is the space with the
norm || xo- f || cLmdony T | Xoo f1I W27 Ry These layer potentials can be considered
as operators on the boundary 92, defined in the principal value sense. Since 02
is Lipschitz, it follows from the results of [7] that these operators are continuous,
SI® L WITrT(@R) - W) and KJ® 0 WA (0R) — W (OQ).
Similarly, on 92 we define normal derivatives of the layer potentials,

9,522 ( )=PV/ LG‘f(x ) ) (x)d S,
n q y e e an(y) P ’y X
a2

8K39¢(y>=PV/< ' o y>)¢<x>ds
e ) \on(y) an(x) " .

b1
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which are continuous operators 9,57 : WI=57(9Q) — W=7 (3) and 9, K}%:
W27 (09) — W' 5 (09).
Next we consider the Calderén projector [5]. We start with the operator

Aq(@. V) = (_sg% + (‘% + qu)%ﬁ, —(% + anSj“)qb + anK§9w> .

PROPOSITION 3.3 Let Z = W2_%’r(852) X Wl_%”(BQ). Then the operator
Ay Z/ker(Ay) — Z
is semi-Fredholm. Moreover, —A, : Z — Z is a projection operator with range

CD, and kernel independent of q. In particular, CDy is a closed subspace of Z.

PROOF: First we show that the kernel of A, does not depend on g. Assume
that (¢, ) € Z. We consider the function

gy (y) = =S4(0) + K,(¥), yeR"\ a2,

and the trace operators

1

T, : W2 (R"\ ) — W27 (9Q) x W17 (39),

Tt W2 (Q) — W2 (3Q) x Wi (3%),
defined by Tou = (ulyq, d,ulya). As the Green’s functions G7 (x, y) have the
same singularities near 02 x €2 as the standard Green’s function of R", we can

use the standard jump relations for layer potentials (see, e.g., [8]). We conclude
that

T_ugy =A@, V), Tiugy = (@, V) + Ag(@, V).
Thus we get that u = uy, 4 € (e,) " Ya_k’s, and it is the unique solution of
(3.7) (A+qlu=gyy =Yoo+ V- (npdye) nR"
satisfying e, (- )u € Y; ©*(R").
Now, if (¢, ) € ker(A,), we have that
(@, 9) = (. V) + T upy =Tiugy -

Thus, v = ugy y is the solution of the scattering problem
(3.8) Av=0inR"\Q, Tiv=($,¥), e,(-)ve Wg"z(R" \ ).

On other hand, assume that (3.8) has a solution, and let vy be the zero continuation
of v, that is, vo|rm@ = v, vlg = 0. Then we conclude that vy is a solution of the
problem (3.7), and because this solution is unique, we see that vy = uy . This
shows that (¢, V) € ker(A,) if and only if problem (3.8) has a solution. This is
obviously independent of ¢, and thus we see that

3.9 T_+ (e, +upy) = (P, +¢, ¥, +v)+ Ay(d, ¥) eran(A,).
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Applying the projection I + A, to both sides of (3.9) and using A, (¢, ¥) = 0, we
see that

0= (I + Aq)(¢,o + ¢’ wp + 1//) = (I + Aq)(¢p7 v/,o) + (¢7 1/1) .
Because A, and (¢, ¥,,) are known, we can thus determine (¢, ) and the Cauchy
data of v(x) on 0€2.

Next we consider the range of A,. A standard application of Green’s formula
(see, e.g., [8, theorem 3.1]) shows that if v € XP" satisfies

(A+q)v=0 inQ

and (¢, ) = T_v, then v = —uy y. (Observe the negative sign, which is due
to the fact that we use the exterior normal vector n.) Also, for (¢, ¥) € Z, we
have xouy y € C.I"%%(H) c L"(Q) for any #; < oo by Proposition 2.2. As
gelI*(H)CL2(Q)forl <t < ﬁ, we have xoAug y = —Xoque,y € L7 ()
for % <1-— é, ie,p> —ﬁ. Hence uy 4 € XP". Thus the set of all solutions of
the Schrodinger equation in X" equals the set of solutions uy y, (¢, V) € Z. As
T_ug .y = Ay(¢, ), we obtain that the range of A, equals to CD,,.

Now, when the potential is equal to zero, the Dirichlet-to-Neumann operator
Ay Uulyo = 0,ulyq is well-defined, Ag : WZ*%”(E)Q) — W]*%”(E)Q). The
Cauchy data CD, is the graph of the operator Ao and is thus closed. Thus we
see that the range of Ap is a closed subspace, and therefore the operator Ay :
Z/ker(Ag) — Z has zero kernel and closed range. Thus it is a semi-Fredholm
operator. Now, consider the operator A, — Ap. Using (3.9) we know that the
operator

Ay — Ay Z/ker(Ag) — Z
is well-defined and compact. As compact perturbations of semi-Fredholm opera-
tors are also semi-Fredholm, we conclude that A, is also semi-Fredholm.

It remains to show that —A, is a projection. This can be seen in a similar way
to the smooth case. Indeed, if (¢, ¥) € ran(A,), (¢, ) = A, (gﬁ, 15), we see that
the solution u b has the trace 7_u b = (¢, ¥). Hence Green’s formula gives

ug g = —(—Sq(,b + quﬂ) in 2.

Taking the trace 7 from both sides, we obtain that (¢, ) = —A, (¢, ¥), ie.,
(—A,)* = —A,. Thus, Proposition 3.3 is proven. 0

Now we can construct the boundary values of the exponentially growing solu-
tions from the Cauchy data. Because we are given CD, = ran(A,) and we know
ker(A,;) = ker(Ay), we can construct the projection —A,. Next, let (¢,, ¥,) =
T.e, be the boundary values of the incoming plane wave. Consider the solu-
tion v(x) = e”*(1 4+ Y¥(x,p)) = e’* + uy, and let (¢, ) = T,uy. Then
(¢, ¥) € ker(Ay) and ug = ugy in R" \ Q. Moreover, as v is a solution of
the Schrodinger equation inside €2, we have

(3.10) T (e, *+upy)=(p,+¢, ¥, +v)+ Ay(¢,¥) eran(A,).
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Applying the projection I + A, to (3.9) and using A, (¢, ¥) = 0, we see that

0=+ A (P + ¢ Yo+ v) =1+ Ag)(do, Yo) + (¢, V).

Because A, and (¢, Vo) are known, we find (¢, ¥) and the Cauchy data of v(x)
on 0f2.

So far, we have constructed the Cauchy data of the solutions v,, (x) = e”'* (1 +
¥ (x, p1)) for all sufficiently large p;. Thus, if we consider complex frequencies
p1 and p; satistfying p; + p, = —i&, with & € R”" \ 0, an application of Green’s
formula yields

§® = lim [ g@e” (14 yi(x, p1)- ™" dx

[p1]—00
Q

= I . p2x . pP2X
= |p11|121oo (Um ope OpVp, - € )dx.
Eo)

This proves Theorem 3.1. 0

4 Nonuniqueness for Highly Singular Potentials

We next discuss how very strong singularities of the potential can cause non-
uniqueness in a closely related inverse problem. Due to the strength of the sin-
gularities, the Schrédinger equation has to be interpreted in a weak sense. Let us
consider the boundary value problem

4.1) A+g+Eu=0 inQ, ul,,=7F,
with the potential ¢ having the form
4.2) q(x) = —dist(x, H)*co(x)

near H, where dist is the Euclidean distance, H is a closed hypersurface bounding
aregion Qy € 2, u < —2, and cy(x) is a smooth function, satisfying co(x) >
Cy > 0 in some neighborhood V of H.

Elements of 1~'7#(H) satisfy the pointwise estimate |g(x)| < C dist(x, H)",
but a g satisfying (4.2) is not even locally integrable and thus need not define a
distribution. Hence, the solutions of (4.1) cannot be formulated in the usual sense
of distributions. Instead, we define the solution of (4.1) (if it exists) to be the
solution of the following convex minimization problem: Find u such that

(4.3) G(u) =inf G(v)

where G = Gyir @ {v € H'(Q) : vpe = f} = RU {00} is the convex functional

Goor(v) = f (VoI = (¢(x) + E)o(oP)dx.
Q

Here, since the function —g(x) is bounded from below, we define G (#) = co when
glv]?is not in L'(Q).
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PROPOSITION 4.1 The Cauchy data
du
CPess = | (v 51

does not depend on q in 2y. In particular, if the solution of (4.3) is unique, u
vanishes identically in 2.

) ‘u € HY(Q), u is a minimizer oqu+E}
aQ

Remark. We note that potentials having singularities similar to (4.2) as above have
been used to produce counterexamples to strong unique continuation, e.g., poten-
tials ¢(x) = ¢/|x|*>*¢ in [11]. Recently, counterexamples have been found for weak
unique continuation for L' potentials [16], but here we need to construct potentials
for which all solutions vanish inside H. Finally, we wish to emphasize that since
the solutions of (4.1) considered here are not defined in the usual sense of distribu-
tions, but rather as solutions of a convex minimization problem, the solutions we
construct do not give new counterexamples for the unique continuation problem.

PROOF: Obviously we can assume that g(x) < O everywhere. We start first
with the case where E = 0 and f € C*°(9€2).

Because the potential g is not in the Kato class [6, p. 62], consider instead
a decreasing sequence of smooth functions ¢, € C*(Q), g,+1(x) < g,(x), for
which ¢, (x) = g(x) whend(x, H) > % and in some neighborhood V of H

4.4) gn(x) < max(—cin”*, q(x))

where 0 < ¢; < Cp. Let G, be the functionals defined as G with g replaced with
gn- The functionals G, have unique minimizers u, that satisfy in the classical sense

4.5) (A+g)u, =0 inQ, u,l,,=7f.

Now, let f € C®(dQ) be fixed. Let F € H'(Q) be a function for which
Flaso = f and F = 0 in some neighborhood of H. By definition of the poten-
tials g,, for sufficiently large ny we have G(F) = G,(F) = G,,(F) for n > ny.
Thus for the minimizers u, of G, we have G,(u,) < C = G, (F). Next, by
choosing a subsequence, we can assume that the sequences | |Vu,(x)|*dx and
f(—qn(x))|un(x)|2 dx are decreasing when n — oo. Next, let us denote by
Ci, C» < C the constants

C = tim [ [Vu,)Pdx. €= lim / (—gu ta ()P dx = C
n—oo n—oo
Q Q

Now, we see that u, are uniformly bounded in H'(£2), and thus by choosing a
subsequence we can assume that there is i € H'(S) such that u,, — i weakly in
H'(R). Moreover,

(4.6) / [Vii(x)|>dx < C;.
Q
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As compact operators map weakly converging sequences to strongly converging
ones, we have the norm convergence u,, — i in L?(2). Thus for ny > 0 we have

- f Gng () [A(x)[* dx = lim / (=g (X)) 14 (x)|* dx
Q

Q

< lim f (=gn (oDt (0) P dx < C.
Q

Since this is valid for any n(, we have by the monotone convergence theorem

4.7) —fq(X)lﬁ(X)lzdx =G.
Q

Because G < G,

infG(u) < lim min G, (u) = C; 4+ C,.
n—o0

Now, by (4.6) and (4.7) we have G (1) < C; + C,, and thus u is a minimizer of G.
Now, because G = G, + (G — G,) where G, is a strictly convex functional and
G — G, is a convex functional, G is strictly convex. Thus the minimizer is unique.
Hence we see that, for every f, the solution # of the minimization problem (4.3)
exists, is unique, and is given as the L? limit of the functions u,. We note that the
above analysis was based on the fact that the minimization problems for the G,
epi-converge to the minimization problem for G [27].

Recalling that €2y is the region bounded by H, consider functions u,, restricted
to Q. Lett — B, be the Brownian motion in R" starting from x at time t = 0, i.e.,
By = x. Because the g, are strictly negative smooth functions, they are in the Kato
class and the pair (€2, g,,) is gaugeable (see [6, sect. 4.3 and theorem 4.19]). By [6,
theorem 4.7], the solution u, can be represented by the Feynman-Kac formula

u,(x) = E(exp (/(; qil(Bt)dt) f(By))

where T = T15q is the first time when the process hits the boundary, i.e., B, € 0€2.
Here, we assume B, is a version of Brownian motion for which all realizations are
continuous curves (see [19] or [6, theorem 1.4]). If x € €, the realizations of
Brownian motion have to hit H prior to hitting d€2. Denote the first hitting time
for H by ty; thus the first hitting point is B;,,, and Ty < Tyq. (The stopping time
Ty is a measurable function in the probability space; see [6, prop. 1.15].)

Let us now denote by p(p, n) the probability that the Brownian motion sent
from the origin at time t = 0 leaves the origin-centered ball with radius p be-
fore time 1. Because of the scale-invariance of Brownian motion, p(sp, s’n) =
p(p,n) for s > 0. (Indeed, let us consider reparametrized Brownian motion
l§t = s B,—,. Because the probability densities of (B,], R E,m) coincide to those
of (By,, ..., B,,), we see that B, is Brownian motion, t00.)
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Let A, , = {|B; — By,| < pforty <t < ty + n}. This set is measurable in
the probability space, and the probability of A, , is P(A, ;) =1— p(p, n).

Letm > 1 and n = n(m) be such that p(1, n) > % Now ¢ is nonpositive,
and by (4.4) ¢, (x) < max(—cn *, g(x)) in some neighborhood V of H. When s
is so small that the s-neighborhood of H is in V, we have by (4.2) that

‘E(exp (fr q(Bt)dt)f(Bf))
0
rH+Szn

< E(CXP (/ q(Bt)dt> ”f”LOO)

= (1 - P(Axp,_\'zn(m)))“f”oo

+ P (A 200m) €xp (=570 (m) min(Cos™, c1n™))| £ lloc -

Thus, choosing s = n*/*, we see that for sufficiently large n

—1
exp (—n(m)clnz(”“)/")) I fllzoe .

1 m
4.8) ltnllzo@e = | — +
m

Because u, — i in L*(£), il 2y < %||f||Loo vol(£2)!/? for any m. Thus we
see that # = 0 in €.

Next we consider the case when E € R and f € H'?(3Q). First, let H, =
{x € Q :dist(x, H) < r}, and let r be so small that g(x) + E < O for x € H,.
If u is the solution of (4.1) in €2, then its restriction # = u|y, is the solution of the
boundary value problem

4.9) (A+qg+E)ii=0 inH,, a\mzf,

where f = ulyy, € C*(dH,), that is, u is the solution of the minimization prob-
lem (4.3) in the domain H,. Let g, approximate ¢ in H, as above and i, be the
corresponding solutions of problem (4.9) with g replaced by ¢g,. As above, we see
that problem (4.9) is uniquely solvable, it,, — i@ in L?(H,), and that i, (x) can be
represented by the Feynman-Kac formula. Let x € Qy N H,, T be the first time
when the Brownian motion sent from x at = 0 hits 0 H,, and A= {B; € QN H,
forO <t < 7). Let f = f,+ f_, where f, vanishes on 29N H, and f_ vanishes
on (2\ ©9) N dH,. Then we see that

iy (x) = P(&E(exp ( f , qn(B»dr) f-(B:) | A)
(4.10) 0

z
+d - P(A))E(eXp (/ qn(Bz)dt)f(Bf) | AC) ;
0
where E (- |A) is conditional expectation with condition A, and A° denotes the com-

plement of A. Note that in the case of A®, the process B, hits H at least once. An-
alyzing how long Brownian motion is near H as above, we see that when n — oo,
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the second term on the right-hand side of (4.10) goes to zero. Thus u(x), for
x € H, N g, depends only on ¢ in H, N ¢ and f_. Similarly, we see that u(x),
x € H,\ Q, depends only on g in H, \  and f... Moreover, analogously to (4.8)
we see that

lim ity |pllzoocy = 0.
n—o0

Choosing a subsequence, we can assume that iz, — i weakly in H'(H,) and thus
in H**(H,). Hence, by taking the trace H3/*(H,) — L*(H), we see that it|z = 0.
In conclusion, for the boundary value problem (4.9) there are well-defined maps

Ty fors ], g € {ve H' (H\ Q) : 0], =0},
T for> il o € {ve H'(H NQ) 0|, =0},

where T, depends only on g in H, \ Qo and T_ on ¢ in H, N .
In particular, on the boundaries 0 H, N €2y and 0 H, N (€2 \ £2p), we have inde-
pendent Dirichlet-to-Neumann maps

Avt fe > 811L~‘|3H,4\§o’ A-i - a"ﬂ|3Hfm°’

where 7 is the exterior normal of H,.

Next, if u is a solution of the boundary value problem (4.1), we denote u, =
ulg\g, and u_ = u|q,. To motivate the next step, we observe that u ;. and u_ satisfy
“independent” boundary value problems in Q2 \ (H, U ),

(A4+qg+Eu, =0, ”+|aH, =f, 3"”+|3H,\90 = Ay (uilom\)
and in Qy \ H,

(A4+g+Eu_=0, a”u_|8H, =A_(

N u— |aH,mszo) .

Now, considering the form of G and the fact that the solution u# of boundary
value problem (4.1) satisfies u|y = 0, we see that u, = ”|Q\§o is a minimizer of
G intheset {v € HY(2\ Q) : vlag = f, vy = 0}, and u_ = u|q, is a minimizer
of G in the set {v € H'(Qo) : v|ag, = 0}.

Conversely, if U = vy in @\ Qp and U = v_ in Q, where v, and v_ are
any minimizers of G in the sets {v € H'(Q \ Qo) : vse = f, vl = 0} and
{ve HY(Q) : v|aq, = 0}, respectively, then U is a solution of (4.1).

In particular, we see that the Cauchy data of solutions u of (4.1) on 0€2 are inde-
pendent of u|g, and thus of g inside H. This finishes the proof of Proposition 4.1.
As a concluding remark, we note that by using the Courant-Hilbert min-max prin-
ciple, there always are values of E such that minimization problem for v_ has

nonzero solutions; that is, there are eigenstates U that have vanishing Cauchy data
on 9%2. g

Physically, this example has the following interpretation: In theory it is possible
to construct a potential wall g(x) such that no particles can “tunnel” through it,
using an analogy with quantum mechanics. Thus exterior observers can make no
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conclusions about the existence of objects or structures inside this wall. Moreover,
inside H the solution can be in an eigenstate and its Cauchy data vanishes on the
boundary of 2. Thus, making another analogy with quantum mechanics, in this
nest the Schrodinger cat could live happily ever after.
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