MULTIDIMENSIONAL BORG-LEVINSON THEOREM

YAROSLAV KURYLEV, MATTI LASSAS, AND RICARDO WEDER

Abstract. We consider the inverse problem of the reconstruction of a Schrédinger
operator on a unknown Riemannian manifold or a domain of Euclidean space. The
data used is a part of the boundary I' and the eigenvalues corresponding to a set of
impedances in the Robin boundary condition which vary on I'. The proof is based on
the analysis of the behaviour of the eigenfunctions on the boundary as well perturba-
tion theory of eigenvalues. This reduces the problem to an inverse boundary spectral
problem solved by the boundary control method.

Key words: Inverse spectral problems, analysis on manifolds, Schrédinger opera-
tor.

1. INTRODUCTION

In 1929 Ambartsumyan [2] considered the Sturm-Liouville problem
(1) " +q(x)yY =Xy, z€(0,1), ¢'(0)=4'(1)=0,

where the potential ¢ is continuous and real valued. Let {\;}2, be the eigenvalues
for this Sturm-Liouville problem. Ambartsumyan proved that if A\, = k2 for k =
0,1,..., then ¢ = 0.

The next important contribution was due to Borg [6] who assumed that ¢ is inte-
grable and real valued. His result can be stated as follows. He proved that one
spectrum in general does not uniquely determine the corresponding Sturm-Liouville
operator and that the result of Ambartsumyan is a special case.

Let {Ax}32, be the eigenvalues for (1) with the boundary conditions
¥'(0) + h1-9(0) =0, /(1) +hs-1p(1) =0,

and let {ux}52, be the eigenvalues with the boundary condition

¥'(0) + he - p(0) = 0, ¢'(1) + hs - (1) =0,

where h; # ho, hs are real numbers. Then, the two sets {A;}52, and {ux}2,
uniquely determine hq, ho, h3 and ¢. Levinson [20] obtained simpler proofs of some
of the results of Borg.

Borg [7] and Marchenko [22] generalized the Borg-Levinson theorem to Sturm-

Liouville operators on the half line with a boundary condition at the origin when
1
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there is no continuous spectrum. They independently proved that the discrete spec-
tra corresponding to two different boundary conditions at x = 0 (with a fixed bound-
ary condition, if required, at £ = +00) uniquely determine the potential and the
boundary conditions at the origin.

Borg-Marchenko’s result was generalized to the case where there is also a continuous
spectrum in [1| where it was proven that the potential and boundary conditions are
uniquely determined by an appropriate data set containing the discrete eigenvalues
and continuous part of the spectral measure corresponding to one boundary condi-
tion at the origin and a subset of the discrete eigenvalues for a different boundary
condition. Another extension of the Borg-Marchenko theorem to the case with a
continuous spectrum is given by Gesztesy and Simon [9]. The uniqueness result is
proven there in the case when Krein’s spectral shift function is known.

The Borg-Levinson inverse two spectra problem can be reduced to the inverse bound-
ary spectral problem with data of the form

(2) { Mk ex 3o

where ¢, are the norming constants,

ck = |[ellL2(0,1)

and v, is the eigenfunction corresponding to Ay with 9,(0) = 1,9,(0) = —hy. See
for example [21], [8]. Clearly, data (2) is equivalent to the following inverse boundary
spectral data,

(3) {)\ka ¢k(0)}20203
where now ¢, are the unit-norm eigenfunctions.

A multidimensional analog of boundary spectral data is the set

{)‘ka d)k |BQ}20207

in the case of the Neumann or third-type boundary conditions (cf. (3), and the set

{/\k7 an¢k |69}]2i0a

in the case of the Dirichlet boundary condition. Here 2 C R" is a (smooth) bounded
domain and 0, is the interior unit normal derivative to 0€2. In comparison with the
1—dimensional case, not all second-order elliptic operators, even isotropic ones, can
be reduced to a Schrodinger operator in 2. For different classes of isotropic elliptic
operators, e.g. for an acoustic operator, or a Schrédinger operator , or a more
general second-order operator, namely,

(4)
Au = —c?(z)Au, or Au= —Au+ q(z)u, or Au = —div (e(z)Vu) + q(z)u,

where ¢, ¢ are positive functions and ¢ is a real-valued function in €2, the uniqueness
of determination of ¢, or ¢, or ¢ and ¢ was proven, correspondingly in [3], [23] and
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[24]. Tt should be noted that the methods used in these papers differed significantly,
with [3] introducing the boundary control (BC) method while [23] being based on
the complex geometric optics method of [25] and [24] using the ideas of 0-problem.

The inverse boundary spectral problem for the anisotropic case was considered in [4],
where it was shown that boundary spectral data determine a compact Riemannian
manifold and in [17], [18] and [19] where it was shown that boundary spectral data
determine, up to a natural group of gauge transformations, a general second-order
self-adjoint elliptic operator and a wide class of second-order non-self-adjoint elliptic
operators on a compact manifold. It should be noted that, the boundary 02 of the
manifold being given, the manifold itself was not a priori known and was to be
recovered from the boundary spectral data which, in this case, is the set

(5) (09, { Ak, drlontizi)

where \; and ¢y are the Neumann-eigenvalues and normalized eigenfunctions of the
Laplace-Beltrami operator.

In this paper we use invariant formulation of inverse problems, i.e., formulate the
problem in terms of manifolds. For clarity, we also apply the obtained results in
the Euclidean setting. Unless otherwise specified, (€2,g) is a smooth connected
compact Riemannian manifold with non-empty boundary. On (€, g) we study the
Schrédinger operator

A=-A+gq

where A = Ay is the Laplace-Beltrami operator. By A“ we denote the operator A
defined in the set of H?(M) functions that satisfy the third-type boundary condition
on 0f,

(8,,u -+ wu) |aQ = 0,

with 0, being the interior normal derivative on 0€) in the corresponding metric.
Following physical literature, we refer to the real valued function w € C*(99Q) as
the impedance. The proofs in [17], [18], [19] were based on a geometric approach
to the BC-method, see [14] for a detailed exposition. It is, however, clear from
the considerations above that the mentioned papers on multidimensional inverse
problems did not consider a multidimensional analog of the Borg-Levinson inverse
problem , but the inverse boundary spectral problem. A multidimensional analog
of the Borg-Levinson inverse problem may be formulated as follows:

Definition 1.1. Let (2, g) be a compact connected Riemannian manifold with non-
empty boundary 02, 3 C 0S) be an open connected non-empty subset and q be a real-
valued function in C*(Y). Let wy € C®(0NQ) be a real valued function. Consider
the Schrodinger operators in L*(Q2) of the form,

(6)  A%w=—Au+qu, D(A%)={uec H*(Q): (0,u+wu)|sq =0},
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where w is real valued and & = w — wy € C§°(X). Denote by A\y(w), k=1,2,... the
corresponding eigenvalues counting multiplicity. The local spectral data is

(7) X and the map w — { A (w)}32, defined for w € C*(0N), w — wy € CF (D).

Note that here €2 is compact manifold so that C*°(2) consists of functions that are
smooth upto the boundary.

Problem 1.2. Do local spectral data of form (7) determine (2, g), ¢ and wy uniquely?

Note, that by determination of a Riemannian manifold (£2, g) we mean determination
of its isometry type.

We denote the Gateaux derivatives of w +— Ag(w) at wy in the direction w by
Ao (@) = dAg|w, (@0). Clearly, local spectral data make it possible to find the A, (@)
for any £ =1,2,... and w € C§°(X).

In following, we use notation

(8) Bgo((x)o) = {w € Coo(aQ) : ||w — onLoo(()Q) <g, W—wpy € C’(‘)’o(E)}

Depending on degeneracy /non-degeneracy of the spectrum of A“°, we prove the
following result.

Theorem 1.3. Let (£2,9) be a smooth, compact, connected Riemannian manifold
with boundary and ¥ C 02 be an open, connected, non-empty subset and A“° be a
Schrodinger operator of form (6). Then

a. If the spectrum of A0 is simple, then 33, the eigenvalues A\y(wy), and their Gateaux
derivatives, Ay, (w); w € C°(X) uniquely determine (€2, g), ¢ and wy.

b. For arbitrary A*°, given ¥ and {\;(w)}2, for all real-valued w € B°(wy) with
some € > 0, one can uniquely determine (2, 9), ¢ and wy.

Note that, in Theorem 1.3, we do not assume an a priori knowledge of either €2 or
0€2. We only have to know ¥X. Theorem 1.3 has the following corollary in Euclidean
setting.

Corollary 1.4. Let Q C R*, g;j(x) = c(z)d;; be a conformally isotropic metric on
Q, and ¥ C 020 be open and non-empty. Let A“° be a Schrédinger operator of form
(6). Then ¥ and {\p(w)}2, for all real valued w € B(wy), with some € > 0,
determine Q) as a subset of R", c¢(x), q, and wy uniquely.

2. BOUNDARY BEHAVIOR OF EIGENFUNCTIONS

In this section we consider the eigenvalues and eigenfunctions of an operator A“ for
a fixed w. In this connection we skip using w throughout this section, writing A
instead of \¢(w) and ¢ instead of ¢y (w).
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To describe behavior of eigenfunctions near 0€2 we employ the boundary normal
coordinates x = (z,7), where 7 = dist(z,09) and z is the unique point on 0

nearest to z with local coordinates z = (2',..., 2" !).

Lemma 2.1. Let ¢ be an eigenfunction for an eigenvalue X of an operator AY (with
some fized w). Then, for any zy € 0N2, there is a multi-index o € ZC‘;I such that

9) 0% ¢(z9) # 0.
Here ¢(z) = ¢(z,0) and equation (9) is valid in proper local coordinates on 052,
z = (2',..., 2" ") where, without loss of generality, 2y = 0.

Proof. If w # 0 we introduce a gauge transformation [14]
u—v=ru k€EC®Q), k(x)>0forzeQ, 0,kl,—0=—w.
Then v = k¢ is a smooth solution to the equation
(10)
—02¢ — ¢"9,0;0 + a" 0 + a'Op + a®Y = \p, T >0, i,j=1,...,n—1,

0

where a°,a’, a™ and ¢ are functions of (z,7), and

(11) 0 4)]r—o = 0.

Assume now that, for any a = (o,..., ap_1) € Z7 1, 0°¢(0) = 92 ... 02 1¢(0) =
0 and, therefore, 0*¢(0) = 0. Using (10), (11), this implies that for any § =

(ﬁla"'wgﬂ.) € Zi?
(12) oo ... 0Bn19Pmp(0) = 0.

Zn—1

Let ¢,a°,a@, 3" be even continuations of these functions across the boundary 7 = 0
and @" be an odd continuation of a,. Then, in an open set U C R*,0 € U, the
function v is a C?(U) solution of the equation

(13) —8%) — GI0,0;0) + @ 0. + WO + a’h = M,

with g € C%'(U) and @* € L*(U), p=0,...,n. Moreover, by (12), for any N > 0
there is C'y so that

n—1
[%(z,7)| < OnlzN, o =) |2+
i=1

This, together with equation (13) imply, due to the Hérmander strong uniqueness

principle, [10], that ¢ = ¢ = 0. O
It will be shown in the next section that, under some additional assumptions, local
spectral data determine |¢,°(z)|, x € £, k =1,2,.... Moreover, the following result

holds:
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Theorem 2.2. Given £ € C*®(X) such that £(2) = |¢(2)|, 2 € X, where ¢ is an
eigenfunction of an operator A*°, it is possible to find ¢|s up to multiplication by
+1.

Proof. To fix the sign of ¢, choose a point zy € ¥ where £(zp) > 0 and take ¢(zp) =
£(z9) > 0. Let (2',...,2"') € B, C R*! be Riemannian normal coordinates in
the metric ball B,(zy) C X, where (05, g) is endowed with the metric induced by
(€2, g). Note that we can choose

(14) r = min(inj(09), dasa (2o, 0%)).

We first show that & determines ¢ everywhere in B,. By continuity of ¢, it is
clear that & determines ¢ in ball B; for sufficiently small 7. Let p be the largest
possible value p < r such that £ determines ¢ in ball B,. We want to show that
p = r. Assuming the contrary, we note that ¢ is defined on the closure Fp. Let
y € 0B, C X. If ¢(y) # 0, then, by continuity, £ determines ¢ in a vicinity of y. If
é(y) = 0, by Lemma 2.1 there is m > 0 such that

(19)z) = Z ba(z —y)*+ O (|2 —y[™"),  bay # 0 for some g, |ag| =m

lal=m

It follows from (15) that there is an open dense set W C S™ 2 such that, for
e=(et,...,e" ) eW,

O (y) = (e70;)™p(y) # 0.

Choosing e transversal to 0B, at y and assuming that, without loss of generality,
0e = Op_1, we obtain, using Malgrange Preparation Theorem, e.g. [11, Th. 7.5.5],
that, in a vicinity of v,

m
(16) o(Z, 2" ) Zal — L

1=
Here Z = (2!,...,2"?%), the function ¢(z) = ¢(Z, 2" ') is a C*°—function near z =y
with ¢(y) # 0 and a,,(Z) = 1. Therefore, ¢(z, 2" '), for a fixed Z, has only a finite
number of real roots, r;(z). The function ¢(Z,2"""'), considered as a function of
2", changes its sign at 7;(Z) when this root is of an odd order and does not change
the sign when the root is of an even order. As the lines Z = const are transversal
to 0B, near y, we obtain the continuation of ¢ into a vicinity of y. As y € 0B, is
arbitrary, we obtain the continuation of ¢ into an open neighborhood of Fp. Thus,
p =r,ie. ¢ can be uniquely determined everywhere in the ball B,. It also follows
from the above arguments that {z : ¢(z) # 0} N B, (zp) is an open set of full measure.

To proceed further, let z € ¥ and L be a curve in Y connecting z, with z. We
cover L by a finite number of balls B, /2(2;), j = 0,1,...,J, z; = Z, such that
By, j2(2j) N By, /2(2j41) # 0. In particular, there is a point 21 € By, /2(20) N By, 2(21)



MULTIDIMENSIONAL BORG-LEVINSON THEOREM 7

with ¢(z1) # 0. By the previous construction we find ¢ in By, (z1) which contains
B, j2(%1). Continuing this process, we find ¢(%). O

3. GENERIC BEHAVIOR OF EIGENVALUES

Consider the quadratic form @“ related to the operator AY,

(17) Q‘“(u):/Q(|Vu\2+q|u|2) dV+/8 wlul?ds,

Q

where dV, dS are the volume and area forms generated by the metric ¢ in €2 and
002.

Let A(t) be an analytic, for |t| < €, one-parameter family of Schrédinger operators
of the form (6), where the impedance w(t) of the form

(18) w(t) = wo +tw, with real w € C§° ().

Then A(t) is a self-adjoint homomorphic operator family of type (B), in the sense
of Kato [16, Section 7.4], so that the eigenvalues \x(w(t)) and eigenfunctions qﬁ‘,;’(t)
may be chosen to be analytic with respect to t. In this case we can find the Gateaux
derivative of A\ with respect to t. A bit more generally, the following result holds:

Lemma 3.1. Let \(t), ¢x(t) be an eigenvalue and a corresponding normalized
eigenfunction of A(t) which are differentiable with respect to t. Then

(19) M) == [ |ow(t)@ds,
o0
where \ stands for the t—differentiation of .

Proof. Differentiating with respect to ¢ the equation for ¢ (t), we get

(A +q— Ae(t) de(t) = \e(t)de (8).-
Thus, due to ||@x(t)]| =1,

(20) ) = [ (=84 0= M©)dl0) F@av
= [ (061080 = dult) 0.5400)

) ds.

By the boundary condition in (6),

0,6k(1) = = (w(z, (2, 8) + 02, Ou(2, 1)), = € O
This together with (20) imply equation (19) due to (18). O

Denote by py(w) the multiplicity of Ay and assume that p(w) is constant near wy.
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Corollary 3.2. Assume that for some € > 0, A\_j_1(w) < Ap—j(w) = ... M(w) =
0= App-1 (W) < Apap(w), P+ J = pe(wo), for all

(21) w € BX(wp).-

Then for any w € C{°(X) and a normalized eigenfunction ¢ of A*° corresponding

to the eigenvalue A\, (wo) there is an eigenvalue \(t) and a normalized eigenfunction
B(t) of A w(t) = wy+tw such that ¢(0) = ¢ and that the equation (19) is valid.

This result is standard for the perturbation theory for quadratic forms, e.g. [16],
[5]. We repeat its proof for the convenience of the reader.

Proof. By the perturbation theory for quadratic forms, e.g. [16], [5], a sufficiently
small disk centered in A\, = Az(wy) does not contain eigenvalues of A“, except for

Me—j(w), .o, Apgp—1(w), when w satisfies (21) with sufficiently small €. Consider the
Riesz projectors, Py, to the eigenspace corresponding to A, (w),
1
22 P'=— [ RYd
( ) k 27_‘_Z r z Z’

where RY is the resolvent for A“ and I is a sufficiently small circle around Ag(wo).
When w = w(t) is of form (18), R,(t) is an analytic, with respect to ¢, operator-valued
function in L?(€2). Therefore, P# are also analytic with respect to t. Moreover, for
sufficiently small & and real t, ¢(t) = P,:J(t)qﬁ £ 0 so that ¢(t) = ¢(t)/||p(t)| is a
desired normalized eigenfunction for A(¢) which smoothly depends on ¢. This implies
also that A(¢) is smooth with respect to ¢ and the considerations of Lemma 3.1 are
valid. a

Combining Corollary 3.2 with Theorem 2.2 we obtain the following result.

Corollary 3.3. Assume that A\,(w) has a constant multiplicity, pug(w) = px(wo) for
all w satisfying equation (21). Then py(w) = 1.

Proof. By corollary 3.2, any ¢ € P°L?*(Q), ||¢|| = 1 satisfies equation (19). Thus,
for any two different normalized eigenfunctions ¢, ¢ for A,

/ 6PEdS = / Pads,
onN onN

with arbitrary & € Cg°(X).This implies that |¢| = |¢| on ¥, so that ¢|y = +¢|s.
This, together with the boundary condition in (6), yield that also 0,¢|y, = :I:8,,$|g.
Using the similar arguments as in proof of Lemma 2.1 and applying the Hérmander
unique continuation theorem [10], ¢ = j:g on ). O
We now investigate the multiplicity of eigenvalues under small perturbations of the
impedance.

Lemma 3.4. For any k € Z., € > 0 there is w € C®(0N) satisfying equation (21)
such that \;(w) are simple fori=1,... k.
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Proof. By the perturbation theory for quadratic forms e.g. [16], [5], for any wy €
C>*(00) and i € Z,, there are €, § > 0 such that

dim P¥(6)L*(Q2) = dim P L*(12),

for all w € B>®(wp), where P¥(0) is the projector onto the sum of eigenspaces of A%
corresponding to the eigenvalues from the interval (A;(wo) —6, Ai(wo)+0). Therefore,
wi(wo) is an upper-semicontinuous function of wy € L>(092).

Let
;(wo) = lim inf pi(w), Hi(wo) = lim sup pi(w).-

w—wo, w—woECE (X) w—wo, w—wo€CH(X)
As p;(w) € Z., there is 0; = 6;(wp) > 0, such that
min 4 (w) = p,(wo), max p;(w) = 7;(wo),

where minimum and maximum are taken over the set w € BgY, \(wo). Choose w;
with p1(w1) = p, (wo) such that

||wi — wol|zee(an) < min(e/k, 61(wo)), w1 —wo € C5°(X).
Then, due to the mentioned upper-semicontinuity of j;, there is 51 > (0 so that
(23) p1(w) = py(wr) for w e Bg’(wl).
By Corollary 3.3,
By (wo) = m(w) =1,
for w € Bg(wl).
Next we find 65 < 51 such that
min iz (w) = p, (wi)
where minimum is taken over the set
(24) w € B (wy)-
This makes it possible to choose wy satisfying (24) and also
po(w2) = po(wi), ||ws — willreo(an) < min(e/k, ds).
Repeating the same arguments as for y,, there is oy < min(e/k, d2) such that
(25) By (w1) = pa(w) =1,
for w € B (wq), and the ball Bg’(wQ) lies inside the ball Bz (w1) so that also
p(w) = 1.
Continuing this procedure, we find wy, € C*(0Q),wy — wy € C§°(X) with
(26) p(we) = = pr(w) = 1.
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Moreover, it is seen easily from the above construction that

||wk — LU()||L00(6Q) < E.
O

Remark 3.5. A slight modification of the previous arguments shows that, in any
C§° (X)—neighborhood of wg there is an impedance w such that the spectrum of A
1s stmple. Indeed, we can easily generalize Lemma 3.4 to show that, for any k €
Z., e >0 and w there is wy, satisfying (26) such that

9

To construct w with simple spectrum, we first find wy with py (w1) = 1 satisfying (27)
with k =1 and wy instead of w. Then we find wy with ui(ws) = pz(we) =1 and (27)
with k = 2 and wy instead of w. By taking, if necessary, ws to be L®—-closer to wy,
we obtain that

(28) Ai(wa) = Ao(ws)| > (1/2 = 1/2%)[Ai(wi) — Ao(wi).
Nezt we find ws with py(ws) = po(ws) = ps(ws) = 1 and (27) with k = 3 and we
instead of w. By taking, if necessary, ws to be L*°—-closer to wy, we obtain that
(29) Ai(ws) = Aa(ws)| > (1/2 = 1/2%)[ A1 (wi) = Ao (wi)],

a(ws) = As(ws)| > (1/2 = 1/2°) [ Ag(wz) — As(ws)]-
Continuing the above procedure, we construct a converging, in C*(052), sequence
wg. Denote by w its limit, w = limwy. By (27), for any p € Z..,
(30) [lwo — wlleran) <e.

As A\i(w) depends continuously on w, equations (28), (29), and analogous equations
for further wy, show that

1
Ae(w) = A1 (w)] > §|)\k(wk) — Met1(wr)| > 0,

so that AY has simple spectrum. It is clear from the above construction that the set
of impedances w with degenerate spectrum is of the first Baire category.

We note that the above result can be also obtained using [26], however, the method
of [26] is different from the one in Remark 3.5 being based on the ideas of [27] rather
than the quadratic forms perturbation theory and unique continuation for elliptic
equation.

4. FROM LOCAL SPECTRAL DATA TO BOUNDARY SPECTRAL DATA . PROOF OF
MAIN RESULTS.

We are now in the position to prove our main results. We start with the following
technical theorem:
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Theorem 4.1. For any real wy € C®(0Y) and any open, non-empty connected
¥ C 09, the local spectral data determine the traces @iy, k = 1,..., up to a sign,
of the eigenfunctions of the Schridinger operator A“°.

Proof. If u;(wg) = 1, Corollary 3.2 makes possible to find, for an arbitrary w €
5o (%),

(31) /a gl as,

where ¢; is the normalized eigenfunction of A“° corresponding to \;(wp).

Let now pi(wp) =p>1l,say y=---=N=---= )\, I <i<mm—-1l=p—1.
By Lemma 3.4, there are smooth impedances w,, n = 1,2,..., which converge to
wp while their eigenvalues \j(wy,), 1 < j < m, remain simple. By Corollary 3.2 it
is possible to find [, 6Q@|¢?\2 dS, where ¢, for [ < j < m, are the orthonormalized
eigenfunctions of A“» corresponding to \;(wy). As ||¢7||#1(q) are uniformly bounded,
there is a subsequence n(k), which we assume to be the whole sequence, such that
(32) lim ¢7 =¢;, 1<j<m.

n—oo

The convergence in (32) is weak in H'(2) and strong in H*(Q2) for any s < 1. As
Jim Aj(wn) = Aj(wp), 1<5<m,
¢; satisfy the equation
(=A +q)8; = Aj(wo)d;.

Moreover, as
Jim Olon = djlan  in L*(092),

we see that ¢; are normalized eigenfunctions of A“° for \;, 1 <7 < m. In addition,
for multiple eigenvalues of A“°, the corresponding eigenfunctions remain orthogonal
because the eigenfunctions ¢7, ¢y, j,k < m are orthogonal for any n and j # k.
Thus, ¢; are the first m orthonormal eigenfunctions of A“°.

Also,

(33) lim [ |60P@ds = / 165[%5 dS,
o0N onN

n—00

for any @ € C§°(X), so that we know all integrals (31) when ¢ < m. Since m € Z, is
arbitrary, we determine the integrals (31) for any 7 € Z, and w € C§°(X). In turn,
this determines all functions |@;|s. Applying Theorem 2.2 we find ¢;, i = 1,2,...,
on X up to a sign. O

Proof of Theorem 1.3.

a. If all eigenvalues of A“° are simple, then, by upper semicontinuity of yy, it follows
from Corollary 3.2 that the Gateaux derivatives of A\gx(wg) determine the integrals
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(31) for any w € C§°(X). It then follows from the proof of Theorem 4.1 that the
Gateaux derivatives of A\ (wg) determine ¢;(wp), 2 =1,2,..., on 3.

b. In general, Theorem 4.1 shows that \;(w) for w satisfying (21) with any ¢ > 0,
determine ¢;(wp), 7 = 1,2,..., on X. By [13, Thm. 7.3], this data determines
uniquely the isometry type of (€2,¢) and the gauge-equivalence class {x 'A%k :
k € C®(Q), k(z) > 0} of the operator A“°. By [14, Lemma 2.29] this equivalence
class contains a unique Schrédinger operator of the form (6). Thus we can find ¢
and wy. This completes the proof of Theorem 1.3. O

Corollary 1.4 is a direct consequence of Theorem 1.3 and the fact that by Liouville
Theorem [12|, an isometric embedding of a conformally Euclidean n-manifold to R™
is unique.

Remark 4.2. In the case where some of the eigenvalues of A“° are simple and
some are degenerate, our proof gives a result that is slightly more general than (b)
in Theorem 1.3.

We have actually proven that (2, g),q and wy are uniquely determined by the data
consisting of ¥, the simple eigenvalues A\ (wo) and their Gateaux derivatives, Ay, (w);

w € C§°(X), and moreover, for each degenerate eigenvalue, \,(wo), with multiplicity

tr(wo), the local spectral data, {\(w) fj,f:jl for all w € BX®(wy) for some € > 0, and

where p, j are the only integers such that, p + j = px(wo), and
Ak—j—1(wo) < Ak—j(wo) = -+ = Ak(wo)) =+ = Aptp—1(wo) < Aptp(wo)-
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