Inverse problem for a random potential

Matti Lassas* Lassi Paivarinta* Eero Saksman'

21.8.2003

Abstract: We study an inverse problem for the two-dimensional random
Schrédinger equation (A+q+k?)u(x,y, k) = 0. The potential ¢(x) is assumed
to be a Gaussian random function that defines a Markov field. We outline
the proof of the following result: The backscattered field, obtained from a
single realization of the random potential ¢, determines uniquely the principal
symbol of the covariance operator. The analysis is carried out by combining
methods of harmonic and microlocal analysis to stochastic methods.
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1 Introduction

We consider the Schrodinger equation with outgoing radiation condition

(1)

{(A—q+k2)u=(5y, in R?
(3 — ik) u(z) = o(|z[7'7?)

where the potential ¢ is a random function supported in a compact domain
D. The wave u is decomposed to two parts

u = U()(ﬂ?,y, k) + us(x,y, k)’
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where ug(z,y, k) is the scattered field and
_ _ Ly
Uo(-T,y, k) - (I)k(x - y) - ZHO (k".T - y|)

is the incident field corresponding a point source at y. We shall assume
that y € U, where the domain U C R? \ D, called the measurement do-
main, is bounded, convex, and has positive distance to the support of ¢q. As
g = ¢(x,w) is random, also the scattered field is a random variable that we
sometimes emphasize by writing us(z,y, k) = us(z,y, k,w). Here w denotes
an element of the probability space €2. The inverse problem is to determine
the parameter functions describing the random process ¢(z,w), e.g., from the
energy of the scattered wave |u,(x,y, k,wy)|? corresponding to the realization
of the potential g(x,wy).

In applied literature the measured data is often assumed to coincide with
the averaged data like E|uy(z,y, k,w)|?. This corresponds to the case when
the measurements could be done on many independent samples of the scat-
terer and these measurements could be averaged. Often the scatterer does
not change during the time when the measurements are done. This suggests
that one should study the problem how much information of the potential a
realization of the scattered field carries.

A related approach for the scattering from a random media is the study of
the multi-scale asymptotics of the scattered field. In this case the approxima-
tions made can be justified when the frequency k£ and the spatial frequency of
the scatterer have appropriate magnitudes. This type of asymptotic analysis
has been studied by Papanicolaou and others in various cases, see e.g. [14],
[15], [3], [5].

In this paper our purpose is to apply techniques developed in deterministic
inverse problems to stochastic inverse problems. Our approach is completely
rigorous applying no approximations whatsoever. In [12] it is shown that the
mean values (over the frequency k) of the energy |u,(z,y, k,wy)|?, obtained
from a single realization ¢(z,wp) determine almost surely the principal symbol
of the covariance operator of the random function ¢(z,w). We summarize in
this note the basic elements of the proof.

1.1 Set-up of the model for the random potential

Fix a bounded simply connected domain D C R?. We assume that the
potential ¢ is a generalized Gaussian field supported in D. Recall, that this



includes that ¢ is a measurable map from the probability space €2 to the space
of distributions D’'(R?) such that for all ¢ € C$°(R*) the mapping 2 > w
(q(w), ¢) is a Gaussian random variable. We will assume that the probability
measure space (€2, F,P) is complete. Then distribution of ¢ is determined
by the expectation E ¢ and the covariance operator C, : C§°(R?*) — D'(R?)
defined by

<¢1,0q1/’2> =E({(¢—Eq,¢1)(qg — Eq,12)). (2)

Let k4(z,y) be the Schwartz kernel of the covariance operator C,. We call
kq(z,y) the covariance function of ¢. Then, in the sense of generalized func-
tions, (2) reads as

ko(z,y) = E((g(x) — Eq(x))(q(y) — Eq(y))).

In many situations it is natural to assume that the covariance function
kq(z,y) is smooth outside the diagonal (reader can consider as example the
Brownian motion, the Levy-Brownian field in R” [1] or a free Gaussian field
[8]). As this is typical property of Schwartz kernels of pseudodifferential
operators, we introduce the following definition.

Definition 1.1 A generalized Gaussian random field ¢ on R? is said to be
microlocally isotropic (of order 2) in D, if the realizations of ¢ are almost
surely supported on the domain D and its covariance operator C, is a classical
pseudodifferential operator having the principal symbol p(z)|£| 2 where p €
C§°(D) is non-negative.

Important examples of the micro-locally isotropic fields of order two are
considered in subsection 1.3.

We call i the micro-correlation strength of q. In the above case the
covariance function k,(z1,22) is locally integrable for fixed 2z, and has the
asymptotics

kq(z1,22) = —pu(22) log |21 — 22| + f (21, 22)

where f is locally bounded. Hence the function u(z) describes the strength
of the singularity of k, near the diagonal, and determines approximately the
radius of the set {z; : k4(z1,22) > M} with a given large bound M. Thus
micro-correlation strength u(z) is closely related to local correlation length
of the random field.



Definition 1.2 Given w € {2, the measurement is the pointwise limit

. 1 ® o4 2
m(x,y,w) _Iggnooﬁ ) k |u5(x,y,k,w)| dk. (3)
A special case is the backscattering measurement
1 K
m(z,z,w) = Jim /1 K4y (z, 2, b, ) [2dE. ()

The measurement is an average over all frequencies implying that it is
not sensitive to measurement errors. For example, the white noise error in
the measurement, is filtered out with frequency averaging. Moreover, the
measurement uses information only from the amplitude (not the phase) of
the scattered field. It is truly a non-trivial fact that the above definition
gives a well-defined, finite and non-zero quantity. That this is so, is a part
of our main result.

1.2 The result
In [12] it is shown:

Theorem 1.3 Let D C R? be a bounded simply connected domain, U C R? \
D be bounded and convex domain and q be a microlocally isotropic Gaussian
random field of order two in D. Then

(i) For any z,y € U the measurement m(z,y,w) is well-defined (that is,
the limit in (3) exist almost surely).

(ii) There exists a continuous deterministic function mo(x,y) such that for
any z,y € U it holds m(z,y,w) = mo(z,y) almost surely. In particular,
the function mg(x,x) is almost surely determined from the backscatter-
ing data m(z,z,w).

(iii) The backscattering data no(x) := my(z, ), = € U uniquely determines
the micro-correlation strength u(z), z € D. Moreover, there is a linear
operator T such that

T(no) = p € C°(D).

We stress that the above result allows us to determine the principal struc-
ture of the covariance from measurements from a single realization of the
potential only! Property (ii) in Theorem 1.3 is sometimes called statistical
stability, c.f. [5].



1.3 Examples of microlocally isotropic fields

Assume that the potential ¢ is a localization of a generalized Gaussian field,
that is, ¢ = xQ, where x € C{°(D) and @ is a centered (i.e., EQ = 0)
generalized Gaussian field on R%. The reason for introducing the cutoff y is
to avoid the possible effects arising from discontinuity at the boundary 0D.
To get a more concrete structure we will assume further that () has ad-
ditionally a Markov structure. Below we will repeat the definition of such
fields. The basic properties of generalized Markov fields can be found from
[17]. The definition of Markov fields mimics the situation where physical
particles in a lattice have no long-distance interactions, i.e., only neighboring
particles have direct interaction. Assume that S; C D is an open set. We set
Sy =D\S;and S, = {r € D: d(x,0S5;) < ¢}, € >0, a collar neighborhood
of the boundary 0S; in S;. Intuitively the Markov property means that the
influence from the inside to the outside must pass through the collar.

Definition 1.4 A generalized random field Q on R? satisfies the Markov
property if for any S1, Sy and S; as described above, and € > 0 small enough,
the conditional expectations satisfy

E(hoQ(v)[B(S:)) = E(hoQ(v)|B(S: U S1))

for any complex polynomial h and for any test function ¢ € C§°(Ss).

Here B(S;) is the o-algebra generated by the random variables Q(¢), ¢ €
C§°(S;), 7 =1,2, and B(S;) is defined respectively.

The Markov property has dramatic implications to the structure of the
field ) and especially to its covariance operator Cg. Under minor additional
conditions (c.f. [17]), the inverse operator (Cg)™' must be a local operator:
it cannot increase the support of a test function. By a well-known theorem
of J. Peetre [16] (Cg) ' must be a linear partial differential operator. As
Cyq is non-negative operator, (Cg) ' has to be of even order. Let us assume
that (Cg)~' is a non-degenerate elliptic operator of 2nd order, has smooth
coefficients, and its principal part is positive and rotationally symmetric (i.e.
isotropic). This implies that

(Co) = P(, D) = = 3 2 alz) o +b(2)



where a(z) > 0 and b(z) are smooth real functions in R?. Then the field Q
is micro-locally isotropic of order two as C¢ is a pseudodifferential operator
with an isotropic principal symbol. To motivate the assumption that the
order of (Cg)™! is two, let us consider the case where (Cg)~* would be of
fourth order or higher, with smooth coefficients. Then the realizations of ¢
would lie in the Sobolev class Wj(;ifnp(R2) foralls <land 1 <p <oo. In
particular, they would be Hélder continuous. As our aim is to consider non-
smooth potentials, the second order case is most interesting. An important
example of such random fields is obtained by the free Gaussian fields, which
appear in two dimension quantum field theory (c.f. [8]). This correspond to
choices a(z) = 1, b(z) = 0. More complicated examples can be constructed
easily.
Finally, the covariance operator C, of the potential ¢ has the kernel

kq(21, 22) = x(21)kq (21, 22) X (22)-

This implies that ¢ is microlocally isotropic of order two in D and has the
micro-correlation strength function u(z) = x(2)? a(z)™".

2 Outline of the proof of Theorem 1.3

In section we sketch the proofs of the main results, often in quite heuristic
manner. Complete and rigorous proofs are given in [12]. Because of nota-
tional simplicity, in the proof of Theorem 1.3 we will assume that Eq = 0.
This assumption can easily be dispensed with.

2.1 The stochastic potential

By our assumption, the covariance operator of the potential has principal
symbol u(z)|€]72 and thus it’s Schwartz kernel has similar singularity as the
inverse of the weighted Laplace operator. Hence, as we are working in the
plane one can show that

C(z,y) = co(x,y)log|x — y| + bounded terms.

The blow up of the covariance in the diagonal has the slightly unwelcome con-
sequence that the realizations of the potential almost surely are not functions
or even measures. We are thus dealing with honest distributional potentials,
which makes life harder, but also more interesting.



However, the potential ¢ just barely fails to be a function. To see this,
let us denote by Js5 (§ € R) the standard Bessel potential operator defined
by the Fourier transform as J5f := F~'((1 + |£[2)%/2f(€)). The covariance
operator of the field Jsq equals JsC'Js, which turns out to have a uniformly
bounded kernel for any § > 0. For such covariance operators it is known, as
we are dealing with a Gaussian field, that the realizations lie in Lj . almost
surely. This yields for g the following result.

Theorem 2.1 Almost surely g € W 5P (D) for alle >0 and 1 < p < oc.

comp

This fact is crucial for the success of the subsequent analysis of our problem.

2.2 Existence and uniqueness for solutions of the scat-
tering problem

To study the stochastic scattering problem we immediately face the follow-
ing problem: how to get the existence and properties of the solution for the
Schrodinger equation with a distributional potential. It turns out that this
can be accomplished for a deterministic non-smooth potential ¢ € W, “*(D),
assuming that ¢ is small enough, and the obtained results are of indepen-
dent interest. Here, W*P(R") is the Sobolev space of functions f with
(1 — A)*2f € LP. The space W*?(D) is the space of restrictions f|p of
f e WsP(R") and W, “"(D) is the closure of C§°(D) in W*P(R").

The direct scattering theory from a potential that is in weighted L? spaces
is classical (c.f. [2],[4]). For the LP scattering theory the key tool is the
unique continuation of the solution. Jerison and Kenig showed in [10] that
the strong unique continuation principle for LP-potentials in R™ holds for
p > n/2 and fails for p < n/2 in dimensions n > 2. In dimension two the
unique continuation holds in a space of functions that is close to L' [10].
Below in Lemma 2.3 we state a positive result for negative index Sobolev
spaces.

The (deterministic) scattering problem we are considering in this subsec-
tion is

(A —qo + k2)u = (Sy (5)
(£ —ik) u(z) = o(|z|71/?)

where the potential gy € Wo—e,p’(D), plt+()t=11<p<2 Wecan



show that the problem (5) is equivalent to the Lippmann-Schwinger equation

@) = uo(o) - [ (o~ pan()u(r)dy. (©

Dealing with this equation, the first task is to understand the product gyu
in both of the above equations. For that end we seek u from the space
W P(R?). This is taken care by the following result

loc

Lemma 2.2 Let 1 < p < oo and € = €(p) > 0 be small enough. Assume
that u € WE2P(R™) and gy € Wy P (D). Then the product qou is well-defined

loc

as an element of Wy “P(D), where p = % and

| |Q()U| |W0_€”7(D) < C| |QO| |W0_€’I’I(D) | |’LL| |W€’2p(D) : (7)

The proof of the lemma is essentially a duality argument combined with the
known pointwise multiplication results for Sobolev spaces W*P, that in turn
are proven by paraproduct techniques, see e.g. [18].

In order to show that (6) has a unique solution u € W P(R?) we need
some kind of the unique continuation principle of solutions. For completeness
we formulate the corresponding lemma in dimension n. Roughly speaking, it
says that if u is a compactly supported solution of the Schrédinger equation
with go € Wy, “"(D), r > n/2 and € is small then u must vanish identically.
It appears to the authors that this result could also be obtained as a special
case of D. Tataru’s and H. Koch’s recent unique continuation results based
on LP Carleman estimates [11]. However, [12] contains a a direct and simple
proof.

Lemma 2.3 (Unique continuation principle into an interior domain)

Assume that p' € (n/2,00), together with 0 < ¢ < 3(2 — I%) Let gy €

W(;,f;g (R™). Ifu € W2 (R?) is compactly supported and satisfies the Schrid-
mnger equation

(A—go+k)u=0
in the weak sense, then u = 0 identically.

The proof of this result applies estimates for the Faddeev Green’s function in
negative index Sobolev spaces. The unique continuation principle enables one
to modify slightly the classical proof (see e.g. [6, Chapter 8]) of uniqueness
and existence of solutions to the Lippmann-Schwinger equation.



Theorem 2.4 For qo € W_52 (R"), with n > 2, p' € (n/2,00), and 0 <

comp
€ < %(% — I%), the scattering problem (5) is equivalent to the Lippmann-

Schwinger-equation (6) and has a unique solution u € Wlf;fp (R™).

2.3 Ergodicity of the first term of the Born series

By iterating the Lippmann-Schwinger equation, one can formally represent
the scattered field u, = u — ug as the Born series,

us(x,y, k) = ui(x,y, k) + ug(z,y, k) + ... (8)

where ug(z,y,k) = ®(z — y) is the incident field and u,1 = (A + k? +
i0)"*(quy). The operator (A + k? +10) ! has the kernel ®(z —y). The main
part of our work consists of analyzing the effect of different terms in this
development.

In this subsection we analyze stochastic behaviour of the first term

wi(z,y, k) = /D By (z — 2)a(2)Be(z — y) dz, (9)

and calculate its contribution to the measurement. As rigorous considerations
are quite technical, we give here a very heuristic explanation.

The first step is to replace the Hankel functions ®; by their leading order
asymptotics for large argument values:

eik|w|

Vla|

We show that substituting the leading order term to u; yields the leading
order in (9). One should recall here that z,y € U and z € D where there is
a positive distance between the domains D and U. The result reads as

Op(z) ~c as k|z| — oc.

C eik(‘wfz|+‘zfy‘) z
ul(xayak)NE Q( )

dz ask — oo. (10)
[z —yllz -

Here the integration is understood in the sense of distributions. Moreover,
the above asymptotics is true only in the mean sense as we are dealing with
a stochastic quantity.

Recall that the measurement involves the limit of 2 [* |u(z,y, k)|*kdk
as K — oo and we want to show that this limit exists almost surely, not just



in the mean sense. In order to understand the behaviour of this limit we
need to understand better the stochastic process k*u;(x,y, k). We restrict
ourselves to the case of backscattering, i.e., z = y. Thus for fixed x € U

Kuy(z, 2, k) = cX (k) +0o(1), ask — o0

where

X (k) = k/ Mdzz. (11)

|z = 2|

Denote by F the one dimensional Fourier transform. Then

X(k) = k/ e?®tq(t) dt = k Fq(2k), where g(t) = 1/ q(2)d|z|]. (12)
R 3 |z—z|=t
In order to understand just the basic stochastic nature of the process ¢
we approximate circles |z — x| = ¢ by lines. This corresponds to the case
where the center of the circle z is very far from D where ¢ is supported.
Thus, instead of ¢ and X (k) we consider integrals Q(¢) over lines (omitting
the factor 1) and corresponding approximation X5(k),

() = / ot 22)dzs,  Xg(k) = KFQ(2k).

To simplify these motivating calculations, we consider the case D = [0, 7]?
and

Cy(z,y) =log(1/|z —y|) for z,y € [0, 7],
which again is a crude approximation: Keep in mind that in the final anal-

ysis we are, of course, interested in exact quantitative estimates and the
dependence of X (k) on p and on the point z.

In the above approximation the covariance of @ is now obtained by inte-
grating Cy(x,y) in the variables z, and y,. Let us write

1 X m
Calti,t2) = —5/ / log((t1 — t2)? + (x2 — y2)*) dwady».
0 0

A computation shows that the C (t1,1t2) is again smooth outside the diagonal
where the singularity has the form

Ca(t1,t2) = colt1 — t2| + smoother terms.

10



But this is a reminiscent of the one dimensional Green’s function of the
Laplace operator, which has the same leading singularity. This observa-
tion gives rise to our next approximation: we shall assume for a while that
Cg(t1,t2) is the Dirichlet-Green’s function of the operator (d/dt)? on the in-
terval [0, 7]. In this case the eigenfunctions of Cg can be explicitly written
down

[N)

o
1
gt t2) = = Z ]—2 n(jty) sin(jts). (13)
j=1

>1

One may now directly check that the representation

= \/%Z%sin(jt), (14)

where the Y; ~ N(0,1) are independent normalized Gaussian random vari-
ables, leads to (13). As we are interested in the quantity X5(k) = kFQ(2k),
one is tempted to guess that (at least for integer values of k) the major
contribution to the Fourier transform comes from the k:th term, that is

Xg(k) =Yy + terms with minor influence.

Especially, we expect that the covariance of the Gaussian, zero-mean random
variable X (k) does not depend very much on £ and that (as Yj:s are inde-
pendent), X5(k1) and Xg5(k2) should show up some amount of independence
for large |k1 — k2|. In more exact terms we prove that the random variables
Xg(k1) and X5(ko) are asymptotically independent as |ki — ka| — oo,

The previous discussion demonstrated what kind of behaviour one can
expect for X (k). In order to describe a somewhat more rigorous treatment
of X (k) it is advantageous to observe that the kernel of the covariance of the
Fourier-transform is simply obtained by taking the two-dimensional Fourier-
transform C of the covariance C5 (tl, to) and observing that

E (Xg(k1)X5(k2)) = kikasCp(2k1, —2k») (15)

Recall that in our approximation Cé corresponds to a Green’s function of
the Laplace operator. If it were the fundamental solution in the whole line,
the Fourier transform would satisfy C@(fl, &) ~ & — &]7%00(&1 + &), with
a suitable interpretation for the singularity. As we are actually dealing with

11



compactly supported covariances, a better approximation is obtained by con-
volving the above with a smooth function so that

C5(61,&) ~ (& + &),

1
1 ¥
L+ |6 — &
where 1 is a rapidly decreasing Schwartz function. Hence

- 1

E (Xg(h) Xg(Ra) ~ bikoy 5tk — ko) (16)

This approximative formula yields immediately that E|X5(k)* ~ ¢ as
k — oo, where ¢; € (0,00) is a constant independent of k. Here we use
the fact that for two random variables from the same Gaussian field the in-
dependence is directly measured by the mutual covariance. Since v is rapidly
decreasing the formula (16) yields that Xg5(k1) and X5(k2) are asymptoti-
cally independent as |k; — ka| — o0.

In [12] we give rigorous proof for the above approximative and partly
heuristic argument. Moreover, we show that at the limit k¥ — co there exists
a linear dependency between the covariance on z and the function y. More
exactly, we prove

Proposition 2.5 For anyn > 1, |ki],|ks| > 1, and z,y € U it holds that

| (us (2, y, k1) (2,9, ko) | < Cu(1+ [ka| + [ko) *(1+ [k1 — ko)™, n>0
(17)
for any n > 1, |k, |k2| > 1, and z,y € U. Moreover, for x = y there is the
asymptotics
1
HmEHM@J$W=—/ mz) g, (18)
R?

k=00 2 |z —z|?2

In the backscattering case x = y the proof of the above proposition can be
based on the above heuristic argument. Of course one cannot anymore ap-
proximate circles by lines, and the weight factor must be kept in the formulas,
which makes the argument fairly technical. This approach has the advan-
tage that one can somewhat dispense with the smoothness assumptions on
the function p. However, this approach can not easily be extended to the
case T # y.

12



In [12] we adopted another approach which uses pseudodifferential calcu-
lus. Namely, after the legitimate approximation (10) one is lead to consider
oscillatory integrals with certain type of phase functions:

E (u1(z, vy, k1)m) ~

C eXp(ik1¢(21,:L',y) - ikgd)(Zg,l‘,y)) Cq(Zl,Zz)
T dz1dzs.
Fiky e

o= 213z — yl2 |z — 2|7 ]2 — y|?

Above ¢(z,z,y) = | — 2|+ |z —y|. As C, is the kernel of a pseudodifferential
operator of order —2, it turns out that one may apply calculus of conormal
distributions (see e.g. [9, Chapter 18.2]). Especially, in proper coordinates
above integral can be viewed as Fourier transform of kernels of suitable pseu-
dodifferential operators.

The above proposition is the key that enables us to determine exactly
the contribution of the first Born term to the measurement. Recall from
basic probability theory the famous law of large numbers: It states that for
integrable, independent, and identically distributed random variables Xy,
k=1,...,it holds that lim, ,.(1/n) >",_, X) = E X, almost surely. In our
case Xy = k*|u(z, z, k)|%, the summation is replaced by integration, and the
random variables are only asymptotically independent. Still the ergodicity
takes place and one obtains from the classical Cramer-Leadbetter theorem
([7]) the following result.

Theorem 2.6 Let Xy, t > 0 be a real valued stochastic process with continu-
ous paths. Assume that for some positive constants Fy,c,e > 0 the condition

B (Xi — Eo)(Xir — Eo)| < c(L+7)77,
holds for all t,r > 0. Then almost surely

1 [k
—/ Xydt - Ey as K — oo.
K Ji

We obtain as an almost immediate corollary of Proposition 2.5 and Theorem
2.6 the following result

Proposition 2.7 For any z,y € U the finite limit
N S A 2
lim 1 k*ui(z,y, k,w)|* dk
1

13



ezrists almost surely, and is deterministic, i.e. it depends only on z,y € U.
Moreover, in the case y = x we have almost surely that

I 1
lim 71/ k*ui(z, 2, k,w)|* dk = —/ Hz) dz
1 R

K—oo K — 2 2|Z—:L‘|2 ’

2.4 Higher order terms in the Born series

After Proposition 2.7 we need to show that only the first term finally con-
tributes to the outcome of the measurement. Let us write

Us = U — Uy = U1 + Us + UR

so that ug contain higher order terms in the Born series. For the remainder
term we may apply the following deterministic result:

Proposition 2.8 There are g > 0 and py > 1 such that if g0 € W§*(D)
with p > po, s > —¢o, then for k > ko = ko(qo) the Born series (8) converges
for any x,y € U to the solution u(zx,y, k). Moreover, for any § > 0 there is
C = C(qo,0) such that

sup |ug(z,y, k)| < Ck™3**  for k> k.
z,yclU

The proof of this result applies the pointwise multiplier results for Sobolev
spaces and norm estimates for the operator with kernel ®x(x — y), used
already in Section 2.2. For scattering from our stochastic potential ¢ =
¢(z,w) we obtain by the above proposition for any z,y € U that

ug(r,y, k,w) =o0(k?) as k— oo (19)

almost surely. Thus the remainder term plays no role in the measurement.

Our final task is to consider the second term wuy(z,y, k,w) of the Born
series. Unfortunately one cannot apply the same approach as with the re-
mainder term ugp or as with the first term w;, and the estimates for u; as
k — oo are most difficult in case of j = 2. Here we are dealing with the
integral

us(z,y, k,w) = / / Op(z — 21)q(2z1,w)Pp(21 — 22)q(22, W) Px (22 — y) dz1d 2.
pJp

14



As a stochastic variable, uy is no more Gaussian since it is bilinear in ¢(z;, w)
and ¢(z9,w). In fact, the random variable uy belongs to the union of the first
and second order Wiener chaos decomposition (see e.g. [13]). To analyze
(20), the domain D x D can be foliated to surfaces I'; = {(21,22) € D X D :
A(z1,29) = t} where A(z1,20) = |21 + |21 — 22| + |22 — y|- After certain
nontrivial approximations and a Fourier analysis argument one can reduce
estimation of (20) to the problem of finding estimates for the covariances of
the integrals

S(t) = /F q(21)q(2) (|21 — 22|21 |22 — y]) 7P|V A(a1, 22)| 7 dH? (21, 22)

where dH? is the 3-Hausdorff measure. By this manner one obtains the
following result:

Proposition 2.9 For all z,y € U it holds almost surely that

: 1 K 2 2
Igl_f)nooﬁ/l |k ua(z, y, k, w)|*dk = 0.

2.5 Conclusion: a problem of integral geometry

Let us collect together results that we have obtained so far. A simple ap-
plication of Cauchy-Schwartz inequality together with Propositions 2.7, 2.8,
and 2.9 yields that almost surely the measurement is well-defined, and for
any x € U the equality

1 K 1
I;i_rgoﬁ/l kg (z, 7, k, w) |2 dk = no(z) = 5/@ ‘Z"‘_(Z;Z dz  (20)
holds almost surely. This yields the first part of Theorem 1.3.

We still have to show that the integrals on the right hand side of (20)
uniquely determine the coefficient p(z). The function ng(x) is defined in the
open set U that has a positive distance to the compact support of the function
u. By repeated differentiation of ng(z) with respect to x we see that ng(z)
also determines the integrals of yu(z) against the powers |z — z|™2", n > 1.
A density argument yields that we may thus determine integrals of p over
all circles having center in U. Hence we are reduced to a classical problem
of integral geometry. This Radon type problem is well known to have a

unique solution and hence p is uniquely determined. This finishes the proof
of Theorem 1.3. [
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