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Hyperbolic inverse problem with data on a part of the
boundary

Yaroslav V. Kurylev and Matti Lassas

ABSTRACT. We consider an inverse problem for a second order hyperbolic
initial boundary value problem on a compact Riemannian manifold M with
boundary. Let I' C OM be an open set. Assume that we know the Cauchy
data on I" x R4 of the solutions to the wave equations which vanish at ¢t =0
and have Dirichlet data supported on I' X Ry . We show that under some
geometric assumptions it is possible to determine manifold M and the wave
operator to within the group of the generalized gauge transformations.

1. Introduction and main ideas.

In the paper we study an inverse problem for the hyperbolic initial boundary
value problem

(1.1) ug + bug +a(z, D)y = 0in M xRy,
ulomxr, = f; ult=0 = utli=0 =0
on a compact connected C*°-Riemannian manifold M, dim M =m > 1, with metric

g= (gjl)gn,l:1 and non-empty boundary M. The operator a(z, D) is a first order
perturbation of the Laplace-Beltrami operator —Ag,

(1.2) a(z,D) = —-Ay+ P +q.

Here b is a smooth complex-valued function on M, P is a complex-values smooth
vector field, P = p'8; and ¢ is a smooth complex-valued function on M.

The symbol a(z, D) is, in general, not formally symmetric. We note that in
local coordinates a(z, D) can be also written in another familiar form

(1.3) a(z,D) = —971/2(81' +13j)91/29jk(@k +P)+§

where g = det(g;;), the covector field Pj and scalar function § represent the mag-
netic potential and the potential, correspondingly. It can easily be seen that by
an appropriate choice of the metric g any second-order elliptic partial differential
operator having real valued coefficients in principal part can be written in form
(1.2) or (1.3).
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We denote by H?(A) the Sobolev space of functions on A and by H§(B), B C A
we denote the space of functions u € H®(A) for which supp (u) C B. For x € 0M,
v = v, stands for the normal unit vector to M in metric g at point z. By [12] the
following mapping is well defined:

DEFINITION 1.1. We define the response operator
R:H)(T x Ry) » L, (T X Ky
by
R(f) = auuf|8M><]R+a

where uf is the solution of the problem (1.1).

We will consider T' as a Riemannian manifold (T, gr) where gr is the metric
inherited from (M, g). In this paper we consider the following question:

Problem 1 Do (T, gr) and R determine (M, a(z, D), b) uniquely?

In the following we call the triple {T', gr, R} the dynamical boundary data and
abbreviate it by DBD.

In the paper we give a solution to this problem assuming that, in the general
case, the Riemannian manifold (M, g) satisfies some geometric conditions.

Our method of the reconstruction of the unknown Riemannian manifold is
based on two main ideas. The first idea is the use of the Holmgren-John unique
continuation theorem to obtain controllability results. The second idea is the use of
boundary quasinorms. The existence of such quasinorms is, in general, not known.
In the paper, we will present two important cases when such quasinorms exists.
First we define these quasinorms.

DEFINITION 1.2. A function (f,t) — Q(f) is a boundary quasinorm, if there
are functions ¢; () and c2(t) and and time t, > 0 such that for any f € HJ (' x Ry)
and t > t,

(14) e ®Q(f) <l ¢ )l an + 116l Co B2y < c2(HDQu(F)-

Before proving the existence of boundary quasinorms for some special cases
we formulate a geometric condition (for details see [1]) which generalizes the con-
dition that the geodesics on (M, g) and their reflections from the boundary hit T’
transversally during time [0, ¢.].

DEFINITION 1.3. (M, g,T") satisfies the Bardos-Lebeau-Rauch condition with
time t, if there is ¢, > 0 and an open conic neighborhood O of the set of the not-
nondiffractive points (z,t,§,w) € T*(M x [0,t.]), = € I" such that any generalized
bicharacteristic of the wave operator 87 — A, passes through a point of (z,t,£,w) €
T*(M x [0,t]) \ O, =z € OM.

LEMMA 1.4. Let the system (1.1) satisfy one of the following conditions:

i. System (1.1) is selfadjoint. This means that b = 0 and that a(z,D) is
selfadjoint operator.
ii. The triple (M, g,T) satisfies Bardos-Lebeau-Rauch condition at time t,.

Then this system possess a boundary quasinorm @ with t. = 0 in the case i.
and t, = t, in the case 7.
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In the following we call a system (1.1) satisfying condition i. a self-adjoint
system. Particularly, in this case 15]- is purely imaginary and ¢ is real.

Before stating our main results we would like to make some general comments.
It is well-known that a boundary inverse problem for an operator (1.1) does not
have a unique solution. Indeed, by replacing a(z, D) by ax(z, D)

(1.5) ax(z, D) = ka(x, D)k *,

where klp = 1, K # 0 on M we do not change R. Thus the best we can hope
to recover is the equivalence class of a(z, D) with respect to the generalized gauge
transformations, namely the set

[a(z,D)] := {ka(z,D)x ' : k€ C®(M;C), klr =1, k #0on M}.

This set forms an orbit of the group G of the generalized gauge transformations
which acts on the space of elliptic operator s on M. The above observations lead
to the following reformulation of Problem 1:

Problem 1’ Do (T, gr) and R determine (M,g) and the equivalence class
[a(z, D)] uniquely?

The above hyperbolic inverse problem and its analogs were considered in several
papers. The case of the Euclidean metric g/ = §/! and M = R™ was considered in
[16]. The corresponding inverse boundary spectral problem in a domain M C R™
and I' = OM was studied in [13]. An analogous problem with data measured on a
part of the boundary and g% = 6 was considered in [6].

In [15] the uniqueness of the reconstruction of a(x, D) with conformally Eu-
clidean metric and lower order terms (with some restrictions upon these terms) was
proven for geodesically regular domains M C R™.

In the anisotropic case the main results were obtained for the spectral analog of
Problem 1’. The inverse boundary spectral problem for a self-adjoint a(x, D) was
considered in [7], [8], and for the non-self-adjoint a(z, D) with, however, b = 0, in
[9]. A particular case of the hyperbolic inverse problem with b = 0, a(z, D) = —A,
and I' = OM was considered in [3]. The present work is based on paper [10]
of the authors where an analogous problem was studied for the Gel’fand inverse
boundary spectral problem and the paper [11] where the data was given on the
whole boundary.

The main tool in this paper is the BC-method (see e.g. [2], [4] and [7]-[11] for
its generalizations for systems of form (1.1), (1.2)). Particularly, we use here the ge-
ometrical formulation of the Boundary Control method [8] and exact controllability
results [1].

The main result of the paper is the following:

THEOREM 1.5. Assume that there is a boundary quasinorm Q¢ for equation
(1.1). Let (T, gr) and the operator R be given. Then these data determine (M, g),
b, and the equivalence class [a(x, D)] uniquely.

Combining this theorem with Lemma 1.4 we obtain

THEOREM 1.6. Assume that either the system (1.1) is selfadjoint or the Bardos-
Lebeau-Rauch condition is valid. Then (T, gr) and the operator R determine (M, g),
b, and the equivalence class [a(x, D)] uniquely.

At the end of this section, we explain what we mean by the reconstruction
of a Riemannian manifold (M,g). Since a manifold is an ’abstract’ collection of
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coordinate patches we construct a representative of an equivalence class of the
isometric Riemannian manifolds or a metric space D which is isometric to (M, g).
After constructing D one can take any coordinate patch and construct the vector
field P and the potential ¢ in local coordinates.

2. Bilinear products.

Let us define an operator R which corresponds to the measurements on a
finite time interval [0, T]. Precisely, let RT : H3(T x [0,T]) — L?(T x [0,T]) be the
operator

R™(f) = 0,uf |amxpo, 17>

where u/ is the solution of the problem (1.1).
We also consider the adjoint system for (1.1). Let v?(x,t) be the solution of
the adjoint initial-boundary value problem,

(2.1) vl +bv! +a*(z,D)v! = 0in M x Ry,
vomxry =95 Vo = vfl=0=0

where a*(z, D) is the formal adjoint of a(z, D). We denote

! g 1 2 1
Fron _ (U (z,t) g _ [(VI(x,1) u') _ (u'+bu
Ui(t) = (u{(x,t) , V() = vf (x,t) )’ T u2) = ut
and the inner product in L2(M)2 by (-, - )z2. The corresponding distribution duality

is denoted similarly.
For the adjoint equation we define the response operator R, : Hi(I' x Ry) —

L120c(F X R+)7
R* (9) = 61/U + E’U|FXR+7

where P, is the normal part of the vector field P.
LEMMA 2.1. The response operator R, is determined by R.

PROOF. It is enough to show that the response operator RT on a finite time
interval determines the corresponding operator R for the adjoint operator.

Let (Y!)f(s) = f(t — s) be the reflection in time and e be the solution of the
backward wave equation

e —be+a*(z,D)e = 0in M x[0,T],
6|8M><[0,T] = h €|t:T = etlt:T =0.

Part integration together with initial and final conditions yield that

T
0= / / ((u,{t +bu! + a(z, D)u’ e — uf (ey — bey + a*(x, D)e))dm,dt
0o Jm

T to
=/ / (Bu’ e — u/ B*e) dS,dt =/ / (R"fh — f B*e) dS,dt
0 oM 0 oM

where we use the notation B*e = d,e + P,e|r and m, is the measure on (M, g).
Since f is arbitrary and R f is known we can determine B*e|srrx[o,r] = RTh for
arbitrary h € H3(OM x [0,T]) which determines RT = YT (RT)*yT. O
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Next we introduce a bilinear product of waves U/ (t) and V9(s),
(JUL(6),V9(s))12 = / [(uf +buf) (@, t)v9(x, 5) + (2, t)0d (, 5)]dmy ().
M

The importance of this product is based upon the following lemma.

LeMMA 2.2. Let R be known. Then it is possible to evaluate the bilinear product
(JUZ(t),VI(s)) for any f,g € HY(T x Ry) and t,s > 0.

Proor. By part integration
(0 = 0,) (JUL (1), V¥(s))

(2.2) = /M[(U{t(t) + buf (£)) 09 (5) = u? (8) (vds(5) + bvd ()] dmy ()

= [ IR'50356) - FO RG] dS,.
oM
As R and R, are known, all the functions in the last integral are known. Hence (2.2)
is a differential equation along the characteristic ¢ + s = constant. Furthermore,
(JU(0),V(5)) 12 = (JU (1), V?(0)) 1, = 0

due to initial conditions (1.1), (2.1).
Equations (2.2) together with the above initial condition indicates the possi-
bility to find the bilinear product (J U/ (t),V9(s))y:. O

We apply the previous lemma, particularly for ¢ = s.

3. Controllability results.

As it was mentioned in Introduction, the reconstruction of the manifold is based
upon two main ideas, the controllability results and the possibility to find the bilin-
ear products of the waves via dynamical boundary data. In its turn, controllability
takes place for sufficiently large times determined by the critical time 7,

(3.1) T = max (te, 2max d(z,I)),

where d is the distance function on (M, g). Precisely, the following the controlla-
bility result is valid.

THEOREM 3.1. Let tg, t1, and T satisfy the condition
(3.2) to>0, ti>to+71, T >ts.

Then the set
{UN(T): feH(T x [to, t])}
is dense in HY (M) x L*(M).

PROOF. Since t; — tg > T, the assertion follows from Tataru’s Holmgren-John
theorem in the same way as in [11]. O

Next we prove Lemma 1.4.
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PROOF. In the case i. the proof given below is analogous to the proof given in
[11], Theorem 1.1. Note that in the casei. the covector field P; is purely imaginary.
It is enough to consider smooth f:s. Let H be the energy function,

Hwl,t) = / [97* (85u” (8) + Pyu! (1)) (B! (8) + Prud (1))
M

+uf (t)uf (t) + quf (t)u? (£)]my ().
Integrating by parts as in [11] we see that

QH (!, 1) = / i (OFT@ + RE () FD)dSs.

oM

Since H(uf,0) = 0 the knowledge of R and R, makes possible to find H(u/,t) for
any t > 0. Consider now N (uf,t,s),t,s >0,

N t,5) = / of (a7 (3)dm, (x).
M

Then using equation and boundary conditions (1.1) we have that

(3.3) Nut = Nug = /8 [RIOFG) — SOR-FAS..

Since Nl|i=o = N¢|t=0 = N|s=0 = Ns|s=0 = 0 due to the initial conditions (1.1)
the knowledge of R and R, makes possible to find N(uf,t,s) for any t,s > 0. In
particular, taking t = s we see that R determines ||u’(t)|| r2(um) for any t. Since the

quasinorm Q¢(f),

Qu(f) = H(w!,t) + CN(u, ,1),

where C > 0 is sufficiently large, satisfies relations (1.4), Lemma 1.4 for the case i.
is proven with ¢, = 0.

For the non-selfadjoint case ii. we first find the set It of the boundary sources
f € HY(T x [0,t]) for which Uf(t) = 0, t > t.. Indeed, by Theorem 3.1 and its
analog for V9(T) such sources f are determined by the condition

(JUL (), V"(#))r2 =0

for all h € H}(T'x[0,t]). Now by [1] the Bardos-Lebeau-Rauch condition yields that
the mapping f — U/(T) is an isomorphism from Hg (T x [0,%])/Ir onto Hg (M) x
L?(M). Thus we can define

Qr(f) = hlgfr I1f = P/l a2 x o) -

4. Constructions in collar neighborhood of T

In order to reconstruct a collar neighborhood of T" we start with a proper set
of admissible sequences of boundary sources. In the following, let T' > t; + 7. Let

F=AU)Er s £ € CF @ x tota), lim E(fi - ;,7) = 0}.

We denote the above sequences by f = (f;)52;. Clearly the mapping U : f ~
U/ (T) transforms the sequences (f;) € F to Cauchy sequences (Ui (T)) in the
space Hy (M) x L*(M). Hence we define

ULT) = jlggo U%i(T)
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where the limit is consider in H} (M) x L*(M). We equip F with a quasinorm
2 _ _
1216 = Jim B(S;,T).
When we identify all f and h for which |[f — h||7 = 0, the mapping
(4.1) U:F — HY(M) x L*(M)

becomes an isomorphism. We denote by ui(:zr, t), t > T, the solution of the initial-
boundary

(4.2) ugg + bug + a(z, D)y = 0in Mx]T, o0],
UlomxTioo = 0; ulimr = uwl(T), wlemr = uti(T)-
For f,h € F we define a pairing
(f,h) = (JULT), V™(T)) L2(a) x L2 (m1) -

As we have observed before, we can compute these pairings by using DBD.
For open w C T and ¢ > 0 we introduce

M(w,t) ={z € M :d(z,w) <t}
and
Flw,t) ={f € F: supp (ULT)) C M(w,1)},
Fé(w,t) ={f € F: supp (Ui(T)) C cl(M\ M(w,t))}

and Foq(w,t), FSq(w,t) be the analogous sets for the adjoint equation.
Our next goal is to find these sets by using DBD.

LEMMA 4.1. Let f € F. Then for any open w C I',t > 0 DBD determine
whether

mg(supp (UL(T)) NM(w,1)) =0

or not. Analogous statement takes place for the adjoint solutions VI(T).

PRrROOF. Obviously we can assume ¢t < 7. We note that by the definition of ¢;
and F, for f = (f;) we have f;(z,t) = 0 for t > t; yielding that Ui|aM><[T—T,T+T] =
0. If

(4.3) mg(supp (UHT)) N M(w,t)) =0
then the finite velocity of the wave propagation implies that
(4.4) 3vui|wx[T—t,T+t] =0and uilwx[T—t,T-‘rt] =0.

On the other hand, by Tataru’s Holmgren-John theorem [17] equation (4.4) implies
relation (4.3). The statement of Lemma for the wave UL now follows from the fact
that DBD determines

Ovuuglam [ty 00l = jliglo Rfjlit),00]-
The claim for the adjoint solutions is obtained analogously. O

LEMMA 4.2. Letw CT andt > 0. Then DBD determine F(w,t), F¢(w,t) and
}-ad(rat)a ;d(rat)'
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PROOF. By Lemma 4.1 DBD determine F¢(w,t) and FZ;(w,t). For f € F we
have f € F(w,t) if and only if

(JULT),VHT)) =0

for all h € Ffy(w,t). Hence by Lemma 2.2 we can determine F(w,t). The space
Fad(w,t) can be constructed analogously. O

Let y € T', € > 0. Denote by wy(e) an open subset of T',
wy(e) = B(y,e) NT,
where B(y, €) is the ball on M. We define the compact sets
X(y,t,e) = cl (M(wy(e), t +e)\M([T',t —¢))

where € > 0 and
X(y,t) = () X(y,t,e).
e>0
In the next lemma we present some generalizations of the considerations in [3].

LEMMA 4.3. The set X(y,t) is either empty or contains only one point © =
exp,, (tvy). The later is true if and only if the normal geodesic from y is a minimal
geodesic from x to T'. Moreover it is possible to determine using DBD where X (y,t)
18 empty or not.

Proor. Consider point z in the intersection of all sets X (y,t,¢), € > 0. Clearly
d(z,y) = t. Moreover, the shortest geodesic from y to z has to be normal, i.e.
T = exp, (tvy). Indeed, otherwise we see by short-cut arguments that z € M (I, t—¢)
for sufficiently small e. Thus X (y,¢) can contain not more then one point.

Since X (y,t,¢) are compact their intersection is non-empty if and only if the
intersection of any finite number of these sets is non-empty. However, X (y,t,e1) C
X (y,t,e2) when g1 > e2. Hence, X (y,t) # 0 if and only if X(y,t,e) # 0 for any
€ > 0. Clearly when the normal geodesic from y to z is shortest, i.e. d(z,y) =
d(z,T) then

K(.CL'E,E/Z) - X(y7t78)7
where z. = exp,((t — ¢/2)vy) and K(z,r) denotes a ball in M with center in =
and radius r. On the other hand, when ¢ > d(exp,(tv,),T) then X (y,t,e) = @ for
sufficiently small e.

Therefore we can distinguish between the cases X (y,t,¢) = § and X (y,t,e) # 0

by looking at

f(X(y,t,E)) = f(wy(a),t + 5) n fc(rat - 5)'
Indeed, X (y,t,e) = 0 if and only if F(X(y,t,e)) # {0}. Hence the claim follows
from Lemma 4.2. O

DEFINITION 4.4. Let Lr be the set of those points x € M for which there is a
unique shortest geodesic v to I' which is normal to T" and let Mr be the interior of
Lr. We denote by y = y(z) the point where v intersects I and by s(z) the length of
this geodesic. By Sr we denote the set of the points (y(z),s(z)) € I xR, x € Mr.

We note that the normal geodesic mapping
E: (y,t) = exp,(tvy)

is C'*°-diffeomorphism from Sy to M.
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Let (y,s) € I' x Ry. Then (y,s) € Sr if and only if there is ¢ > s such that
X (y,t) # 0. Hence Lemma 4.3 implies the following result.

THEOREM 4.5. DBD determine the set S C T’ x R,..

5. Reconstruction of the metric and the operator.

Let n > 0 be an integer, (y,t) € Sr. Let ¢ €]0,¢[ and denote by F,,(X (y,t,¢))
those f € F for which

ULT) € Hy ™ (X(y, t,€)) x Hg (X (y,t,€)).

THEOREM 5.1. For integer n > 0 and t > 0, € €]0,t[ the DBD determine the
sets Frn(X(y,t,¢)).

PrOOF. By Lemma 4.2, we can find Fo(X (y,t,¢€)).
Assume now that the assertion is true for a given n. Let

i = (f]) € fn(X(y’t:E))

yielding that supp(UL(T)) C X (y,t,¢) and define a translation operator H, f(z,t) =
f(z,t4p), p> 0. Moreover, let f = (f;) € F and t > T. Then for any h € Faq

lim Oy (Hi—1fj, b)|i=T
j—oo

= lim 6t/ [(u,{J + bul) (z, t)or(x, T) + u'i (z, t)or (z, T))dz|s—1
j—o0 M

= lim / [~a(z, D)’ (z, TR (2, T) + ul? (z, T)o!(z, T))da.
M

j—oo
Since V&(T) € HY (M) x L*(M) and U%i (T) — UL(T) in this space we see that

j—oo

lim /M[—a(m, D)ufi (z, Yok (z, T) + ul’ (z, T)ol (&, T))dz

- jélr—a(x,zj)ui(w,fwvﬂ<w,7» +ul (2, TYol(z, T))d.

Since the mapping (4.1) is isomorphism and a(z, D) is elliptic, we see that f € Fp 11
if and only if there is p € F, such that

(uf (T), —a(z, DYul(T)) = (ul(T), uf(T)).

Thus, we have f € F,,11((X(y,t,¢)) if and only if there is p € F, such that for all
heF

Jlgf)lo Oy(Hy 1 fj, )|t=T = (p, h).
Hence we can find the set F,, 1 and the assertion follows by induction. O

Next the construct sequences converging to delta-distributions.

Let (y,t) € Sr and let = exp, (tv;) be the unique point in X (y,t). Also, let
n be the integer for which n < m/2 < n + 1 and &g €]0,¢[. Consider a family of
functions g(e) € F, € > 0 such that

i. supp (V9©)(T)) C X(y,t,¢).

ii. For any f € F(X(y,t,€0)) there exists a limit

W (1) = lim (£, 9(c)).
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We note that such families exists. Indeed, it is sufficient to take V9()(T) to be
Cs°(X (y,t,€))? -approximations to (0,8(- — zo)). Moreover, for a given sequence
g(€) we can verify using Theorem 5.1 and Lemma 2.2, if conditions i. and ii. are
satisfied. Thus we can construct a sequence g(g) with properties i. and ii.

Let us study these sequences more closely. First, since mapping (4.1) is isomor-
phism, for any ¢ € C§°(X (y,t,€0))? there is f € Fr(X(y,t,€0)) such that UL(T) =
¢. Hence the property ii. implies that there is a distribution W?® € D'(X (y,t,&0))?
such that

(5.1) lim V9E)(T) = W=,

e—0
The property i. implies that
supp (W) C {z}

and hence W, has to be a finite sum of the derivates of delta-distribution at .
Finally, by ii. the limit

lim (£, g(e)) = lim (J UL(T), V9E(T))
e—0 — e—0
exists for every f € Fn(X(y,t,€0)), or equivalently, for every
Ui(T) € HSH_I (X(ya t7 80)) X H(?(X(:Ih t: 60))'

Due to the choice of n this implies that there is a constant x(x) such that

(5.2) W = (/c(x) 5((]- ~ x)> .

Using the above construction we define an operator
Wo F =5 C, fwr (JULT), W) pe.
Some properties of this operator are described in the following lemmas.
LEMMA 5.2. Let DBD be given. Then for any x € Mr it is possible to construct
functions g(g) = gx(€) such that for corresponding operators W?,
W (f) = k(@)u! (2,T), fe€C§([T xRy).
Moreover it is possible to construct g(€) in such a way that k : Mr — C satisfies
the conditions
(53) K € COO(MI‘ U F), Ii‘,|p = ].7 K 75 0 on MF.
ProOF. Consider a family of boundary sources g, (¢),e > 0,2 € M such that
the corresponding W¥* satisfy the following conditions
iii. W?® #£0 for any z € Mr.
iv. Forany f e C*(I' x Ry) and y € T
lim W*(f) = f(y,T).
T—yY

v. The function z — W?(f) is in C*®°(Mr UT") when f € C§°(T x R}).
As we already know such sequences exist. On the other hand, we can verify condi-
tions iii. -v. for a given family g, () in local coordinates on Sr by means of Lemma
2.2. However, since E : SpUT' x {0} = Mrp UT is a diffeomorphism these conditions
are satisfied also on Mr. O

LEMMA 5.3. Let DBD be given. These data determine the mapping F —
k(E(y, s UL(E(y, s),t) where (y,s) € sp and t > T.
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PROOF. For f = f € Cg°(T x Ry ) the statement follows from Lemma 2.2 and
formula (5.2). Hence the assertion follows from the continuous dependence of the
solution uf(-,t) € H}(M) on ferF. O

We want to emphasize that we do not know k(z) and, henceforth, can not
reconstruct uf (z,t) using Lemma 5.3. However, we have the following theorem:

THEOREM 5.4. By using DBD we can construct a metric § on St such that the
space (sr,§) is isometric to (Mr,g).

ProoF. Consider the point (y,s) € Sr and the corresponding point z
E(y,s) € Mp. By Lemma 5.3 it is possible to find s(z')UL(z',t) for any z' =
E(y',s"), (v',s") € sp and t > T. Let V be a sufficiently small neighborhood of x
so that for any z € V' a unique shortest geodesic v, . which connects = and z lies
in Mr. Let us take z € V and dy > 0. We consider the wave produced by an initial
state UL(T)

supp (UL(T)) C X(y,s,e).

where f € Fo(X(y,s,¢)) for some e > 0.
Firstly, if d(z, z) > dg, then due to the finite velocity of the wave propagation
the wave uf vanishes near z for all

t €]T,T + dp — diam (X (y, s,¢)][.

Since diam (X (y,s,£)) = 0 when € = 0 then uf = 0 for sufficiently small € near z
for all t €]T, T + dy[. Furthermore, the converse is also true. Indeed, let 7, . be the
shortest geodesic from z to z with length d(z,y). For any ¢ > 0 there is uf with
supp (u/(T)) C X(y, s,€) such that

(z,7,) € WF(ULT)

where WF (U) stands for the wave-front set of U and ., for the tangent vector to
v at z. Using the well-known results about the propagation of singularities for the
wave equation we see that z € sing supp (UL(T+d(z, z)). Henceif dy < d(z, z) then
for any e > O thereis f € Fo(X (y, s,¢€)) such that uf does not vanish identically near
{2}X|T, T + do[. Thus d(z, 2) is the supremum of those dy > 0 for which uZ(t) = 0
in the vicinity of z for all ¢t €]T,T + do[ and f € Fo(X(y,s,e)) with sufficiently
small e. As k # 0 we can find the distances between the points z = E(y,s) and
z' = E(y',s') for all sufficiently close (y, s), (y',s") € Sr. Having found these local
distances, we can construct the metric tensor § as is done e.g. at [11]. O

Thus (Sr, g) can be identified with (Mr, g) as a metric space. With this iden-
tification, we have constructed the highest order terms of a(z, D) on Mr.

The end of this section is devoted to the construction of the lower-order terms
in a(z, D).

LEMMA 5.5. Let el(x,t) be the functions
ef(z,t) = k(z,)ul(z,t), =€ Mp,t>T,

where f € F and k is defined by (5.1). Then these functions determine a,(z,D)
on Mr.
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PROOF. The functions ef(x,t) = k(z)ul(z,t) are the solutions of the equation

(5.4) eé + beti +ax(z,D)el = 0.

For any x¢ € Mt consider the vectors

(eX(z0,T), (€L (0, T)), 0k1 (e (0, 7)), € (0, T)) T 1y
where 8; stands for the derivatives with respect to some local coordinates in M.

These vectors are defined for f € F, with sufficiently large n and due to the

isomorphism (4.1) they span the space C(m”+3m+4)/2 when f varies in F,. Hence
equation (5.4) may be used to determine a(z, D). O

Theorem 5.4 and Lemma, 5.5 imply that we have constructed (Sr, g) which is isomet-
ric to (Mr, g) and the operator a(z, D) modulo generalized gauge-transformations.

6. From local constructions to global reconstruction.

In this section we provide a proof of the main result, Theorem 1.5, and make
some additional remarks about the necessity of assumption made.

PROOF. (of Theorem 1.5) It is known that the Schwartz kernel R(z,y,t,s)
of operator R is 0,(;)0,(,)G(2,y,t — s) where G(z,y,t) is a appropriate Green’s
function. Precisely, if we fix y then (z,t) — G(z,y,t) is Green’s function of problem
(1.1) with a, instead of q, i.e.,

(61) (6152 + b(:E)@t + an(maDz))G(maght) = 5(y,0)(x7t) in M xR,
G( 'Yy )|8MXR =05 G(xayat)|t<0 = Gt(x;yat)|t<0 =0.

The function 3, (,)G(x,y,t),y € T is a solution of the wave equation (6.1) with a
known source term and boundary values. Moreover, since b(z),a,(z,D) for x €
My are already found, the Holmgren-John uniqueness theorem [17] implies that
0y(y)G(z,y,1) is uniquely determined in Mr x Ry in terms of its Cauchy data on
I' x Ry which is known.

Let us now fix £ € Mr. Then the function (y,t) — G(z,y,t) is the Green’s
function of the wave equation,

(6t2 - mat + a:(y,Dy))G(w,y,t) = 6(z,0)(y7t) in M x R;
G(x7'7')|3MXR= 07 G(a“ay7t)|t<0 = Gt(-’L‘,y,t)|t<0 =0.

Since the Cauchy data of G(z,-,-) on T' X R are known the same arguments show
that G(z,y,t) is uniquely determined in M1 x Mp x R.

Let now U C Mr be an open domain in Mt with smooth geodesically convex
boundary. Consider the initial-boundary value problem

(6.2) en +bey +ag(z,D)e = Fin M xRy,

elomxr, = f; e€li=0o = etft=0 = 0.
Here supp (f) CT xRy and supp (F) C U x Ry and we assume that f € C°(T x
R;) and F € C°(U x Ry ) where Cf° is the set of locally bounded (with respect
to t) C°°- functions which are equal to 0 near ¢ = 0. Since Green’s function

G(z,y,t) is known everywhere in M1 we can find arbitrary solutions e(z,t) of (6.2)
for (z,t) € Mr x Ry and arbitrary f and F.
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Consider the manifolds M; = M\U and I'y = T' U 9U. The restrictions of the
above functions e(zx,t) onto M; x Ry contains all solutions to the initial-boundary
value problem

(6.3) e +beg +a(z,D)e = 0in My xRy

elogmyxry) = fi €li—o =etlt—o =0

where supp (f) C T'; x R;. Indeed, we can take any smooth continuation of the
solution of problem (6.3) and obtain a solution of problem (6.2) with appropriate
F and f.

Hence we can find solutions e(z,t) of equation (6.3) for z € Mp\U, t € R,
for all f € C°(I'1 x Ry) and, henceforth, to find d,e|r,xr, of these functions.
Clearly we can then find the response operator R! for (My,g,T;). We note that
the Bardos-Lebeau-Rauch condition is valid for M; with t,, if it is valid for the
original manifold M with the time ¢,.

By iterating this procedure finitely many times we can reconstruct (M, g) and
the equivalence class of a(z, D). Hence theorem 1.5 is proven.

O

As afinal remark we note that Theorem 1.5 remains valid under weaker assumptions
than those maid in the paper and give some generalizations:

i. The assumption that gr is known may be omitted and we can assume that
we just know I' and R.

ii. The assumption that R is given for all times ¢t may be changed into a weaker
assumption that RT is known for 0 < T < 27 + ¢ for arbitrary small e.

iii. The assumption that a(z, D) is symmetric in L?(M,m,) may be weakened
to the assumption that a(z, D) is symmetric in L?(M,m) where m is some
smooth measure on M.

iv. The problem studied in this paper is equivalent to the corresponding spectral
problem. Indeed, by knowing the eigenvalues A; of the system (1.1) and the
boundary values of the corresponding generalized eigenfunctions ¢; on T,
it is possible to find the operator R. This relation has been studied more
closely in [10]. Thus the presented results apply for the inverse boundary
spectral problem when the data is known only on a part of the boundary.
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