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1 Introduction

One of the central problems in the numerical approximation of acoustic and
electromagnetic scattering solutions is the implementation of the radiation con-
dition at infinity. In obstacle scattering methods, the boundary integral equation
methods are attractive since the solutions satisfy automatically the radiation con-
dition. When the obstacle boundary is complicated or the material parameters
are not constants, the finite element methods (FEM) and the finite difference
schemes (FD) are often found more convenient to implement. These methods
require an efficient way of terminating the mesh so that the artificial boundary
gives no spurious reflections. One popular approach is to use absorbing bound-
ary conditions. These boundary conditions are typically local approximations of
a non-local pseudodifferential operator equation corresponding to an exact ab-
sorbing condition. In recent years, there has been a growing interest in a scheme
known as a Perfectly Matched Layer method (PML), suggested in [1] by Bérenger.
The idea is to surround the scatterer by a fictious layer of absorbing medium that
has the remarkable property of being perfectly reflectionless. In this work, we
consider the questions of solvability of the Bérenger equations and approximat-
ing properties of the corresponding solutions. The main result (Theorem 2.1) is
that with certain assumptions of the absorption coefficient, the Bérenger system
truncated to a finite domain is solvable for all wave numbers, and the solution is
close to the true scattering solution in the vicinity of the scatterer.

For simplicity, we consider here only one special obstacle scattering problem, al-
though the essential parts of the work are more generally applicable. We may e.g.
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consider more general boundary conditions or potential scattering. More precise-
ly, we consider electromagnetic scattering by an infinite cylindrical obstacle. Let
Q) C R? denote the cross section of the cylinder. We assume that € is bound-
ed, simply connected and has a smooth boundary curve. The electromagnetic
field is assumed to have transverse electric polarization, i.e., the magnetic field
is parallel to the axis of the cylinder. The field is assumed to be homogeneous
in the direction of the cylinder. With the further assumption of harmonic time
dependence, the scattered magnetic field can be written as

H = u(r,0)e ¢,

where (r, ) are the polar coordinates in the plane, w > 0 is the angular frequency
and €, is the polarization vector parallel to the axis of the scatterer. Outside (2,
the amplitude u satisfies the Helmholtz equation

(1) Au+Eu=0, k*=w’euo,

and the Sommerfeld radiation condition at infinity, i.e.,

: ou
(2) lim /1 (5 — zku) =0
uniformly in all directions. We assume here that the obstacle is perfectly con-
ducting, implying the Neumann boundary condition

ou

(3) n

=9,
N

the function g being determined by the incoming wave.

Notations: In the following, we denote by H*(X), X C R?, the usual L?* based
Sobolev space on the set X.

We need the double layer potentials as a tool. Let ¥(z,y, k) be the fundamental
solution of the Helmholtz equation,

U(z,y, k) = %Hél)(klx —yl), Imk>0.

We introduce the following notation: Let I' be smooth, closed and bounded curve
in R? and X CR2, 'N X = (. If ¢ is a function defined on I', we write

ov

Dex(kp(a) = [ g De)is), @ e X

Similarly, if the field point z is on the surface I', we write

De(k)i(@) = [ 22 (@,y, Hyw(p)aS(y), ze€T.
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In the sequel, the term scattering solution means the unique function ug. in R?\ Q
na € H'(B\ Q) for each open ball B, Q C B C R?, that satisfies the

Helmholtz equation (1), the radiation condition (2) at infinity and the boundary
condition (3) with g € H*/2(052). For the unique solvability of the problem, we
refer to [5].

with ug

2 Perfectly Matched Layer

In this section we review first the PML method suggested originally by Bérenger
in [1]. Our starting point is the article [2], where the authors analyze the Bérenger
equations in cylindrical coordinates.

Assume that B; = B(R,) is a disc of radius R; > 0 centered at the origin such
that Q C B;. Let 0 = o(r) € C! be a fictious absorption coefficient with the
properties

T

(4)  o(r)=0forr <Ry, o(r)>0forr>Ry, lim [ o(t)dt=oo.

— 00 R
We denote by 7 the complex radius defined as
T, r < Ry,
F=7r(r)= P
T (1 + —/ a(t)dt) =rB(r), r> Ry.
wr JRry

The idea in the Bérenger equation is to continue the scattering solution analyti-
cally, replacing the true radius r by the complexified radius 7. In [2], the Bérenger
solution up in R? \ Q is defined as the solution of the system

12 <~8UB> 4 1 82u3

L ous 2 — 0inRZ\O
=97 \" oF + k*up 0in R*\ ©,

(5) - = ge H(50),

lup| is uniformly bounded in R?\ €.

By denoting
o 1+ L) = afr)
or w B ’

the complexified Helmholtz equation in (5) can be written equivalently as

10 (ﬁrﬁu_g> L 1 0%up

—_— Ju— —_—— 2 p—
(6) ror \a Or Br? 002 + K afup =0.
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This form of the equation will be used in the sequel. As in [2], we write the above
equation occasionally in a coordinate free form as

(7) (V- AV + aBk?)u = 0,

where A is a matrix. The form of A in Cartesian coordinates was given in [2] as

(8) s 2 cos? + 4 sin” 6 cososine(g_%) |
cosHsinG(g_%) §31ﬂ29+%c0520

Thus, the equation (7) is formally similar to the equation satisfied by the magnetic
field in an orthotropic medium. However, the matrix A is non-physical.

The following proposition is the contents of Theorem 1 of [2].

Proposition 2.1 The Bérenger system (5) has a unique solution, and

Up

_=u _.
B1\Q *IB\Q

This theorem shows that the boundary of the PML medium at r = R; is perfectly
reflectionless. The next step to replace the infinite PML layer by a layer of finite
thickness to make the system (5) computationally feasible. For later purposes,
we deviate here from the discussion in [2] and impose an extra condition on the
absorption coefficient. More precisely, let Ry > R;. We assume that o is chosen
such that

1 (R
9) o(r) = & /R o(t)dt = o9, as > Ry.

This choice of ¢ implies that for r > R,
)
a(r) =14 —op = ay,
w

and more importantly,

T

1

= 1+ [ oft)dt

8) = 1+ [ o(t)

1 Ry

= 1+ E (/Rl O'(t)dt+ (T — RQ)O'())
?

= 1+ —0p = Q-
w

The crux of this choice is that the Bérenger equation (7) for » > R, reduces to

(10) AU,B + (Ol()k)2U,B = 0,
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Figure 1: The functions o(r) and Im 7(r) when the conditions (4) and (9) are
satisfied. Inside B; the Helmholtz equation is satisfied with a real wave number
and outside B, with a complex wave number. It is crucial that Im 7(r) coincides
to the line Im opr with large r.



i.e., up satisfies the Helmholtz equation with a complex wave number agk €
Ciy ={2€ C|Imz > 0,Rez > 0}. Our aim is to replace the condition
of uniform boundedness at infinity by an equivalent near field condition. To
this end, consider the exterior Dirichlet problem in R? \ By: Find a function w
uniformly bounded near infinity, satisfying the equation (10) in R? \ B, and the
boundary condition
w| = feH"0B).
8Bs

This problem can be solved by writing w as

w = Dyp, g5, (k).

In the discussion that follows, the wave number in the double layer potential is
assumed to be agk. For brevity we shall suppress the explicit dependence it in
the sequel. Since the interior Neumann problem in B, with the wave number ok
has only the trivial solution, we may deduce by the standard argument (see e.g.
[3], Theorem 3.17) that the density 1 € H'/2(8By) is obtained from the Dirichlet

condition by
1 -
Y= (5 + Dog,) ' f-

Especially, the Bérenger solution up in R? \ B, satisfies

).
Let R3 > R,. By taking the trace of ug on the surface 0B; we get the equation
(11) up|, = Plusl|, ),

where the operator P : HY/?(0By) — HY?(0Bs) is defined as

1
(12) P = D6B2,6B3(§ + Dag,) "

Observe that the operator P, being a smoothing operator, is compact by Rellich
compactness theorem. The operator P is closely related to the double surface
radiation condition defined in the report [4]. We prove the following equivalence
result.

uB R2\§2 = DaBQ,RQ\EQ(§ + DaBz)_l(uB‘aBz

dBs3 0B>

Lemma 2.1 The restriction of the Bérenger solution up to the set B; \ Q is the
unique solution in H'(Bs \ Q) that satisfies the system

(V-AV +afk*)u = 0in B3\ Q,

8u . ~1/2
(13) on| . = ¢ e H '2(6%),
u‘aBg - P(u‘aBQ)'



9B(p)

Figure 2: Between 0f) and 0B; Helmholtz equation is satisfied with a real wave
number, between 0B; and 0B; we have a non-physical equation and outside 0Bs
the wave number is complex. The double-surface boundary operator P maps

ul,, to u‘aB . Later in the equation (19) the domain is truncated with the
2 3

Dirichlet boundary condition on 0B(p).



Proof: From the derivation of the operator P above, the existence of a solution
is clear, since the Bérenger solution satisfies the system.

To show the uniqueness, assume that w € H'(Bs \_ﬁ) is a solution of the system.
Define a function w' in the exterior domain R? \ B, by the equation

1

w' = Dyp, oz, (5 + Dom,) ' (w], ).

Then w' on w‘aB , 7 = 2,3, and since (apk)? is not a Dirichlet eigenvalue of
4 j

—A in B; \ Bsy, we have w'

B3\B>

. Let W be given by

w _
B3\B>

w(r), z € B3\,
Wix) = { w'(z), z€R\ By

Evidently, W is uniformly bounded far away from the scatterer, it satisfies the
equation (7) plus the boundary condition 8W/c9n‘aQ = g. By the uniqueness
of the solution of the Bérenger system, we must therefore have W = up and so
especially w = UB‘Ba\ﬁ' O

The previous results asserts that the Bérenger solution can be found by solving
the system (13) in a bounded domain. From the practical point of view, the
following approximation result is found useful.

Lemma 2.2 Assume that P. : H'/*(0B,) — H'/?(0Bs) is an operator with the
property

(14) |P: — P|| <&,

the norm being the uniform operator norm of the space B(HY?(0By), H/?(0By))
of bounded linear operators. Consider the system (18) with P replaced by P.. For
e > 0 small enough, the system has a unique solution u, € H'(Bs \ Q), and we
have

lup = vell g1 (p\m) < CE

for some positive constant C.

Proof: We start by writing an equivalent weak form of the system (13). Let R :
H'?(0B3) — H'(Bs\ Q) denote a right inverse of the trace mapping u u‘aB :
3

We choose R so that supp Rp N By = ) for all ¢ € H'/?(9Bs). Assume for a
while that u satisfies the system (13). If w is defined as w = u — RP(u‘aB ), we



see that w‘ = u‘ and w satisfies
OB> OB>

(V-AV +aBfk*)w = Fwin B3\ Q,

(15) wl,, =0,
ow B
where

Fuw=—(V-AV + aﬂkQ)RP(w\aB ).

Conversely, if w satisfies the system (15), a solution of the original system (13)
is obtained by u = w + RP(w‘aB ).
2

Let us denote by H{} (B3 \ Q) the space
H}(Bs\ Q) = {ue H (B;\ Q) | u‘aBS =0}.

Note that Fw vanishes near the boundary 9Q and by definition, Fw € H~"(Bs \
Q), so we may deduce that Fw € (Hg(Bs\Q))’, the dual of H}(B;\ Q). Since P
is compact, also the mapping

F:HNB;\ Q) = (HY(B; \ Q)

is compact.

The equivalent weak form to the problem (15) is to find w € Hg(Bs\ Q) satisfying

(16) (AVw, Vv) — k*(aBw, ) + (Fw,7) = (9,7

aQ>39

for all v € Hy(Bs \ ), where (-, -) and (-, -)sq denote the distribution duality
over B\ Q and 09, respectively. The inner product in H}(Bs\ ©2) is denoted as

(u,v) = (Vu, Vv) + (u, ).

Let A be the operator
(AVw, V) + (w,7) = (Aw,v), A:Hj(Bs\ Q) — Hj(Bs\ Q),

defined by the Riesz representation theorem. It is shown in [2] that the matrix
(8) defines a positive definite quadratic form and thus the operator is strongly
coercive, i.e.

(AVw, V) + (w,m)| > 8]lw|}:

B3\Q)



with some constant § > 0. Consequently, by Lax—Milgram lemma, A~! exists
and is continuous. Similarly, let J and K denote the operators defined through

(Fw,v) = (JFw,v), J:(Hy(Bs\ Q) — Hy(Bs\ ),
((aBk* + Nw,v) = (Kw,v), K:Hy(Bs\Q)— Hy(Bs\Q),

the existence being guaranteed by the Riesz representation theorem. Further, we
define the function G € Hy (B3 \ ) by the formula

(9.7], Jon = (G,v).
With these notations, the equation (16) is equivalent to the equation
(17) A-K+JF)w=g.

Obviously, K is compact, and the compactness of P and consequently F' guar-
antees that the operator above is a Fredholm operator of index zero. To prove
the injectivity, assume that wq satisfies the equation (17) with G = 0. Then

wy satisfies the system (15) with g = 0, so the function ug = wy + RP(wo‘aB )
2

satisfies the system (13) with g = 0. By the previous lemma, ug is the Bérenger

solution with vanishing Neumann data, so uy = 0. This implies that also wy = 0,

proving the injectivity. Thus, equation (17) is solvable and we can write

w=(A-K+JF)'G.

Consider next the system (13) with P replaced by P.. The same argument as
above yields an equation

(18) A-K+JF)w. =G,

where

F.=—(V-AV +afk*)RP(-|, ).

Applying (A — K + JF)~! on both sides of (18), we see that it is equivalent to
the equation
I+ (A-K+JF)'J(F. - F))w. =w.

Since ||F — F|| < Ce, this equation is solvable by Neumann series for ¢ small
enough and we get the estimate

l|w — we||m < Ce.

Finally, defining v, = w. + RP.(w, that satisfies the system (13) with P.

331)
and noting that

lup = ue|| < [Jw = we || + [[R(P: = P)w|[ + [[RP(w — w)]],
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we get the claim. O

Our aim is to show that when the PML layer is truncated to a bounded region,
the resulting boundary value problem is equivalent to a system (13) with P
replaced by an approximating operator. Let p > Rs. Consider the following
mixed boundary value problem: Find iip = ug(r, 0, p) € H'(B(p) \ Q) satisfying

(V-AV +apk®)ig = 0in B(p)\ 9,

19 - = H2(60
(19) on |, g€ (082),
ip on) = 0.

We have chosen the Dirichlet boundary condition on the outer boundary surface.
As in [2], one could use other type of conditions (e.g. Neumann or an impedance
condition) as well. The forthcoming analysis would be essentially similar. To find
an operator that propagates the Dirichlet boundary data on dB; of the possible
solution of the system (19) to the corresponding Dirichlet data on 0Bs, we prove
the following lemma. Below, the wave number in the layer potentials is ayk.

Lemma 2.3 Assume that ip € H*(B(p) \ Q) satisfies the system (19). Then

up :P(ﬂ,B

8B; 332) ?

where the operator P = P(p) : H'/2(0B,) — HY?(dBs) is given as

- 1 -1
P = (D332,333 + DaB(p),aB;;H) (5 + Dyp, + DaB(p),aBQH) ;

where I1 : HY?(0By) — HY?(0B(p)) is given by

1

II= (5 — Dop(s)) Do, 08(s)

Conversely, if up satisfies

(V-AV +apk®)ag = 0in B(p)\Q,

diip .
2 —| = H™'2(90)
(20) on |, g€ (09),
Unl,, = Plin|,),

then it satisfies also the system (19).

11



Proof: Consider the Dirichlet boundary value problem of finding w € H*(B(p) \
B,) satisfying

(A + (apk))w = 01in B(p) \ Bo,

(21) w| = feH/0B),

0By

w
9B(p)
Since agk € C,, the above problem has a unique solution that can be found by
writing

W = Dyp, so\5: ¥ + Pobe), 5o\ >

where the densities 1 € H/2(0B,) and ¢ € H/?(0B(p)) are determined by the
boundary conditions as

1
(5 + Dop,)V + Doppyos. = [,

1
Dsp, aB(p)% — (5 — D))y = 0,

or

1 _
v = (5 + Dap, + Dop(p)om,11) "' f,

1

p = (5 — Do)~ Dopyon(pyt = 111

The existence of the bounded inverses in the formulas above follow by a standard
Fredholm argument. By substitution, we find that

1 _
= (DaBs,08; + Doan(p),08;,11) (5 + Dan, + Dap(p),08,11) 'f.

wl 5

8Bs

Since @ p satisfies the problem (21) with f = aB\aB , we get the first part of the
2

claim.

Conversely, assume that g satisfies the system (20). All we need to show in this
case is that up = 0. To this end, define w € H'(B(p) \ By) by
9B(p)

(22)
1 1~
w = (Dopy (o)\B2 + Pone), 505D (5 + Dos. + Don(p),0m,11) (i on,)"
By definition, we observe that
w‘aBj - B‘aBj’ J=23



and since w and up both satisfy the Helmholtz equation with the same complex
wave number in B; \ Bs, we have

=upg

w| o .
B3\B> B3\B>

By the unique continuation principle of elliptic equations, we must therefore have
w = upg . By substituting the operator II in equation (22) and going to

B(p)\B2

the boundary 0B(p), we see that aB‘aB( )= w‘aB( )= 0, which completes the
p P

proof. .

The previous lemma states that the truncated Bérenger problem can be replaced
by one with an appropriate operator P that propagates the solution from the
surface B, to the surface B;. The next lemma shows that the operator P is
an approximation of the operator P.

Lemma 2.4 The operator P = P(p) has the property

lim ||P(p) — P|| =0,

pP—00

where the norm denotes the uniform operator norm in B(HY/?(0B,), H/?(0Bs3)).

Proof: We assume that p > 1+ Rs. Clearly, by the definition of the operator P,
it is sufficient to show that

leEo Dap(p),08;11(p) = 0
in the uniform operator topology of B(H/?(0By), H'/2(0B;)) for j = 2,3. First
we estimate the operator H : Dap(,) 5(») (3 — Dop(p)) " that maps the function
f € HY?(0B(p)) to the solution v € H'(B(p)) of the Dirichlet problem
(A + (ak)®)v = 0in B(p),
vlon = f-
Clearly, by scaling we get for V = v(p - ) an equivalent equation

(A +p % (ak)))V = 0in B(1),
Vieswy = flp-)-

in the unit disc B(1). Since (apk)? has a non-vanishing imaginary component,
we see by using standard arguments that for p > 1

Vs < CoPF(0 )lae@say-

13



By scaling again we get

[f(p- )||H1/2(aB(1)) < CP1/2Hf||H1/2(aB(p))a
wllasey < CollV]iasw)
which yields
vl ey < Co ™21 f | ni2ese)
and thus ||H|| < Cp"/2.
To estimate Dyp,.ap(p), We use the asymptotics of the Hankel function Hél), giving

. c .
IDTHP (2)] < —|\e”\, j<2
<

for z sufficiently large and —7 < arg z < 7. By definition, the operator Djp, sp(,)

is an integral on 0B, of the normal derivate of Hél)(koz0|x — y|) where x € 0B,
and y € 0B(p). Thus the above estimate gives us point wise estimates for the
kernel yielding

[ Das,,a80) || H112(08,),11/2(08(5) < C\/peHo=Ra)imao,

By combining the previous estimates and using the trace mapping Tj : u — u|p;,
we see that

1Das(p.om;, (p) || < (| T[| [|HI[[[Dop,.on)l|

< Cp4e—k:(p—R2)Im o

Thus, since Im «g > 0, the operators decay exponentially and the claim is proved.
d

We are ready to gather the results together to the main theorem of the paper.

Theorem 2.1 Assume that the fictious absorption coefficient satisfies the as-
sumptions (4) and (9). Then for any wave number k > 0 there exists po(k) such
that for all p > po(k), the truncated Bérenger system (19) has a unique solution
tup = ug(r,0,p). Furthermore, the solution has the approxzimation property

Jim |use = @nllgp\m) = 0

the convergence being exponential.

Proof: The theorem follows immediately from Proposition 2.1 and Lemmas 2.1-
2.4. O
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3 Conclusions

This article is a contribution to the theoretical analysis of the Perfectly Matched
Layer method of implementing nearly reflectionless boundary conditions for scat-
tering problems. The work extends the previous theoretical analysis of [2]: With
a certain extra assumption on the fictious absorption coefficient, it is possible to
show that the PML equations are solvable for all frequencies, and an asymptotic
error estimate is obtainable. Particularly, we have shown that the PML layer
can be used to join the Helmholtz equations with real and complex wave num-
bers in a reflectionless manner. It remains open whether the extra assumption
on the absorption coefficient that has been introduced here is really necessary
theoretically or numerically.
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