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Abstract. Estimation of non-discrete physical quantities from indirect linear
measurements is considered. Bayesian solution of such an inverse problem involves
discretizing the problem and expressing available a priori information in the form
of a prior distribution in a finite-dimensional space. Since a priori information is
independent of the measurement, the discretization of the unknown quantity can
be arbitrarily fine regardless of the number of measurements. The main result is
that total variation prior distribution has certain unfavorable features that appear
with very fine discretizations. First, there is no choice of regularization parameter
as function of discretization level making Bayesian maximum a posteriori (MAP)
and conditional mean (CM) estimates converge simultaneously to useful limits
when the discretization is refined arbitrarily. Second, in the case when CM
estimates converge, they are not edge-preserving in the limit. Theoretical findings
are illustrated by a numerical example with computer simulated data.
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1. Introduction

Consider an indirect noisy measurement m of a physical quantity u:

m = Au + ε, (1.1)

where ε is random noise and the linear operator A models the measurement. The
corresponding inverse problem is

given m, find u. (1.2)

We assume that the object u is a priori known to be piecewise regular. Our aim is
to raise methodological concerns about the solution of (1.2) with Bayesian inversion
using total variation prior distribution.

Practical solution of (1.2) with Bayesian inversion requires discretization of the
problem and expressing available a priori information on u in the form of a prior
distribution π(n)

pr in a finite-dimensional subspace Yn ⊂ Y , where u is a priori known
to belong to some function space Y . Let m and ε be random vectors taking values in
R

N , and denote their distributions by πm and πε, respectively. Given a realization m̂
of the measurement m = Au + ε, Bayes’ formula yields the posterior distribution for
the random variable un taking values in Yn:

π(un | m̂) =
π(n)

pr (un)π(m̂ |un)
πm(m̂)

∼ π(n)
pr (un)πε(m̂ − Aun). (1.3)
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The approximate solution of (1.2) is given as some point estimate for (1.3). Such
estimates include the maximum a posteriori (MAP) and conditional mean (CM)
estimates defined by

uMAP
n = arg max

un∈Yn

π(un | m̂), uCM
n =

∫
Yn

un π(un | m̂) dun,

respectively. The crucial step in Bayesian inversion is the construction of Yn and π(n)
pr .

The probability measure π(n)
pr should assign high probability to functions un ∈ Yn

that are typical in light of a priori information on u, and low probability to atypical
functions. For more details, see [22, 15, 17, 31, 25, 12].

A celebrated solution method for (1.2) called Total Variation (TV) regularization
was introduced for edge-preserving noise removal by Rudin, Osher and Fatemi [29]
and later successfully applied to other inverse problems [9, 33]. TV regularization
is equivalent to determining the MAP estimate for (1.3) with TV prior distribution.
This observation inspired consideration of CM and other Bayesian estimates using the
TV prior [17, 30, 19]; preservation of edges was achieved with fixed discretization.

However, from the pure Bayesian point of view, a priori information and its
discrete representation are independent of the measurement, and the dimension n
can be freely chosen. In our view, the space Yn and the distribution π(n)

pr should be
constructed for all n so that the following two conditions are satisfied:

(i) There is a random function v taking values in Y such that limn→∞ un = v (in
a sense to be made precise later). This guarantees that the representation of a
priori information becomes more accurate when n grows.

(ii) There are continuous linear operators Tn : Y → Yn such that un = Tnv. This
means that the finite-dimensional approximations to u are achieved systematically
from the limit function v. (We restrict ourselves to linear discretizations Tn as
we consider linear inverse problems only.)

Any choice of Yn and π(n)
pr having properties (i) and (ii) is called discretization

invariant.
We show (for a generic one-dimensional problem) that TV prior is not

discretization invariant. We take Y to be the space of continuous functions on
the interval [0, 1] vanishing at the endpoints and consider a general class of linear
measurements. Our choice of Yn ⊂ Y is the space of piecewise linear continuous
functions specified by their point values at { 1

n+1 , 2
n+1 , . . . , n

n+1} ⊂ [0, 1]. Further, we
take π(n)

pr in (1.3) to be the discrete TV prior with regularization parameter αn > 0.
Our main theorems 4.1 and 5.2 concern the behavior of MAP and CM estimates for
(1.3) when n → ∞. Their proofs are based on epiconvergence of optimization problems
and specific types of stochastic convergence, respectively. According to our theorems,
there are only two choices of regularization parameter αn as function of n leading to
nontrivial convergence behavior:

If an does not depend on n, any sequence {uMAP
n } of minimizers has a subsequence

that converges in BV topology as n → ∞. (For fixed n and αn, the MAP
estimate is not necessarily unique.) However, the TV prior distributions (and
CM estimates) diverge.
If we choose αn = α̃

√
n + 1 with some α̃ > 0, then limn→∞ uMAP

n = 0. Further,
the posterior distributions converge to a distribution of a random variable v taking
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values in Y , and the CM estimates converge. However, v is Gaussian‡ and thus
not edge-preserving, and condition (ii) above is not satisfied.

Thus the answer to the question in the title is negative. However, we view our
results positively as a quest for researchers to design discretization-invariant prior
distributions for edge-preserving inversion of (1.1).

This paper is organized as follows. In section 2 we give basic definitions and
show how regularization theory and Bayesian inversion are related. In section 3 we
define discretization invariance. In section 4 we prove a result about convergence of
MAP estimates. In section 5 we prove results about convergence of prior distributions
and CM estimates. In section 6 we illustrate our theoretical findings by numerical
computations.

In the sequel, we use the abbreviations i.d., i.p., a.e., and a.s. for the terms in
distribution, in probability, almost every, and almost surely, respectively.

2. The generic posterior distribution

We restrict ourselves in this work to a class of one-dimensional inverse problems. Our
choice of spaces Y and Yn is as follows.

Definition 2.1 (Function spaces Y and Yn) Let Y be the space of continuous
functions on the interval [0, 1] vanishing at the endpoints:

Y = C0([0, 1]) = {u ∈ C([0, 1]) : u(0) = u(1) = 0}.
For any integer n > 0, let Yn ⊂ Y be the following set of piecewise linear functions on
the interval [0, 1]:

Yn = {u ∈ Y : u|[xn
j ,xn

j+1]
is linear for j = 0, . . . , n},

where
xn

j =
j

n + 1
for j = 0, . . . , n + 1.

Further, consider the roof-top basis {ψn
j }n

j=1 for Yn, where ψn
j ∈ Yn satisfy ψn

j (xn
k ) =

δjk for j = 1, . . . , n and k = 0, . . . , n + 1.

We use the following class of probability distributions as priors.

Definition 2.2 (p-variation distribution) Let (Ω,Σ, P ) be a complete probability
space. Let n > 0 be an integer, αn > 0, and 1 ≤ p ≤ 2. The Yn-valued random
function

un(t) = un(t, ω) =
n∑

j=1

un
j (ω)ψn

j (t), ω ∈ Ω, (2.1)

has p-variation distribution in Yn with regularization parameter αn if the R
n-valued

random vector [un
1 (ω), . . . , un

n(ω)]T has the probability density function

πp,n(un
1 , . . . , un

n) = cp,n exp
(
− αn‖ ∂

∂t

n∑
j=1

un
j ψn

j (t) ‖p
Lp(0,1)

)

= cp,n exp
(
− αn

(n + 1)1−p

n+1∑
j=1

|un
j − un

j−1|p
)
, (2.2)

‡ Numerical evidence and a conjecture was first presented by Markku Lehtinen [21].
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where un
0 = un

n+1 = 0 and cp,n is a normalization constant. The special case p = 1 is
called total variation (TV) probability distribution in Yn.

Note that p = 2 gives a Gaussian distribution. In definition 2.2 we require that un
0 =

un
n+1 = 0 for the p-variation distribution to be a probability density function. Without

the requirement, a constant could be added to un without altering πp,n(un
1 , . . . , un

n).
We are ready to define the posterior distribution analyzed in this paper.

Definition 2.3 (The generic posterior distribution) Denote by Z the set of
Borel measures A(dt) with finite variation that are supported on compact subsets of
(0, 1). Let Aj ∈ Z for j = 1, . . . , N and σ > 0. Given u ∈ Y , let the measurement m
be the random vector in R

N with components

mj = (Au)j + εj = 〈Aj , u〉 + εj =
∫ 1

0

v(t)Aj(dt) + εj , (2.3)

where εj ∼ N(0, σ) are independent Gaussian errors. Assume given a realization m̂
of m. Modelling a priori knowledge about u with the p-variation distribution in the
space Yn leads to the posterior distribution

π(un | m̂) = c̃ exp
(
− 1

2σ2
‖Aun − m̂‖2

RN − αn‖u′
n‖p

p

)
, (2.4)

where ‖ · ‖RN is the standard Euclidean norm and ‖u′
n‖p

p is understood in the sense
of (2.1) and (2.2).

Recall that A(dt) has finite variation if there are finite non-negative measures A1(dt)
and A2(dt) such that A(dt) = A1(dt) − A2(dt). The norm of Z is given by

‖A‖Z = inf{A1([0, 1]) + A2([0, 1]) : A(dt) = A1(dt) − A2(dt)}.
We close the section by pointing out a connection between regularization theory

and Bayesian MAP estimates. Maximizing the posterior distribution (2.4) is equivalent
to the minimization problem

arg min
un∈Yn

{
‖Aun − m‖2

RN + βn

∫ 1

0

|u′
n(t)|pdt

}
. (2.5)

with βn = 2σ2αn. But (2.5) is by definition the Tikhonov (p = 2) or TV (p = 1)
regularized solution of the inverse problem (1.2). We note that the edge-preserving
property of discrete TV regularization is related to the regularization term in (2.5)
allowing large values of derivatives.

3. Discretization invariance

It is tempting to consider the p-variation prior distribution (2.2) as discretization of
the following formal prior distribution:

πu(v) formally∼ exp(−α‖v′‖p
p), v ∈ Y. (3.1)

Generalizing the successful solution of finite-dimensional inverse problems in Yn to
solution of the continuous problem in Y using (3.1) is a natural idea. This can indeed
be done for p = 2: see Lehtinen, Päivärinta and Somersalo [22] and Lasanen [20]. To
analyze the case 1 ≤ p < 2 we need the following definitions.

Definition 3.1 (Linear discretization of random functions) Let un(�)(t, ω) be
Yn(�)-valued random variables with 
 = 1, 2, 3, . . . and 1 < n(1) < n(2) < n(3) < · · ·.
Assume that
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(i) There is a Y -valued random variable v(t) = v(t, ω) such that for any t ∈ [0, 1]

lim
�→∞

un(�)(t) = v(t) i.d.

(ii) There are bounded linear operators Tn(�) ∈ L(Y ) such that for any t ∈ [0, 1]

un(�)(t) = (Tn(�)v)(t).

Then un(�) are linear discretizations of a random function. Further, we say that v can
be approximated by finite-dimensional random variables in a discretization invariant
manner and un(�) are proper linear discretizations of v.

Note that Definition 3.1 is analogous to that of Lasanen [20] (see also [15, 23]).

Definition 3.2 (Discretization invariant choice of Yn and π(n)
pr ) Assume given

Yn(�) and π(n(�))
pr for (1.3) with 
 = 1, 2, 3, . . . and 1 < n(1) < n(2) < n(3) < · · ·. Let

un(�) be random functions taking values in Yn(�) and having distribution π(n(�))
pr . We

say that the choice of Yn(�) and π(n(�))
pr is discretization invariant if un(�) are linear

discretizations of a random function in the sense of Definition 3.1.

We will show that the discrete random variables distributed according to the generic
posterior distribution (2.4) with 1 ≤ p < 2 are not linear discretizations of any random
function. See Remark 5.1 on page 11.

4. Convergence of MAP estimates

We analyze the convergence of MAP estimates

uMAP
n (t; p, αn) ∈ arg max

un∈Yn

exp
(
− 1

2σ2
‖Aun − m̂‖2

RN − αn‖u′
n‖p

p

)
(4.1)

for the posterior distribution (2.4) as the discretization is refined arbitrarily: n =
n(
) = 2� − 1 and 
 → ∞. This choice of n(
) ensures that Yn(�) ⊂ Yn(�+1), which is
needed below in the case p = 1. In the case 1 < p ≤ 2 the object function in (4.1)
is strictly convex and there is a unique MAP estimate, whereas in the case p = 1 the
MAP estimate is not necessarily unique.

We recall two important function spaces. First, the Sobolev space W 1,p(0, 1)
consists of Lp(0, 1) functions with weak derivatives in Lp(0, 1). By the Sobolev
imbedding theorem we know that W 1,p

0 functions are continuous. Second, the space
of functions of bounded variation is defined as follows. Let

BV (0, 1) = {u ∈ L1(R) : ‖u‖BV < ∞, supp (u) ⊂ [0, 1]},
BV0(0, 1) = {u ∈ BV (0, 1) : u(0) = u(1) = 0},

where

‖u‖BV = sup{
∫ 1

0

u(s)∂sφ(s) ds : φ ∈ C∞([0, 1]), ‖φ‖L∞ ≤ 1}.

Note that for u ∈ BV0(0, 1) the derivative ∂su, defined in sense of distributions,
is a measure. We say that un ∈ BV (0, 1) converge in weak–∗ topology of BV to
u ∈ BV (0, 1) if ‖un − u‖L1 → 0 and

∫
R

φ(∂sun − ∂su)(s) → 0 for any φ ∈ C0([0, 1]),
i.e., the measures ∂sun converge weakly to ∂su. In this case we denote un −→BV-w* u.
Note that the trace u �→ u(s0), 0 ≤ s0 ≤ 1 is continuous from weak–∗ topology of
BV (0, 1) to R.
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Theorem 4.1 Let σ > 0, m̂ ∈ R
N and n = n(
) = 2� − 1 for 
 = 2, 3, . . .. Assume

Aj ∈ L1(0, 1) ∩ Z for j = 1, . . . , N .

(i) Let αn = α̃/(2σ2) with some α̃ > 0 and 1 < p ≤ 2. Let uMAP
n = uMAP

n (t; p, αn)
be the unique MAP estimate given by (4.1) for the posterior distribution (2.4).
Then there is a unique limit function ũ( · ; p, α̃) ∈ W 1,p

0 (0, 1) such that

lim
�→∞

uMAP
n(�) = ũ( · ; p, α̃)

in the weak topology of W 1,p
0 (0, 1).

(ii) Let αn = α̃/(2σ2) with some α̃ > 0 and p = 1. Then for any sequence {uMAP
n(�)}∞�=2

of maximizers of (4.1) there is a subsequence that converges in weak–∗ topology
of BV to some ũ ∈ BV0(0, 1).

(iii) Let the regularization parameters αn > 0 satisfy lim�→∞ αn(�) = ∞. Then

lim
�→∞

uMAP
n(�) = 0

in the norm topology of W 1,p
0 (0, 1) for 1 < p ≤ 2 and BV for p = 1.

We note that the restriction Aj ∈ L1(0, 1) is needed only in the case p = 1.
The proof of Theorem 4.1 consists in part of standard arguments in the field of
epiconvergence of minimization problems. However, we present the details for the
reader’s convenience.

Proof. We define two optimization problems that are limits of optimization
problems in finite-dimensional spaces. In the case 1 < p ≤ 2 we consider the problem

ũ(t; p, β) = arg min
u∈W 1,p

0

S(u), (4.2)

S(u) = ‖Au − m̂‖2
RN + β‖u′‖p

p,

where β > 0 and W 1,p
0 is the closure of C∞

0 (0, 1) in the W 1,p(0, 1) norm. In the case
p = 1 we consider the problem

ũ(t; p, β) ∈ arg min
u∈BV0(0,1)

S(u), (4.3)

S(u) = ‖Au − m̂‖2
RN + β‖u‖BV .

Next we use methods of convex analysis and approximate (4.2, 4.3) with a discrete
minimization problem

ũn(t; p, βn) ∈ arg min
u

Sn(u), (4.4)

where Sn : W 1,p
0 → R+ = R+ ∪{0,∞} for 1 < p ≤ 2 or Sn : BV0(0, 1) → R+ for p = 1

is the convex non-linear function

Sn(u) = ‖Au − m̂‖2
RN + βn‖u′‖p

p + IYn
(u).

Here βn > 0 are such that β = limn→∞ βn and IYn
is the convex indicator function:

IYn
(u) = 0 if u ∈ Yn and IYn

(u) = ∞ if u �∈ Yn.
The proof of the convergence of the MAP estimate for the posterior distribution

(2.4) is based, using the terminology of [28], to the epiconvergence of Sn to S.
Note that (4.1) is equivalent to

uMAP
n (t; p, αn) = arg min

un∈Yn

(
‖Aun − m̂‖2

RN + 2σ2αn‖u′
n‖p

p

)
, (4.5)
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which in turn is equivalent to (4.4) with βn = 2σ2αn = α̃.
Consider the operators Tn : C0(0, 1) → Yn defined by

Tnu(t) =
n∑

j=1

u(xn
j )ψn

j (t), xn
j =

j

n + 1
,

where the functions ψn
j are as in Definition 2.1. Thus Tnu is obtained by linear

interpolation from the point values u(xn
j ).

Properties of Tn for 1 < p ≤ 2. Denote ∆xn := xn
2 − xn

1 = (n + 1)−1. Now for
t ∈ I = In

j = [xn
j , xn

j+1] with j = 0, 1, 2, . . . , n, we have

Tnu(t) = u(xn
j ) +

t − xn
j

∆xn

∫ xn
j+1

xn
j

u′(t)dt,

and, further,

(Tnu)′(t) =
1

∆xn

∫ xn
j+1

xn
j

u′(t)dt = [u′]I ,

where we denote by [u′]I the average of u′ over I. Note that |(Tnu)′(t)| ≤ 2Mu′(t)
where Mu′ is the Hardy-Littlewood maximal function of u′. For any t ∈ (0, 1), let
j(t, n) be some index for which t ∈ In

j(t,n). Since u′ ∈ L1(0, 1), we have (similarly to
the standard theorem of Lebesgue points)

lim
n→∞u′(t) − [u′]In

j(t,n)
= 0

for almost every t, see [10]. Since |(Tnu)′(t) − u′(t)| ≤ (2Mu′(t) + |u′(t)|) ∈ Lp(0, 1),
Lebesgue’s theorem of dominated convergence yields that

lim
n→∞ ‖(Tnu − u)′‖p

Lp(0,1) =
∫ 1

0

lim
n→∞ |u′(t) − (u′)In

j(t,n)
|pdt = 0.

Hence limn→∞ Tn = I in the strong operator topology of W 1,p
0 . Moreover,

‖(Tnu)′‖Lp ≤ 2‖Mu′‖Lp ≤ C‖u′‖Lp

and hence the norms ‖Tn‖W 1,p
0 →W 1,p

0
are uniformly bounded.

Epiconvergence in case 1 < p ≤ 2. First we consider the case βn = β = α̃.
Let un = un(�), 
 = 2, 3, . . . , be a converging sequence in W 1,p

0 with limn→∞ un = u.
We have shown that limn→∞ Tn = I in the strong operator topology of W 1,p

0 and that
the norms ‖Tn‖W 1,p

0 →W 1,p
0

are uniformly bounded. Thus limn→∞ Tnun = u. Further,
since Sn has infinite values in the complement of Yn and Tn|Yn

= I, we see trivially
that Sn(un) ≥ Sn(Tnun). Using these facts we estimate

lim inf
n→∞ Sn(un) (4.6)

≥ lim inf
n→∞ Sn(Tnun)

≥ lim inf
n→∞ ‖A(Tnun − u) + (Au − m̂)‖2

RN + β‖(Tnun)′‖p
p

≥ S(u).
Moreover, for u ∈ W 1,p

0 there is such a sequence vn = Tnu → u in W 1,p
0 that

lim sup
n→∞

Sn(vn) (4.7)

= lim sup
n→∞

‖A(Tnun − u) + (Au − m̂)‖2
RN + βn‖(Tnu)′‖p

p

= S(u).
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By definition (see [3], Prop. 1.14 and also [2], [28]), formulae (4.6) and (4.7) mean
that the functions Sn epiconverge to S. Define s0 = inf{S(v) : v ∈ W 1,p

0 } and
sn = inf{Sn(v) : v ∈ W 1,p

0 } for n = n(
), 
 = 2, 3, 4, . . ., and consider the set

argmin(Sn) = {u ∈ W 1,p
0 : Sn(u) = sn}

where Sn attains its minimum (actually, this set contains only the function ũn(βn)).
Since Sn epiconverge to S, [3], Proposition 2.9 yields that

lim sup
n→∞

argmin(Sn) ⊂ Bε = {u ∈ W 1,p
0 : S(u) ≤ s0 + ε} (4.8)

for any ε > 0. Now, assume that 0 < β < ∞. Since S is strictly convex and weakly
lower semicontinuous, S has a unique global minimum at ũ (see e.g. [5, Thm. 2.1.4]).
Thus (4.8) implies that limn→∞ S(uMAP

n(�) ) = min(S) and in particular ‖uMAP
n(�)‖W 1,p

0
are

uniformly bounded.
Assume now that uMAP

n(�) do not converge weakly to ũ. Then there is f ∈ (W 1,p
0 )′

such that for some subsequence limk→∞〈f, uMAP
n(�k)〉 = cf �= 〈f, ũ〉. By the Banach-

Alaoglu theorem {uMAP
n(�k)} has a weakly converging subsequence. We denote the limit

of such a subsequence by ũ1. Since S : W 1,p
0 (0, 1) → R is lower semicontinuous in

the weak topology of W 1,p
0 , we see that S(ũ1) = min(S). Then 〈ũ − ũ1, f〉 �= 0 is

in contradiction with the fact that the minimum ũ is unique. This shows that uMAP
n(�)

converges weakly in W 1,p
0 (0, 1) to ũ. This proves (i).

Approximation of functions in the case p = 1. First we consider
approximations in W 1,1

0 (0, 1) ⊂ BV0(0, 1). Let h ∈ L1(0, 1) and N� be the σ-algebra
generated by intervals (0, xn(�)

j ), j = 0, 1, . . . , n(
)+1. Then the σ-algebra N generated
by ∪∞

�=2N� is the standard Borel σ-algebra of (0, 1). Since N�+1 ⊂ N�, it follows from
Doob’s second martingale theorem ([27], Cor. C.9, [11], Thm. 10.5.7) that

lim
�→∞

‖E(h|N�) − h‖L1(0,1) = 0, (4.9)

where E(h|N�) is conditional expectation with respect to the σ-algebra N�. Now, for
u ∈ W 1,1

0 (0, 1) the function (Tnu)′ is piecewise constant and

(Tn(�)u)′ = E(u′|N�). (4.10)

Formulae (4.9) and (4.10) imply

lim
�→∞

‖Tn(�)f − f‖W 1,1
0 (0,1) = 0. (4.11)

Moreover, we see that ‖Tnf‖W 1,1
0

= ‖(Tnf)′‖L1 ≤ c‖f‖W 1,1
0

.
Second, we apply the properties of operators Tn to approximate functions in

BV0(0, 1). By [36, Thm. 5.2.1] for any u ∈ BV0(0, 1) and any uk −→BV-w* u we have

‖u‖BV ≤ lim inf
k→∞

‖uk‖BV . (4.12)

Let u ∈ BV0(0, 1). By [8, Thm. 2.3], there are Φk ∈ W 1,1(0, 1)∩C∞((0, 1)) such that
Φj converge to u in the weak–∗ topology of BV (0, 1) and

lim
k→∞

‖Φk‖BV = ‖u‖BV . (4.13)

Note that Φj are not assumed to vanish at boundary points. However, since the
trace φ �→ (φ(0), φ(1)) is weakly continuous map BV (0, 1) → R

2 we see that
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φj(s) = Φj(s) − (1 − s)Φj(0) − sΦj(1) ∈ W 1,p
0 (0, 1) converge to u in the weak–∗

topology of BV0(0, 1). Moreover, by (4.13)

lim
j→∞

‖φj‖BV = ‖u‖BV . (4.14)

By (4.11), there are 
j , 
j+1 > 
j such that for any j and 
 ≥ 
j we have

‖Tn(�)φj − φj‖W 1,1
0 (0,1) ≤

1
j
.

This implies that there the sequence Tn(�j)φj converge to u in the weak–∗ topology of
BV and

lim
j→∞

‖Tn(�j)φj‖BV = ‖u‖BV .

In following, we denote unj
= Tnj

φj , nj = n(
j).
Epiconvergence in the case p = 1. Since Ak ∈ L1 and by [5, p. 41], the

embedding BV0 → L∞(0, 1) from the weak–∗ topology of BV to norm topology of
L∞ is continuous, we see that 〈Ak, unj

〉 → 〈Ak, u〉. Thus, for any u ∈ BV0(0, 1) there
are unj

∈ Ynj
such that

S(u) = lim sup
j→∞

Snj
(unj

). (4.15)

Next we note that limk→∞〈Aj , uk〉 → 〈Aj , u〉. Combining this with (4.12) we see
that for any u ∈ BV0(0, 1) and any uk −→BV-w* u we have

S(u) ≤ lim inf
k→∞

Sk(uk). (4.16)

Again, (4.15,4.16) imply that Sn epiconverge to S. Thus by [3], Proposition 2.9,

lim sup
n→∞

argmin(Sn) ⊂ Bε = {u ∈ BV0 : S(u) ≤ s0 + ε} (4.17)

Thus if uk = uMAP
n(k) ∈ argmin(Sn(k)), we see that limk→∞ S(uk) = inf(S). Moreover,

‖uk‖BV are uniformly bounded. The sequence uk has a subsequence that converges
weakly (see [5, p.41]. In more detail, for proof of L1 convergence, see [36, Cor. 5.3.4]
and for the fact that the measures converge weakly, use Riesz representation theory and
Banach-Alaoglu theorem). If ũ is a limit of such a subsequence we have S(ũ) = inf(S).
By (4.16) for any converging subsequence the limit is a minimizer of S. This proves
ii.

Finally, we consider iii. We see that if limn→∞ βn = ∞ then
limn→∞ ‖uMAP

n ‖W 1,p
0

= 0 for 1 < p ≤ 2 and limn→∞ ‖uMAP
n ‖BV = 0 for p = 1 proving

the assertion. Q.E.D.

5. Convergence of the CM estimate

We analyze the convergence of the posterior distribution (2.4) with regularization
parameter αn as the discretization is refined arbitrarily, or n → ∞. In particular, we
are interested in the convergence of the CM estimate

uCM
n (t; p, αn) =

∫
Rn

(
n∑

j=1

sjψ
n
j (t))π(s1, . . . , sn|m̂) ds1 . . . dsn, (5.1)

where π(s1, . . . , sn|m̂) is the conditional probability density function of coefficients of
un in the basis {ψn

j }.
We introduce some definitions and notations.



TV prior in Bayesian inversion 10

Definition 5.1 (Convergence weakly i.d.) Let vn and v be C(0, 1)-valued random
variables. We say that vn converges to v weakly in distribution if 〈A, vn〉 → 〈A, v〉 i.d.
for all A ∈ Z when n → ∞.

Definition 5.2 (Measurement σ-algebras M, Mn) Denote mj = 〈Aj , v〉 + εj

and mn
j = 〈Aj , vn〉 + εj with some Aj ∈ Z for j = 1, . . . , N and independent errors

εj ∼ N(0, 1). Let the σ-algebras M,Mn ⊂ Σ be generated by the sets

{ω ∈ Ω : mj(ω) < λj}, λj ∈ R,

{ω ∈ Ω : mn
j (ω) < λj}, λj ∈ R,

respectively.

Note that the above noise processes εj are the same for mj and mn
j , and for simplicity

we take σ = 1 in this section.
We denote the conditional expectation of v(t) with respect to σ-algebra M by

E(v(t)|M). Recall that E(v(t)|M) = E(v(t)|M)(ω) is the random variable that is
measurable with respect to M and for which∫

S

E(v(t)|M)P (dω) =
∫

S

v(t)P (dω) for all S ∈ M.

Since E(v(t)|M) is a M-measurable random variable, there exists a deterministic
function m̂ �→ Ẽ(v(t)|m̂) so that

E(v(t)|M) = Ẽ(v(t)|m(ω)) a.s.

(see [11], Thm. 4.2.8). We call Ẽ(v(t)|m̂) the conditional mean with measurement
m̂ and occasionally denote it by Ẽ(v(t)|m = m̂). Let B(m̂, r) ⊂ R

N be a ball with
center m̂ and radius r. We can write

Ẽ(v(t)|m̂) = lim
r→0

1
P ({m(ω) ∈ B(m̂, r)})

∫
{m(ω)∈B(m̂,r)}

v(t)P (dω) (5.2)

for a.e. m̂. If a conditional probability density function πv(t)(· |m̂) exists and ε is
normally distributed, the Radon-Nikodym derivative of the density of m with respect
to Lebesgue measure is C∞ smooth and we can write

Ẽ(v(t)|m̂) =
∫

R

sπv(t)(s|m̂) ds.

We define the conditional expectation Ẽ(vn(t)|m̂) similarly.

Theorem 5.1 Let vn and v be random variables taking values in C(0, 1). Assume
that vn → v weakly i.d. when n → ∞ such that for a given t ∈ (0, 1) variables vn(t),
n = 1, 2, . . . are uniformly integrable and v(t, ω), vn(t, ω) ∈ L1(Ω). Then

lim
n→∞ Ẽ(vn(t)|m̂) = Ẽ(v(t)|m̂) for a.e. m̂ ∈ R

N , (5.3)

lim
n→∞ Ẽ(F (vn(t))|m̂) = Ẽ(F (v(t))|m̂) for a.e. m̂ ∈ R

N (5.4)

where F = χ(−∞,λ], λ ∈ R.

Theorem 5.1 is proven later. Formula (5.4) means that the posterior distributions
converge in law.

In particular, we consider the case where vn = un are p-variation random variables
taking values in Yn and v = uB is the Brownian bridge defined below.
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Definition 5.3 (Brownian bridge uB) Define uB as stochastic process uB(t) =
uB(t, ω), t ∈ [0, 1], ω ∈ Ω, having zero expectation and covariance function

E(uB(t1)uB(t2)) = σ2
p|t1|· |1 − t2|, (5.5)

where t1, t2 ∈ [0, 1], t1 ≤ t2 and

σ2
p =

∫
R

x2e−|x|pdx. (5.6)

By Kolmogorov’s theorem and (5.5) we can choose such a version of uB that its
realizations t �→ uB(t, ω) are continuous a.s. Here we say that a random variable
a(t, ω) is version of b(t, ω) if the distributions of (a(t1), . . . , a(t�)) and (b(t1), . . . , b(t�))
in R

� coincide for any t1, . . . , t� ∈ [0, 1] and 
 > 0.

Theorem 5.2 Let 1 ≤ p ≤ 2 and α̃ > 0. Let un, n = 1, 2, . . . be p-variation random
functions in Yn with regularization parameter

αn = α̃(n + 1)1−
p
2 .

Then for any t ∈ [0, 1] the prior distributions converge, i.e.,

lim
n→∞un(t) = uB(t) i.d. (5.7)

Moreover, the posterior distributions converge in distribution:

lim
n→∞ Ẽ(F (un(t))|m̂) = Ẽ(F (uB(t))|m̂) for a.e. m̂ ∈ R

N ,

where F = χ(−∞,λ], λ ∈ R and the CM-estimates converge:

lim
n→∞ Ẽ(un(t)|m̂) = Ẽ(uB(t)|m̂) for a.e. m̂ ∈ R

N .

Further, consider the regularization parameter αn = α̃(n + 1)q. If q > 1 − p
2 then

limn→∞ un(t) = 0. If q < 1− p
2 then the random variables un(t) do not converge even

in distribution.

Theorem 5.2 is proven later.

Remark 5.1 In (5.7) the limit uB(t) is independent of p (up to the scaling factor σp).
Thus the choice p = 1 represents in the limit n → ∞ the same a priori knowledge than
the choice p = 2 (Gaussian smoothness prior). In particular, this implies that the TV
prior distribution is not discretization invariant: since TV prior distributions converge
to a Gaussian distribution and any linear discretizations of Gaussian distributions are
also Gaussian, we see that TV priors are not discretizations of any random variable
in the sense of Definition 3.1.

5.1. Convergence of TV prior distributions

Here we consider random variables un having p-variation distribution in Yn and show
that they converge to the Brownian bridge. This is needed to show that Theorem 5.1
implies Theorem 5.2.

We note that such results are well known in statistical mechanics—indeed, a
non-harmonic random field in a one-dimensional lattice (such as un) is generally
known to converge to a free Gaussian field. For this type of results, see [7, 26].
However, compared to such work, we assume less regularity of the probability density
functions and consider the integrals of these variables. For these reasons we think it
is appropriate to present a full proof.
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Theorem 5.3 Let 1 ≤ p ≤ 2 and α̃ > 0. Let un be a random variable taking
values in Yn and having p-variation distribution with regularization parameter αn =
α̃(n + 1)1−

p
2 . Moreover, let 0 < t1 < t2 < . . . < tQ < 1. Then

(i) We have
lim

n→∞(un(t1), . . . , un(tQ)) = (Ut1 , . . . , UtQ
) i.d.

Here Ut are Gaussian random variables having Gaussian joint distributions with
zero expectation and covariances

E(Utj
Utk

) = σ2
p|tj |· |1 − tk| for tj ≤ tk,

where σp is given by (5.6).
(ii) The variables un(tj), j = 1, . . . , Q, n = 1, 2, . . . , are uniformly integrable.
(iii) Let 0 < s′ < t1 < . . . < tQ ≤ s′′ < 1. Let Aj ∈ Z, j = 1, 2, . . . , N , be measures

supported on [s′, s′′] ⊂ (0, 1) and denote

aj
n(ω) =

∫ s′′

s′
un(t, ω)Aj(dt), aj(ω) =

∫ s′′

s′
uB(t, ω)Aj(dt).

Then aj
n converges to aj i.d. when n → ∞ for j = 1, . . . , N . Also, joint

distributions of aj
n and un(tk) converge i.d. to aj and uB(tk), respectively, for

j = 1, . . . , N and k = 1, . . . , Q. Here uB is the Brownian bridge of Definition 5.3.

Proof. Let (hn
1 , hn

2 , . . . , hn
n+1) be a random vector in R

n+1 with density

π̃n(y1, y2, . . . , yn+1) = c exp
{ − α̃(n + 1)p/2

(|y1|p +
n∑

j=1

|yj+1 − yj |p
)}

. (5.8)

Comparison of (5.8) and (2.2) shows that π̃n(y1, . . . , yn, 0) = cnπp,n(y1, . . . , yn).
Define a piecewise linear function

hn(t) =
n+1∑
j=1

hn
j ψn

j (t), t ∈ [0, 1], (5.9)

where ψn
j ∈ Y n are as in Definition 2.1 for j = 1, . . . , n, and ψn

n+1 is the piecewise
linear function satisfying ψn

n+1(1) = 1 and ψn
n+1(t) ≡ 0 for 0 ≤ t ≤ n/(n + 1).

Consider the convergence of a single variable un(t) for fixed 0 < t < 1. Let

ξn
j = α̃1/p(n + 1)1/2(hn

j − hn
j−1), (5.10)

where hn
0 = 0 and j = 1, . . . , n + 1. Then

hn
j =

1
α̃1/p(n + 1)1/2

j∑
�=1

ξn
� for j = 1, . . . , n + 1. (5.11)

Now ξn
j are identically distributed independent variables with

ξn
j ∼ πξ(t) := cp exp(−|t|p), j = 1, . . . n + 1. (5.12)

Let ξ� ∼ πξ be independent variables for 
 = 1, 2, 3, . . . and define

Sj =
1√
j

j∑
�=1

ξ� for j = 1, 2, 3, . . . .
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Note that Sj does not depend on n. Then hn can be represented as

hn(t) = kn,tSθ(n,t) + rn,tξ
n
θ(n,t)+1, (5.13)

where

kn,t =
θ(n, t)1/2

α̃1/p(n + 1)1/2
, rn,t =

(n + 1)t − θ(n, t)
α̃1/p(n + 1)1/2

,

and θ(n, t) is the largest integer j such that j
n+1 ≤ t.

For clarity, we (somewhat non-standardly) denote the probability density function
of hn(t) at a ∈ R with the condition g = 0 by

π(hn(t) = a | g = 0) := πhn(t)(a | g = 0).

The Lipschitz continuity and positivity of un(t) and hn(t) justify the use of Bayes’
formula for probability density functions, and we get

π(hn(t) = a |hn(1) = 0) =
π(hn(t) = a) π(hn(1) = 0 |hn(t) = a)

π(hn(1) = 0)
. (5.14)

Since hn(1) − hn(t) has the same distribution as hn(1 − t), we see by (5.14) that

π(hn(t) = a |hn(1) = 0) = cn π(hn(t) = a) π(hn(1 − t) = −a). (5.15)

We know that hn(t) converges i.d. to a Gaussian random variable when n → ∞.
Namely, we see from (5.12) and the central limit theorem that limn→∞ hn(t) = h(t),
where h(t) is Brownian motion with E h(t) = 0, E(h(t)− h(s))2 = |t− s|σ2

p and t ≥ s.
This is not quite enough for our purposes and we need to modify the proof of the
central limit theorem.

Denote the characteristic function of ξ1 by ϕ(s) = Eeisξ1 . Fourier transforming
exp(−|t|p) shows that ϕ ∈ C∞(R). Since ϕ′′(0) = −σ2

p by (5.6), there are such σ0 < σp

and ε > 0 that

|ϕ(s)| ≤ exp(−σ2
0s2/2) for |s| < ε.

We write ϕ = ϕ1 + ϕ2 with ϕ1(s) = 0 for |s| ≥ ε and ϕ2(s) = 0 for |s| < ε. Further,
we denote a = sup |ϕ2(s)| < 1.

It is well known that the characteristic function of the random variable Sj is
Ψj(s) = (ϕ(s/

√
j))j . By the central limit theorem,

lim
j→∞

Ψj(s) = exp(−σ2
p |s|2/2) for s ∈ R. (5.16)

As the supports of ϕ1 and ϕ2 are disjoint, we see that

Ψj(s) = Ψ1
j (s) + Ψ2

j (s) = (ϕ1(
s√
j
))j + (ϕ2(

s√
j
))j . (5.17)

Now we see that for any q ≥ 1

‖Ψ2
j‖q

Lq ≤ aq(j−1)

∫
R

|ϕ2(
s√
j
)|qds ≤ caq(j−1)j1/2 → 0. (5.18)

Moreover, we have the following estimate for Ψ1
j :

|Ψ1
j (s)| ≤ (exp(−σ2

0(
s√
j
)2/2))j = exp(−σ0s

2/2). (5.19)

Since exp(−σ0s
2/2) ∈ Lq(R) for any q ≥ 1, we see by (5.16)–(5.19) that

lim
j→∞

‖Ψj − exp(−σ2
p |· |2/2)‖Lq(R) = 0, 1 ≤ q < ∞. (5.20)
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By (5.13), the characteristic function of hn(t) is

Vn(s) = Ψθ(n,t)(kn,ts)·ϕ(rn,ts). (5.21)

Note that

lim
n→∞ ‖ϕ(rn,ts) − 1‖C1(−L,L) = 0 for any L, |ϕ(rn,ts)| ≤ 1. (5.22)

The characteristic function of hn(1 − t), denoted by Gn(s), has a similar expression.
Then by (5.15) the characteristic function of un(t) has the form

Φn(s) = cn (Vn ∗ Gn)(s).

By (5.20)-(5.22) we see that (Vn ∗ Gn)(s) converges for any s ∈ R:

lim
n→∞(Vn ∗ Gn)(s) = (V ∗ G)(s),

V (s) = lim
n→∞Vn(s),

G(s) = lim
n→∞Gn(s).

Since V (s) and G(s) are Gaussian functions, the condition Φn(0) = 1 implies that the
normalization constants cn = π(hn(1) = 0)−1 converge to a positive constant when
n → ∞. Thus, using (5.20) and (5.21) we see that

lim
n→∞Φn(s) = Φ(s; t) := exp(−σ(t)s2/2), (5.23)

1
σ(t)2

=
1

tσ2
p

+
1

(1 − t)σ2
p

.

Since the limit (5.23) exists at every s and the limit function Φ(s; t) is continuous at
s = 0, it follows from Levy’s continuity theorem [11, Thm 9.8.2] that there is such a
random variable Ut that

lim
n→∞ E(hn(t) |hn(1) = 0) = Ut i.d.

and that the characteristic function of Ut is Φ(s; t). Claim 1 is proved for Q = 1.
To prove claim 2 of the theorem we consider L2-bounds. We see that

E(|un|2) =
∫

R

s2π(un = s)ds = −∂2
sΦn(s)|s=0 = −cn(∂sVn) ∗ (∂sGn)(s)|s=0.

In view of the definitions of Vn and Gn, let us consider ∂sΨj :

∂sΨj(s) = ∂s(ϕ(
s√
j
))j = j

1√
j
(∂sϕ)(

s√
j
) (ϕ(

s√
j
))j−1. (5.24)

Fourier transforming exp(−|t|p) shows that ϕ ∈ C∞(R) and that

|ϕ(s)| ≤ c(1 + |s|)−1−p, s ∈ R,

ϕ(s) = 1 − σp

2
s2 + O(s3), s near 0.

Thus |s−1∂sϕ(s)| ≤ c′ for s ∈ R and we get the estimate

|∂sΨj(s)| = | (∂sϕ)(s/
√

j)
s/
√

j
| |s(ϕ(

s√
j
))j−1| ≤ c′|s(ϕ(

s√
j
))j−1|.

Writing ϕ = ϕ1 + ϕ2 as before we see that for 1 ≤ q < ∞

‖s(ϕ2(
s√
j
))j−1‖q

Lq ≤ aq(j−3)

∫
R

sq|ϕ2(
s√
j
)|2qds ≤ c aq(j−3)j(1+q)/2 → 0
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as j → ∞. Moreover, we see that

|s(ϕ1(
s√
j
))j−1| ≤ s(exp(−σ2

0(
s√
j
)2/2))j−1 ≤ s exp(−σ2

0s2/4),

which is an integrable bound. Thus using (5.21) and (5.24) we see that

|Vn(s)| + |∂sVn(s)| ≤ C2s exp(−σ2
0s2/8), |s| < n1/2ε, (5.25)

lim
n→∞

∫
R\[−n1/2ε,n1/2ε]

(|Vn(s)|q + |∂sVn(s)|q)ds = 0, 1 ≤ |q| < ∞.

Thus we have on interval [−n1/2ε, n1/2ε] an uniform integrable bound and in the
complement of this interval we can estimate Lq-norms uniformly.

Using (5.25) we see for Vn(s) and Gn(s) that

|(∂sVn) ∗ (∂sGn)(0)| ≤ ‖∂sVn‖L2 ‖∂sGn‖L2 ≤ C3.

Thus E(|un(t)|2) ≤ C4, and in particular, the family un(t) is uniformly integrable.
It remains to prove claim 1 for Q > 1 and claim 3. We prove them together by

considering the joint distribution of un(tk) and 〈Aj , un〉 for j = 1, . . . , N . For this, we
denote AN+k = δ(t − tk) for k = 1, . . . , Q implying that

un(tk) = 〈AN+k, un〉, j = 1, . . . , Q.

Denote

cj
n� =

∫ 1

0

ψn
� (t)Aj(dt), bj

nk =
n+1∑
�=k

cj
n�, (5.26)

and write using (5.9), (5.11) and (5.26) and changing order of summation

〈Aj , hn〉 =
n+1∑
�=1

hn
� cj

n� =
n+1∑
�=1

( α̃−1/p

(n + 1)1/2

�∑
k=1

ξn
k

)
cj
n� =

α̃−1/p

(n + 1)1/2

n+1∑
k=1

bj
nkξn

k , (5.27)

for j = 1, . . . , N +Q. Now Ynk(ω) := α̃−1/p(n+1)−1/2(bj
nkξn

k (ω))N+Q
j=1 are independent

random vectors in R
N+Q and

(〈Aj , hn〉)N+Q
j=1 =

n+1∑
k=1

Ynk. (5.28)

We prove that (5.28) converges in distribution to a Gaussian variable when n → ∞.
By the Fabian-Hannan version of the Lindenberg central limit theorem [13] it is enough
to show that

lim
n→∞

n+1∑
k=1

E(|β·Ynk|2 1|β·Ynk|>ε) = 0 (5.29)

for arbitrary β ∈ R
N+Q \ 0 and ε > 0. Here 1|β·Ynk|>ε is the indicator function equal

to 1 if |β·Ynk| > ε and zero otherwise.
Let β ∈ R

N+Q \ 0 and ε > 0. Set γnk =
∑N+Q

j=1 βjb
j
nk for k = 1, . . . , n + 1. Note

that |bj
nk| ≤ ‖Aj‖TV and |γnk| ≤ C|β|. Estimate

n+1∑
k=1

E(|β·Ynk|2 1|β·Ynk|>ε) ≤
n+1∑
k=1

E(| α̃
−1/pγnkξk

(n + 1)1/2
|2 1|γnkξk|>ε α̃1/p(n+1)1/2)
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≤ c α̃−2/p

n + 1

n+1∑
k=1

γ2
nk

∫
|γnkx|>ε α̃1/p(n+1)1/2

x2e−|x|p/2 dx

≤ c α̃−2/p

n + 1

n+1∑
k=1

γ2
nk exp(−|γnk|−1ε α̃1/p(n + 1)1/2/3).

Since |γnk|−1 ≥ C−1|β|−1 we see that sum in the limit (5.29) is defined and formula
(5.29) is true. Hence (〈Aj , hn〉)N+Q

j=1 converges in distribution to a Gaussian variable.
The limit is (〈Aj , h〉)N+Q

j=1 , where h(t) is Brownian motion on t ∈ [0, 1], h(0) = 0.
We have proved pointwise convergence; next we consider convergence in Lq. To

simplify notation we replace s′′ by the approximation

sn =
rn

n
, rn = θ(n, s′′) + 1.

The characteristic function of the random variable (ξn
k , b1

nkξn
k , . . . , bN+Q

nk ξn
k ) is

E(exp(i(ξn
k ζ +

N+Q∑
j=1

bj
nkξn

k ηj))) = ϕ(ζ +
N+Q∑
j=1

bj
nkηj).

Thus the characteristic function of (h(sn), 〈A1, hn〉, . . . , 〈AN+Q, hn〉) is

Φn(ζ, η1, . . . , ηN+Q) = E(exp(i(hn(sn)ζ +
N+Q∑
j=1

aj
nηj))) =

rn∏
k=1

ϕ
(ζ +

∑N+Q
j=1 bj

nkηj

α̃1/p(n + 1)1/2

)
,

where we used (5.27) and bj
nk = 0 for k > rn. We have shown that (〈Aj , h〉)N+Q

j=1 )
converges i.d. to a Gaussian variable. Thus there is such a Gaussian function Φ(ζ, η)
that

lim
n→∞Φn(ζ, η) = Φ(ζ, η) (5.30)

for any ζ ∈ R and η = (η1, . . . , ηN+Q) ∈ R
N+Q.

Now, let ε, σ2 and a < 1 be such that
|ϕ(t + s)| ≤ exp(−σ2|t + s|2/2) for |s| < ε, |t| ≤ 2ε,

|ϕ(t + s)| ≤ a for |s| < ε, |t| > 2ε.

Fix η = (η1, . . . , ηN+Q) and set β = supn,k |
∑N+Q

j=1 bj
nkηj |. Take n so large that

|β| α̃−1/p(n + 1)−1/2 < ε. Then

1|ζ|<2ε α̃1/p(n+1)1/2

∣∣∣∣∣
rn∏

k=1

ϕ
(ζ +

∑N+Q
j=1 bj

nkηj

α̃1/p(n + 1)1/2

)∣∣∣∣∣
≤ 1|ζ|<2ε α̃1/p(n+1)1/2 exp

(
− σ2

2

rn∑
k=1

∣∣∣ζ +
∑N+Q

j=1 bj
nkηj

α̃1/p(n + 1)1/2

∣∣∣2) ≤ exp(
σ2

α̃1/p
(β2 − 1

6
|ζ|2))

and ∥∥∥1|ζ|>2ε α̃1/p(n+1)1/2

rn∏
k=1

ϕ
(ζ +

∑N+Q
j=1 bj

nkηj

α̃1/p(n + 1)1/2

)∥∥∥q

Lq

≤ aq(rn−1)

∫
R

∣∣∣ϕ( t +
∑N

j=1 bj
n1η

j

α̃1/p(n + 1)1/2

)∣∣∣qdt

≤ c aq(rn−1)α̃1/p(n + 1)1/2 → 0 as n → ∞.
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This and (5.30) shows that for any fixed η

lim
n→∞ ‖Φn(· , η) − Φ(· , η)‖Lq(R) = 0, 1 ≤ q < ∞. (5.31)

Consider next �an = (〈Aj , un〉)N+Q
j=1 and �b = (b1, . . . , bN+Q) ∈ R

N+Q. Then

Rn(f, b1, . . . , bN+Q) = π(hn(sn) = f, �an = �b |hn(1) = 0)

=
1

π(hn(1) = 0)
π(hn(sn) = f, �an = �b, hn(1) = 0)

= cnπ(hn(1) = 0 |hn(sn) = f, �an = �b)π(hn(sn) = f, �an = �b, )

= cnπ(hn(1) = 0 |hn(sn) = f)π(hn(sn) = f, �an = �b, ).

Here in the last equality we have used the fact that hn
j is Markov sequence for

j = 1, . . . , n and Aj are supported on [s′, s′′] with s′′ < sn, and thus

π(hn(1) = 0 |hn(sn) = f, �an = �b) = π(hn(1) = 0 |hn(sn) = f).

Let us now introduce an auxiliary variable d and a function

R1
n(d, f, b1, . . . , bN+Q) = cnπ(hn(1) = 0 |hn(sn) = f − d)π(hn(sn) = f, �an = �b)

for which Rn(f, b1, . . . , bN+Q) = R1
n(0, f, b1, . . . , bN+Q). Define functions Wn :

R
1+N+Q → R and Kn : R → R by

Wn(f,�b) = π(hn(sn) = f, �an = �b),
Kn(f) = π(hn(1) = 0 |hn(sn) = f) = π(hn(1 − sn) = −f),

and denote their Fourier transforms by Ŵn(ξ, η) and K̂n(ξ). If ζ is the Fourier variable
corresponding to d, the Fourier transform of R1

n(d, f, b1, . . . , bN+Q) is by (5.32)

R̂1
n(ζ, ξ, η1, . . . , ηN+Q) = cnŴn(ζ, η1, . . . , ηN+Q) K̂n(ξ + ζ).

Then the characteristic function of the variable (un(sn),�an) is

Φn(ξ, η1, . . . , ηN+Q) = cn

∫
R

R1
n(ζ, ξ, η1, . . . , ηN+Q)dζ.

Since |Ŵn(ζ, η1, . . . , ηN+Q)| ≤ 1 and K̂n converge to a Gaussian function in L1(R)
by (5.16) and (5.31) we see that

lim
n→∞Φn(ξ, η1, . . . , ηN+Q) = ( lim

n→∞ cn)
∫

R

( lim
n→∞R1

n(ζ, ξ, η1, . . . , ηN+Q))dζ.

Here, R1
n converges to a Gaussian function. Thus the characteristic function Φn(ξ, η)

with fixed ξ and η converges to the Gaussian function Φ(ξ, η), which implies
convergence of joint distributions i.d.. Q.E.D.

5.2. Convergence of posterior distributions

Here we prove Theorems 5.1 and 5.2.
Let vn and v be random variables taking values in C(0, 1) and assume vn → v

weakly i.d. By applying Skorohod’s representation theorem (see e.g. [1]), and
enlarging the probability space Ω if necessary, we have
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Proposition 5.1 Let t ∈ (0, 1) be given. The random variables vn(t, ω), v(t, ω),
an

j = 〈vn, Aj〉, and aj = 〈v,Aj〉, j = 1, . . . , N have such versions ṽn(t, ω), ṽ(t, ω), ãj,
and ãn

j that almost surely

lim
n→∞ ṽn(t) = ṽ(t), lim

n→∞ ãn
j = ãj , j = 1, . . . , N.

Using the versions ãn
j and ãj of 〈Aj , vn〉 and 〈Aj , v〉, respectively, we define random

variables m̃n
j = ãn

j + εj and m̃j = ãj + εj . Here the errors εj ∼ N(0, 1) are the same
independent random variables.

Proof.(Theorem 5.1) Let F be either the identity map F (s) = s or F (s) =
χ(−∞,λ](s) with λ ∈ R. Since the random variables F (ṽn(t)) are uniformly integrable,
converge a.s. (and thus i.p.), and the limiting variable F (ṽ(t)) is in L1(Ω), we have
by Vitali’s convergence theorem, [11, Thm 10.3.6] that

lim
n→∞ ‖F (ṽn(t)) − F (ṽ(t))‖L1(Ω) = 0.

Consider the random variables zn = (ṽn(t), ãn
1 , . . . , ãn

N ) = (z0
n, z′n) ∈ R

N+1 and
z = (ṽ(t), ã1, . . . , ãN ) = (z0, z′) ∈ R

N+1. Assume given a realization m̂ ∈ R
N of the

measurement and denote g(y, m̂) = πε(y′ − m̂), y = (y0, y′) ∈ R
N+1.

For clarity, we start our computations with the case where the laws Pzn
and Pz

of zn and z are absolutely continuous with respect to the Lebesgue measure in R
N+1

and there exist continuous probability density functions πzn
(y) and πz(y).

Note that m̃n has a smooth positive probability density function in R
N given by

π(m̃n = m̂) =
∫

RN+1
πε(y′ − m̂)πzn

(y0, y′)dy =
∫

RN+1
g(y′, m̂)πzn

(y0, y′)dy. (5.32)

A similar formula holds for π(m̃ = m̂) and thus we have

π(m̃n = m̂) = E(g(z′n, m̂)),
π(m̃ = m̂) = E(g(z′, m̂)).

Since g is a bounded continuous function and z′n → zn weakly, we see that

lim
n→∞π(m̃n = m̂) = π(m̃ = m̂). (5.33)

Moreover, πm̃n is a smooth function and we have by Bayes’ formula

π(ṽn(t) = z0|m̃n = m̂) =
1

π(m̃n = m̂)

∫
RN

πzn,m̃(z0, y′, m̂)dy′,

=
1

π(m̃n = m̂)

∫
RN

g(y′, m̂)πzn
(z0, y′)dy′.

By (5.2), Ẽ(F (ṽn(t))|m̃n = m̂) is equal to

lim
r→0

∫
B(m̂,r)

∫
R

F (y0)π(ṽn(t) = y0, m̃n = w) dy0dw∫
B(m̂,r)

π(m̃n = w) dw
(5.34)

and taking integral over R outside the limit and letting r → 0 leads to

Ẽ(F (ṽn(t))|m̃n = m̂) =
∫

R

F (y0)
π(ṽn(t) = y0, m̃n = m̂)

π(m̃n = m̂)
dy0

=
1

π(m̃n = m̂)

∫
RN+1

F (y0)g(y, m̂)πzn
(y0, y′) dy. (5.35)
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Since a similar formula holds for uB(t), we have proven

Ẽ(F (ṽn(t))|m̃n = m̂) =
1

π(m̃n = m̂)
E(F (z0

n)g(z′n, m̂)), (5.36)

Ẽ(F (ṽ(t))|m̃ = m̂) =
1

π(m̃ = m̂)
E(F (z0)g(z′, m̂)).

In the general case, where the laws Pzn
and Pz of zn and z are not absolutely

continuous, we have to replace formula (5.32) by

π(m̃n = m̂) =
∫

RN+1
g(y, m̂)Pzn

(dy). (5.37)

Again, since g is smooth by (5.37), we see that πm̃n is smooth. Also, we can replace
formula (5.34) by

Ẽ(F (ṽn(t))|m̃n = m̂) = lim
r→0

∫
B(m̂,r)

(∫
RN×R

F (y0)πε(y′ − w)Pzn
(dy)

)
dw∫

B(m̂,r)
π(m̃n = w) dw

.

Since π(m̃n = w) is smooth, there is C > 0 such that∣∣∣∣∣
∫

B(m̂,r)
πε(y′ − w)dw∫

B(m̂,r)
π(m̃n = w) dw

∣∣∣∣∣ ≤ C for y′ ∈ R
N .

Thus Fubini’s theorem and Lebesgue’s theorem of dominated convergence gives an
analog of formula (5.35):

Ẽ(F (ṽn(t))|m̃n = m̂) =
1

π(m̃n = m̂)

∫
RN+1

F (y0)g(y′, m̂)Pzn
(dy).

These formulae imply (5.33) and (5.36) also in the general case.
Let H(y) = F (y0)g(y′, m̂). Since F (z0

n) → F (z0) in L1(Ω) and |g| ≤ 1, we have
limn→∞ H(zn) = H(z) in L1(Ω). This and (5.33) imply that

lim
n→∞ Ẽ(F (ṽn(t))|m̃n = m̂) = Ẽ(F (ṽ(t))|m̃ = m̂).

Since the distributions of vn(t) and ṽn(t) as well as those of mn and m̃n coincide,
we have by (5.2)

Ẽ(F (vn(t))|mn = m̂) = Ẽ(F (ṽn(t))|m̃n = m̂).

This proves the assertion. Q.E.D.
Proof. (Theorem 5.2) Let us first consider the case αn = α̃(n + 1)1−p/2. By

Theorem 5.3, un → uB weakly i.d., un(t), t ∈ (0, 1), are uniformly integrable and
uB(t) ∈ L1(Ω). Then (5.3) and (5.4) follow from Theorem 5.1.

When αn = α̃(n+1)q, we see that wn(t) = α̃(n+1)(q−1−p/2)/pũn(t) converges to
the Brownian bridge. Thus ũn(t) converges to zero in L1(Ω) when q < 1− p/2. When
q > 1 − p/2, we see that un(t) cannot converge even i.d. Q.E.D.

6. Computational results

6.1. The model problem

Charge coupled devices (CCD) are commonly used in digital cameras and medical
X-ray imaging devices. CCDs typically consist of a two-dimensional array of pixels
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capable of measuring the amount of visible light illuminating the area of the pixel
over a period of time. We give a rough model for the measurement of the intensity
distribution of light on one row of CCD pixels.

We take the quantity u in (1.1) to be a real-valued function on the unit interval
[0, 1]. Given N > 1, we divide the subinterval [ 1

N+2 , N+1
N+2 ] ⊂ [0, 1] into N pixels

[xN+1
j , xN+1

j+1 ] with xN+1
j = j/(N + 2) for j = 1, . . . , N . The measurement of the jth

pixel is

mj = 〈Aj , u〉 + εj =
∫ xN+1

j+1

xN+1
j

u(t)dt + εj , (6.1)

where Aj = χ(xN+1
j ,xN+1

j+1 ) as shown in Figure 1, and εj are normally distributed random
numbers with standard deviation σ > 0. The numbers εj model measurement errors
resulting from quantum and electronic noise of the CCD.

0 1
1 2 3 N

Figure 1. Idealized one-dimensional model for the measurement. The function
represents a distribution of light on the interval [0, 1]. Pixels are represented by
intervals and measurements are integrals of light intensity over those intervals.
No measurement is made on the leftmost and rightmost interval.

We use the p-variation distribution in Yn with p = 1 or p = 2 for representing a
priori information on u. For convenience, we take the number of pixels to be of the
form N = 2L − 2 with L > 1, and the dimension n = 2� − 1 is chosen to be greater
than the number of measurements: 
 > L. In this case the grid xN+1

1 , . . . , xN+1
N is a

subset of the grid xn
0 , . . . , xn

n+1.

6.2. Computational methods

6.2.1. Computation of MAP estimate with p = 2 Denote U = [un
1 , . . . , un

n]T .
Consider the minimization problem

Ũ = arg min
U∈Rn

(
‖AU − m̂‖2

RN +
2σ2αn

∆xn
‖DU‖2

Rn+1

)
, (6.2)

where ∆xn = (n + 1)−1. The N × n matrix A implements the measurement:

(AU)k = 〈Ak,

n∑
j=1

un
j ψn

j 〉, k = 1, 2, . . . , N, (6.3)

where the roof-top basis functions ψn
j for the space Yn are as in Definition 2.1.

Integration of the piecewise linear functions in (6.3) over the intervals [xN+1
j , xN+1

j+1 ] is
implemented simply and exactly by the classical trapezoidal rule. Thus the jth row
of A takes the form

[0, 0, . . . , 0︸ ︷︷ ︸
j 2�−L−1

,
1
2
∆xn,∆xn,∆xn, . . . ,∆xn︸ ︷︷ ︸

2�−L−1

,
1
2
∆xn, 0, 0, . . . , 0].
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Prior information is coded into D, the (n + 1) × n matrix defined by

(DU)k = un
k − un

k−1, k = 1, . . . , n + 1, un
0 = 0 = un

n+1.

Following Varah [35] we write (6.2) in stacked form[ A
(2σ2αn

∆xn )1/2D
]

U =
[

m̂
0

]
(6.4)

and compute Ũ = [ũn
1 , . . . , ũn

n]T as the least-squares solution of (6.4) using the Moore-
Penrose pseudoinverse. In view of (2.2), (4.1), (4.5) and (6.2) we have

uMAP
n (t; 2, αn) =

n∑
j=1

ũn
j ψn

j (t).

6.2.2. Computation of MAP estimate with TV prior Consider the non-unique
minimization problem

Ũ ∈ arg min
U∈Rn

( 1
2σ2

‖AU − m̂‖2
RN + αn

n+1∑
j=1

|(DU)j |
)
, (6.5)

where the matrices A and D are as in Section 6.2.1. We write DU in the form

V+, V− ∈ R
n+1
+ , V+ − V− = DU, (6.6)

where R+ := {x ∈ R : x ≥ 0}. Now problem (6.5) is equivalent to

Ũ = arg min
( 1

2σ2
‖AU‖2

2 −
1
σ2

m̂TAU + αn1T V+ + αn1T V−
)
, (6.7)

where Ũ = [ŨT Ṽ T
+ Ṽ T

− ]T and 1 = [1, 1, ..., 1]T ∈ R
n+1; the minimum is taken over

U ∈ R
n, V+, V− ∈ R

n+1 satisfying (6.6). The solution of (6.7) with constraints (6.6)
satisfies

(Ṽ+)j = max((DŨ)j , 0), (Ṽ−)j = max((−DŨ)j , 0).

Write now U = [UT V T
+ V T

− ]T and

H =


 1

σ2ATA 0 0
0 0 0
0 0 0


 , f =


 − 1

σ2AT m̂
αn1
αn1


 .

Now problem (6.5) is converted to a standard quadratic minimization problem

Ũ = arg min{1
2
UT HU + fTU} (6.8)

with linear constraints (6.6). We assume that we can find algorithmically an
approximation to one of the possibly many solutions to (6.8) and (6.6). In view
of (2.2), (4.1), (4.5) and (6.5) we define

uMAP
n (t; 1, αn) =

n∑
j=1

ũn
j ψn

j (t).
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6.2.3. Computation of CM estimates Monte Carlo Markov Chain (MCMC) methods
can be used to generate a collection U (1), . . . , U (K) ∈ R

n of samples asymptotically
distributed according to the posterior distribution

π̃(U | m̂) = c̃n,p exp
(
− 1

2σ2
‖AU − m̂‖2

RN − αn

(n + 1)1−p

n+1∑
ν=1

|(DU)ν |p
)
. (6.9)

If K is large, we have∫
Rn

U π̃(U | m̂) dU ≈ 1
K − k0

K∑
k=k0+1

U (k) =: Ũ , (6.10)

where the first k0 > 0 samples have been discarded because MCMC algorithms
typically need such a burn-in period before the samples start to explore the posterior
distribution representatively.

We use the Metropolis-Hastings (MH) algorithm [14, 16]. To implement the
MH algorithm we define the proposal distribution Q(V, ·) on R

n, parameterized by
V ∈ R

n, as follows. Fix 1 ≤ Nupdate ≤ n and κ > 0. Pick randomly Nupdate distinct
numbers from the set 1, 2, . . . , n according to uniform probability distribution. Order
the numbers and denote them by j1, j2, . . . , jNupdate . Then a candidate vector U ∈ R

n

is picked according to Q(V, ·) if U = V + Eκ, where

Eκ = [0, . . . , 0, ε′j1 , 0, . . . , 0, ε′j2 , 0, . . . , 0, ε′Nupdate
, 0, . . . , 0]T

with ε′j�
∼ N(0, κ) independent random numbers. Note that, if πQ(V,U) denotes the

density of Q(V, ·), the transition probabilities are symmetric: πQ(V,U) = πQ(U, V ).
Due to the above symmetry, the MH algorithm takes the simple form

1 Set k := 0 and initialize U (0) by e.g. U (0) := [0, . . . , 0]T .
2 Set U := U (k) + Eκ.
3 If π̃(U | m̂) ≥ π̃(U (k) | m̂) then set U (k+1) = U and go to 5.

4 Draw a random number s from the uniform distribution on [0, 1]. If s ≤ π̃(U | m̂)
π̃(U(k) | m̂)

then set U (k+1) := U ; else set U (k+1) := U (k).
5 If k = K then stop; else set k ← k + 1 and go to 2.

We close this section by defining the acceptance rate of the Markov chain produced
by the MH algorithm (discarding k0 first samples):

r =
number of accepted candidates

K − k0
. (6.11)

6.3. Results

In our numerical examples we take u to be the step function satisfying u(t) = 1
for t ∈ [1/3, 2/3] and u(t) = 0 otherwise. We consider a measurement with
N = 25 − 2 = 30 pixels and random errors εj with standard deviation σ = 0.001.
See Figure 2 for a plot of a realization of the measurement.

We perform all the computations with Matlab 6.5 running in a desktop PC
computer equipped with a 2.8 GHz Intel Pentium 4 processor and 1 GB of RAM.
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0 1/3 2/3 1
0

1

0 1/3 2/3 1
0

0.0313

Figure 2. Left: Simulated intensity distribution u(t). Right: Simulated noisy
measurement m̂. The dots are plotted at center points of pixels.

0 1/3 2/3 1
0

1
α63 = 0.1 α63 = 10 α63 = 1000

t
Figure 3. Gaussian MAP estimates with three different choices of α63. The
function u(t) is plotted with a thin line. Left: too small α63 fails to regularize the
solution. Middle: satisfactory regularized solution. Right: too large regularization
parameter.

6.3.1. The Gaussian case We start by determining a suitable regularization
parameter α63 for MAP estimates with 2-variation prior and fixed discretization level

 = 6, n = 63. See Figure 3 for the least-squares solutions of (6.4) with various
regularization parameters. Based on visual inspection, we choose α63 = 10.

We turn to computing MAP estimates with varying levels of discretization. We
solve (6.4) with n =63, 127, 255, 511, 1023, 2047, 4095, with αn = 10 for all n. The
solutions agree with good precision at the coarsest discretization level:

max
j=1,...,63

{|uMAP
63 (x63

j ; 2, α̃2) − uMAP
n (x63

j ; 2, α̃2)|} ≤ 0.003. (6.12)

The computation takes less than a second for n < 512 and 295 seconds for
n = 4095.

6.3.2. MAP estimates for TV prior We determine a suitable regularization
parameter α63 for MAP estimates with TV prior at fixed discretization level 
 =
6, n = 63 by numerical experimentation. As the result we choose α63 = 135.

We compare two ways of choosing the regularization parameter as function of n,
both satisfying α63 = 135:

(i) αn = 135, (ii) αn = 16.875
√

n + 1. (6.13)

We use MOSEK Optimization Toolbox’s quadprog routine (available from
www.mosek.com) to solve (6.8) with the constraints (6.6) in dimensions n =
255, 1023, 4095. Each computation takes less than 60 seconds of CPU time. See
the left column in Figure 4 for plots of the MAP estimates with choices (i) and (ii).

We note that small changes in parameter values changed the computation
considerably, sometimes even resulting in divergence of the algorithm. We presume
this is due to the non-uniqueness of the solution of the optimization problem. However,
the presented results did not exhibit these problems and we believe them to be
approximations to some functions in the set of solutions to the optimization problem.
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n=63

TV MAP estimates

n=255

n=1023

0 1/3 2/3 1
0

1
n=4095

n=63

TV CM estimates

n=255

n=1023

0 1/3 2/3 1

n=4095

Figure 4. In all the plots in this figure, the coordinate axes limits are the
same to allow easy comparison. Left column: MAP estimates for the TV prior
with regularization parameter αn = 135 (thin line) and αn = 16.875

√
n + 1 (thick

line). Right column: CM estimates for the TV prior with regularization parameter
αn = 135 (thin line) and αn = 16.875

√
n + 1 (thick line).

6.3.3. CM estimates for TV prior We compute CM estimates using the MH
algorithm for n = 63, 255, 1023, 4095. The choices (i) and (ii) of αn given in (6.13) are
compared. Parameters of the MCMC computations are given Table 1; in each case we
take the zero vector as initial guess. See the right column in Figure 4 for plots of the
CM estimates.

We actually use the MH algorithm slightly differently than explained in Section
6.2.3. Denote by r1000 the local acceptance rate of the last 1000 samples. Choosing
too large κ to start with leads to r1000 = 0 and the chain does not move. On the other
hand, choosing a very small κ results in a positive r1000 that, however, keeps growing
until reaching a value close to 1; then the candidates are always accepted and the
chain moves very slowly. To overcome this problem we introduce automatic doubling
of κ whenever r1000 > .35, but then the resulting chain is not Markov. However, after
running for a while, r1000 becomes nearly constant and κ is not changed any more.
An interpretation of our strategy is that we use the κ-doubling scheme to find a good
initial guess for the K − k0 samples in the end of the chain that were drawn with
constant κ. Those K − k0 most recent samples form a Markov chain.
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n αn K − k0 r Nupdate κ Time (hours)

63 135 80 000 000 0.23 10 0.082 3
255 135 80 000 000 0.24 10 0.082 6
255 270 80 000 000 0.24 10 0.041 6

1023 135 80 000 000 0.25 10 0.082 18
1023 540 80 000 000 0.25 10 0.021 16
4095 135 160 000 000 0.24 100 0.024 153
4095 1080 610 000 000 0.23 100 0.004 520

Table 1. Parameters of MCMC computations. The number n is the dimension
of the problem, K − k0 is the number of samples used for computing the CM
estimate, r is the acceptance rate defined in (6.11), Nupdate and κ are parameters
of the proposal distribution and the last column indicates how many CPU hours
the computations took.

6.4. Discussion

We have computed the following statistical estimates for the posterior distribution of
the model problem with varying levels of discretization:

p Estimate αn Limit function

2 MAP 10 ũ( · ; 2, 10)
2 CM 10 ũ( · ; 2, 10)
1 MAP 135 ũ( · ; 1, 135)
1 MAP 16.875

√
n + 1 0

1 CM 135 Does not exist
1 CM 16.875

√
n + 1 Smooth

The column “Limit function” above indicates the expected result of each computation
in light of Theorems 4.1 and 5.2; the function ũ is defined by (4.2). How well do our
computations agree with the theory?

The Gaussian computations in Section 6.3.1 together with the error estimate
(6.12), illustrate the convergence of the Gaussian MAP estimates (and CM estimates
as well, since the two coincide in the Gaussian case).

In case of the TV MAP estimates, the choice (ii) of regularization parameter gives
the zero estimate at the limit n → ∞. This is evident from Figure 4. Choice (i), or
constant αn, should lead to convergence to a limit function ũ( · ; 1, 135). This is clear
from the superposition of those estimates for n = 63, 255, 1023, 4095 shown in Figure
5. It is interesting to note that, in spite of the apparent edge-preserving nature of the
MAP estimates in Figure 5, the limit function ũ( · ; 1, 135) is known to belong to the
Sobolev space W 1

0 (0, 1) and thus be continuous!
The right column in Figure 4 shows the CM estimates for the TV prior. We can

see that the choice (i) of regularization parameter leads to more and more oscillatory,
divergent CM estimates, as expected (although the plot with n = 4095 is not to be
completely trusted due to the possibly insufficient number of samples used). On the
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0 1/3 2/3 1
0

1

CM estimates with choice (ii)

0 1/3 2/3 1
0

1

MAP estimates with choice (i)

Figure 5. Left: superposition of TV MAP estimates with n = 63, 255, 1023, 4095
and choice (i), or αn = 135. Right: superposition of the TV CM estimates with
n = 63, 255, 1023, 4095 and choice (ii), or αn = 16.875

√
n + 1.

other hand, the CM estimates with choice (ii) are supposed to converge to a limit
function. As the superposition in Figure 5 reveals, the CM estimate for n = 4095 is
not of best possible quality. This is due to the very slow convergence of the chain;
the computation took 520 hours. However, in our view the degree of convergence is
enough to conclude that the limit function is not edge-preserving.
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