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Abstract

In computational electromagnetic and acoustic scattering, the unbounded
Euclidean space R? is often modeled by a bounded domain with an absorbing
boundary condition. One possible approach to create such absorbing bound-
ary condition is to surround the computational domain by a non-reflecting ar-
tificial sponge layer that absorbs quickly the scattered waves. This approach
is called the method of a Perfectly Matched Layer (PML). In this paper we
prove that such absorbing boundary layers can be obtained by using complex
Riemannian metric g;;. We show that the boundary layer is non-reflecting
when g is flat, that is, the curvature tensor of the complex metric g;; is zero.
This fact gives an invariant formulation for the absorbing boundary layers
as well as give us new kind of absorbing boundary layers for Maxwell and
Helmholtz equations. Moreover, we show that all Perfectly Matched Layers,
that is, absorbing boundary layers obtained through a complexification of
coordinates corresponds to flat complex manifolds. Finally, we discuss the
relation of the absorbing boundary layers and the complex scaling technique,
developed by Sjostrand and Zworski for the study of scattering poles.
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1 Introduction

The initial motivation of this work comes from the problem of solving nu-
merically scattering problems, e.g. to find out how a given electromagnetic
wave scatters from a given obstacle. One difficulty to solve scattering prob-
lems numerically can be observed immediately: The scattering takes place
in an unbounded space but the numerical simulations are usually made in
a finite computational domain. Indeed, when finite element or finite differ-
ence methods to solve scattering problems are employed, a crucial question
is how to terminate the mesh without creating excessive echoes from the
artificial truncation surface that may spoil the quality of the solution com-
pletely. There is a wealth of articles suggesting different solutions, commonly
known as Absorbing Boundary Conditions (ABC). In recent years, a large
amount of work has been done to study a mesh truncation scheme known as
the method of a Perfectly Matched Layer, or PML for short. The idea is to
surround the scatterer and the near field region around it by a “sponge layer”
that is reflectionless and absorbs strongly the scattered waves. Therefore, if
the computational region is truncated within this sponge material, one ex-
pects that due to the strong attenuation, a homogeneous Dirichlet boundary
condition, for example, is a good truncation condition. A large amount of
numerical work (see e.g. [6], [8], [19]) and recently also theoretical work (see
[7], [24], [23]) to study this scheme has been published.

It is known that the PML scheme can be understood as a method of complex
stretching of the coordinates (see [6], [7], [23]). This was the starting point
in the articles [15] and [16], where the scattering problem for the Helmholtz
equation was studied in circular and general convex geometry, respectively.
The idea in the cited works was to map R" onto a surface in C" and extend
the Helmholtz equation analytically to this surface to get the PML equa-
tions. In the present work, we study the scattering problem for Maxwell’s
equations and the Helmholtz equation in R®. In this paper we use a different
point of view from that in previously cited articles. Instead of stretching the
coordinates, we change the metric defined on R®. There are several advan-
tages of this point of view. First, when Maxwell’s equations are written in
terms of 1-forms, the differential operators take form of exterrior derivatives.
In numerical literature this is expressed by saying that the differential op-
erators are purely topological in nature, that is, the metric or the material
parameters affect to the equation only through the Hodge—* operator. This



Figure 1: The scatterer 2 is in Euclidean domain D C R3®. The domain
D is surrounded by the absorbing layer N. The Euclidean domain D and
the absorbing layer N form together an absorbing manifold M = D U N.
The computational domain is truncated to be finite by posing a boundary
condition on a surface S C M.

is a clear advantage in numerics when e.g. the topological Whitney element
bases are used in discretization ([4], [13]. Second, the stretching of the metric
allows us to treat more general scattering geometries than before. We need
not assume that the domain surrounded by the perfectly matched layer is
convex. In fact, we may define a whole family of pseudo-Riemannian metrics
for which the analysis can be carried out. Finally, the present formulation is
completely invariant as it is done without a reference to specific coordinate
systems. The main results of this paper on above topics are given in Section
4.

Let us mention that apart to the absorbing boundary conditions, the present
work may turn out to be useful e.g. in analyzing scattering poles. In partic-
ular, we refer to the articles [20]-[22] for complex scaling method developed
in connection to scattering poles.

2 Scattering problem and earlier results

We start this section by fixing some basic notations and concepts. The
space R? is considered as a manifold and it is equipped with the complex
tangent bundle. The complex tangent spaces are denoted by T,R® = {u =



u?(9/027) | v € C}. For distinction, the real vector spaces are denoted by
TRR®. The Euclidean space R? is equipped with the standard metric tensor
which is denoted by g¢. The differential r—forms are denoted by A™(R3).

We adopt here the convention that vectors are denoted by lower case letters
while forms are denoted by capital letters. We also use Einstein summation
convention of summing over all repeated super- and sub-indeces.

In this work, we consider mainly time harmonic Maxwell’s equations. Given
a metric g, there is a well-known one-to-one correspondence between vector
fields and 1-forms. In this work, we treat the electric and magnetic fields
E and H exclusively as 1-forms. The time harmonic equations in vacuum
corresponding to the time-harmonic time dependency exp(—iwt), w > 0, can
be written as

dE =ik« H, dH = —ik  E, (1)

where k = w/c = w/ /&g, and '+’ denotes the Hodge—+ operator from 1-
forms to 2-forms defined by the Euclidean metric. Here, we have used the
scaling of the fields, F — /eF and H — ,/ugH for reasons of notational
symmetry. In the following, let Q C R® be a bounded domain with a smooth
boundary and a connected complement. By B(z, R) C R® we denote the z-
centered ball with radius R. For a submanifold S C R?® we denote by ig : S —
R® the natural embedding and by 4% : A"(R*) — A"(S) the corresponding
pull-back.

Our main aim is to study the following scattering problem.

Problem 2.1 The exterior scattering problem for Mazwell’s equation is to
find 1-forms E and H in the exterior domain R® \ Q which satisfy

dE = ik H, (2)
dH = —ik«E, (3)
lim oo (E—H) N ipor(E—-H) =0 (5)

R=0 Jap(0,R)

The solution of this problem is denoted by (Es., Hye).

Above the set ) correspond to the scatter. At this point, we do not specify
the smoothness properties of ¢. The equations (2) and (3) say that the fields
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E and H satisfy Maxwell’s equations outside the scatterer. The equation (4)
corresponds to the electric boundary condition on the boundary 0f) which
says that the tangential component of the electric field on the boundary is
given. The condition (5) is the weak type radiation condition for 1-forms
corresponding to the standard Silver-Miiller radiation condition (see e.g. [9]).
Before defining the general absorbing manifolds, let us briefly summarize
some of the earlier results obtained in the article [16] as a motivation for the
discussion to ensue. In the cited article, it was assumed that the scatterer
Q is included in a strictly convex domain D with a C3-smooth boundary. In
numerical approximation problems, D \ Q is the region where the fields are
requested. In [16], a specific complex stretching of the space outside D was
defined as follows. Let z € R® \ D. Since D is strictly convex, there is a
unique p € 0D such that

h = dist(z,0D) = |z — p|, (6)
whence z can be written as
T =p+ hn, (7)

where n = n(p) is the exterior unit normal vector of 0D at p. Let 7 :
[0,00) — [0,00) be a strictly increasing C3—function with limy . 7(t) =
limy ;o 7'(t) = 0o and 7(0) = 7/(0+) = 0. We define the function a : R® —
R? as a(x) = 7(h)n(p), if z € R*\ D, h and p given as in (6) and a(z) = 0 if
x € D. A complex stretching of R? can be defined as

iR —C, F(r) =z +ia(n). (8)

Let ' C C? be the manifold T' = {z € C* | 2 = #(z), = € R*}. In [16],
the PML equation corresponding to the Helmholtz equation was defined via
the analytic continuation of the Helmholtz equation to C* and taking its
restriction to I', that is,

(02, + 02, + 02, + kK*)ulr =0 (9)

where 0,, are the complex derivatives in C3. The central features of the
resulting equation are that

(a) the surface 0D is reflectionless

(b) outgoing waves are transformed to evanescent, exponentially decaying,
waves outside D.



In particular, these properties imply that a truncation of the computational
domain beyond the surface 0D by setting e.g. a Dirichlet condition, means
effectively the introduction of an absorbing boundary condition. The main
result of the cited article can be summarized as saying that

(c) the truncated problem is uniquely solvable, and the solution converges

with exponential rate towards the physical scattering solution in D as
the absorbing layer gets thicker.

R3

Figure 2: The PML-model can be represented as a stretching of the Euclidean
space R? to a surface I' C C3.

3 Absorbing boundary conditions and mani-
folds with complex metric tensor

In the present work, we extend the previous results to Maxwell’s equations
and for more general geometric situations. Compared to the previous articles,
we adopt a different a point of view: Rather than deforming the manifold
R? by complex coordinate stretching and considering the PML-equation via
analytic continuation, we define a complex metric on the manifold.

For instance, the previous example (9) can be considered as a manifold with a
complex metric in the following way. Let v = (u',u? v?®) and v = (v',v?,v?)
be complex vectors in C*. Denote by ¢¢ the complex Euclidean metric in C?,
i.e., in Cartesian coordinates,

3
¢ (u,v)=u-v= g wl, W, v eC.
7j=1
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Occasionally, we write u> = ¢¢(u,u), u € C*. Then we define a complex
metric on R?, denoted by g, : T,R® x T,R® — C, by setting

9a(u,v) = g (di(u), di(v)), (10)

where dZ is the differential of the mapping z — Z(z) at z. It turns out that
the metric g thus defined has a number of properties that give rise to a more
general class of what will be called absorbing metrics.

We start with some basic definitions. Given a manifold (M, g) we say that g
is a complex pseudo-Riemannian metric, or simply a complex metric if g is
a symmetric complex valued 2-contravariant tensor which is non-degenerate,
that is, the bilinear form g(u,v) = g,(u,v) in non-degenerate in the complex
tangent space T,M. The manifold M with a complex metric is called a
pseudo-Riemannian manifold. The Levi-Civita connection corresponding to
g is the connection V defined by the identity

29(Vyo,w) = ug(v,w)+vg(w,u) — wg(u,v) (11)

+ g([u,v],w) - g([u,w],v) - g([v,w],u),

where u, v and w are vector fields on M. The connection coefficients ka of
V are complex. The connection V satisfies the identity

Vg=0
and is torsion-free,
Vv — Vyu = [u,v].

As usual, we use the notation Vi = Vg 5., z* denoting the kth coordinate
function. The Riemannian curvature tensor R is defined by setting

R(u,v)w = V,V,w — V,V,w + V[, u. (12)

Next we are going to consider flat manifolds with complex metric, that is,
manifolds for which R = 0.

Lemma 3.1 Assume that (M, g) is a manifold with a complex metric which
is diffeomorphic to R® and flat, i.e., R = 0. Furthermore, assume that g
non-degenerate in the sense that for all tangent vectors 0 # u € T, M, there
is v € TyM such that g,(u,v) # 0. Then there are g-parallel orthonormal
vector fields e; satisfying

Vej = Oa g(eju ek) = Ojk-



The proof of this result is postponed to Section 5.

For vector field e; there are the corresponding co-vector field E; such that at
any x € M we have (E;,v) = g(ej,v) for v e T, M.

For the vector fields e; we can define the function 7+ M — C which we call
the integral functions of fields e;. Let o € M be a fixed point. For x € M
we define the function

i (z) :LEj:Ag(ej,v(t))dt

where v is an arbitrary path from z( to x. Later we show that these functions
are well defined, independently of the path . The integral functions of e;
define a function

T:M—C, oz (3'(x), (), 2 (2)).

Next we show that for flat pseudo-Riemannian 3-manifolds the mapping Z
is an isometric immersion of M to a totally real submanifold of C* and
conversely, any totally real embedding of R® to C?® gives rise to a manifold
with a flat complex metric.

To consider embeddings to C* we identify (C?, g¢) with (R®, G) having the

complex pseudo-metric as follows: If (2!,2% 2%) = (z! +iy', 2% + 19?23 +
iy?) € C* are the Euclidean coordinates, we define
0 9 0 9 o 0.

where ¢ is the imaginary unit. Furthermore, let us define the operator J :
TR® — TR as

0 0 0 0
: E — 6—yj’ J: a—yf — 3
which defines an almost complex structure on R®. This almost complex
structure corresponds the complex structure of C* and J corresponds the

multiplication with the imaginary unit 4 in C®. This identification is done to
avoid the notion of analyticity related to complex manifolds.

We remind also that a submanifold M of C* & RS is called totally real if for
all x € M, the real tangent spaces satisfy

TEM N JTEM = {0}.

J (14)
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Totally real manifolds play a crucial role in the theory of scattering poles
(see [20]) and symplectic geometry (see [11]).

We can prove the following theorem for the embeddings to C3.

Theorem 3.1 Let (M, g) be a flat pseudo-Riemannian manifold. Then the
mapping (3) defines an immersion T : M — R® such that g = T*G. In this
case, the manifold T (M) C R® is also totally real.

Conversely, if M is a 3-submanifold such that there is a totally real immersion

T: M — RS, and g = i*G, then (M, g) is flat.

The proof of the above Theorem is again postponed to Section 5.

We can now give the definition of an absorbing manifold.

Definition 3.1 A pseudo-Riemannian manifold (M, g) is called an absorb-
ing manifold, if

1. The manifold (M, g) is flat and M is diffeomorphic to R®. We denote
this diffeomorphism by ¢ : M — R3

2. There 1s relatively compact open set D C M where the metric is Fu-
clidean, that is, g = ¢*g° in D.

3. For real tangent vectors v € TXM, v # 0,
gz(v,v) # 0. (15)

4. The mapping T : M — C* given by formula (3) has the properties

(Z(x1) — T(x2))? = 0 if and only if v1 = xo (16)
and
Re ()" < —2¢o when |p(x)| > ¢ (17)
o) ?

where ¢y, ¢y > 0.



For geometric interpretation of above conditions, let us consider the variety

L={C=(¢G)eC | = 242—0}

Then the condition (16) states that the fibres z + £, z € Z(M) intersect the
manifold Z(M) only once.

Furthermore, the condition (15) is equivalent that for real vectors 0 # v €
TRM

Ga2)(dZ(v),dZ(v)) = gz(v,v) # 0, (18)
which means that the real tangent vectors Ti(x)( Z(M)) are not tangent vec-

tors of Z(x) + L. Hence the conditions (15) and (16) state that the manifold
Z(M) intersects each fibre z + £, z € (M) only once and transversally. In
particular, by (16) the immersion Z : M — C? is injective, i.e., an embed-
ding. The condition (17) is related to the asymptotics of embedding Z at
infinity.

The term absorbing manifold refers to the fact that if we place a source or
a scatterer inside D, the electromagnetic fields within D coincide with the
scattering solution while outside D, the complex metric causes reflectionless
attenuation of exponential type. Thus, M \ D is an absorbing layer. In
Appendix 1 we show that the complex stretching introduced in Section 1
gives an example of an absorbing manifold.

To obtain absorbing manifolds without considering properties of the embed-
ding z, we define the following class of manifolds with prescribed asymptotics
at infinity.

Definition 3.2 Letn € C, |n| =1, arg n €]0, 7). We say that the 3-manifold
(M, g) with a complex metric g is asymptotically n-Euclidean if the following
conditions hold:

1. There is a diffeomorphism ¢ : M — R® such that the metric g satisfies
1

(1 +le(=z))*

where 5 = *¢® is the Euclidean metric on M. Above the norm is the
tensor field norm in (T)M @ T M, 9).

192 — 92| < Co (19)
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2. The connection V corresponding to the metric g approaches the metric
V corresponding to the metric g in the sense that

IV -vl<c (20)

(1 +[p()])*

the norm being the tensor field norm in (TyM @ TxM ® T, M, 5)

In condition 2, observe that while the connections are not tensors, the dif-
ference of two connections is.

The above class is used to produce examples of absorbing manifolds. In
Section 5, we prove the following result.

Theorem 3.2 Let (M, g) be a flat, asymptotically n-Euclidean manifold con-

tatning a compact set D where the metric is Euclidean, g = 5 Then (M, g)
satisfies the condition (17). Moreover, if the constants Cy and Cy in the in-
equalities (19) and (20) are small enough, the conditions (15) and (16) are
satisfied. In particular, then (M, g) is an absorbing manifold.

Summarizing, any totally real 3-manifold I' C C* which coincides with R3
near origin, intersect the fibres z+L, z € (M) only once transversally and is
asymptotically the space /2R3 C C® is an example of absorbing manifolds.

It is our aim in the next section to develop a counterpart of the classical
electromagnetic scattering theory on absorbing manifolds. What is more, we
prove that the truncation of the computational domain in absorbing mani-
folds yield an exponentially converging approximation for the scattering so-
lutions.

4 Scattering on absorbing manifolds

Let (M, g) be an absorbing manifold. We define the Hodge—* operator cor-
responding to the complex metric g via the identity

UA*V = g(U,V)dvol,, dvol, =dz" Adi*Ad7°.
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Here the functions 7’ are the components of the embedding z : M — C3
given in Theorem 3.1.

We start by considering the Helmholtz equation for r—forms,
(A} + E*)U =0,
where U is an r-form and the g-Laplacian is defined in the usual manner as

AT = (—=1)"(xd * d — *d * dx), (21)

9

where ’x’ is the Hodge—* corresponding to the complex metric g. For Lapla-
cian for O-forms we use notation A, = Ag. We remark that the scattering
poles of the Euclidean Laplacian in R?\ Q and the eigenvalues of the operator
—A, on the absorbing manifold (M \ ©, g) have a close connection which is
discussed in Appendix 2.

Our first aim is to define a fundamental solution for the g—Helmholtz operator
for 0-forms. For z, y € M, denote & = Z(z), § = Z(y) and

-9y =0Q_@ - (22)

Jj=1

Because of Condition 4 of Definition 3.1, we can choose the sign of the square
root in a continuous way so that in a set {(xz,y) € M x M : |p(x)| > c(y)}
we have Im {# — §} > 0. Since the set M x M \ Diag(M), Diag(M) =
{(z,z) : € M} is simply connected, we can define the sign of {Z — ¢} in
a unique continuous way in M X M. In this way for all x,y € D we have
either {Z — g} > 0 or {Z— g} < 0. The first condition corresponds absorbing
manifolds for the outgoing radiation condition and the second one for the
ingoing radiation condition. In the following we assume that the condition
{Z — g} > 0is valid for z,y € D, and call such manifolds outgoing absorbing
manifolds.

With this notation, we can construct the fundamental solution of the Laplace-

Beltrami equation.

Theorem 4.1 Let (M, g) be an outgoing absorbing manifold. The function
¢ik{a—)

Ar{z — y}

12

O(z,y) = (23)



is a fundamental solution of the operator A, + k* acting on 0-forms, i.e., it
satisfies

(Ay+ E)®( - ,y) = =6, (24)
It satisfies the asymptotic estimate
1®(z,y)| < Cye K@ when |p(x)] > ¢, (25)

where ¢y > 0 and diffeomorphism ¢ : M — R® are given in Definition 3.1
and ca = co(y) > 0.

Above, the Dirac delta is to be interpreted with respect to the volume form
defined by the metric g, e.g. if ¢ is a C*° 0-form on M, we have

/M (2)8, ()dvol,(z) = ¥(y).

The asymptotic condition (25) is the counterpart of the radiation condition
on absorbing manifolds.

The proof of the above theorem as well as the other technical details in this
section are again postponed to later sections.

Next we consider time harmonic Maxwell’s equations on the absorbing man-
ifold (M, g), written for 1-forms as

dE =ik« H, dH =—ik+E (26)

with the Hodge—* arising from the absorbing metric. Let €2 C D be a rel-
atively compact open smooth subset of Euclidean part D of the absorbing
manifold (M, g).

Problem 4.1 The exterior scattering problem for Mazwell’s equation on the
outgoing absorbing manifold in the set M \ Q) is to find 1-forms E and H
which satisfy in (M \ Q, g)

dE = ikxH, (27)
dH = —ik+E, (28)
gk = ¢ (29)

and the radiation condition

|E()]], ||H(z)|| < Ce*le@l " when |p(z)| > ¢z, co, 2 > 0. (30)
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In the above radiatic())n condition the norms of the one—forms are the norms
with respect to the ¢, i.e.

1E@)I* = |E@)Il; = 9.(E(z), B(z)),

We refer to this condition (30) as the g-radiation condition.

The existence and uniqueness proof of fields solving the above problem is
based on a generalization of the Stratton-Chu representation theorems (see
[9]). Indeed, similarly to the standard scattering theory, the fundamental
solution for Maxwell’s equations can be constructed by using the scalar fun-
damental solution. Let A and B be 1-forms given as

A=aq;di’, B =b;di’

with VA = VB = 0. We define G(z,y) = Ga,p(z,y) as

G(z,y) = ( e (i_kl_;d*d* ik — (il:)cild*d* ) ( 28:332 ) - (B31)

We define the Maxwell operator M and the Hodge star operator for pairs
(E,H) as

M E\ 0 d E . E\ [ xE
H) \ —-d o0 H )’ H ) \ xH )’
As in the standard scattering theory, we have the following result.

Theorem 4.2 Let (M, g) be an outgoing absorbing manifold, y € M. The
field G = G 4 p satisfies

T . . . Aéy . T 0 —d
(+M* +ik)G( ’y)_(Béy) inM, M _<d 0 ),

and the asymptotic estimates

G(z,y)|
V.G (z,y)|

C(y)e keole@)l

IAIA

when |p(z)| > ¢z, c2 = ca(y).
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In the following, for pairs of 1-forms P = (e, h) € A'(M) x A'(M) we use
the notation (P); = e, (P)y = h. The fundamental solution defined in the
previous theorem gives following existence and uniqueness theorem for the
scattering problem.

Theorem 4.3 Let (M, g) be an outgoing absorbing manifold. The scattering
problem 4.1 has a unique solution. Moreover, when i3oE = ¢ and iy H = 1
are boundary values of this solution, the field E and H can be given as

E = { /m(—ﬁé A (Gazip)2 + P A (Gdi:‘,oh)}dij
H = { /m(—gb N (Go,azi)2 + U A (Go,djj)l)}dazj (32)

Furthermore, in the neighborhood D \ Q where the metric is Euclidean, the
solution (E,H) equals in D\ Q to the solution (FEs, Hs.) of the classical
scattering problem (Problem 2.1).

When the field computation is done in practice e.g. by the FEM, we need to
replace the exterior domain problem by one that can be computed in a finite
subdomain of the exterior domain. The scattering solution on an absorbing
manifold serves as a useful tool for this purpose. First, it coincides with the
physical exterior scattering solution near the scatterer. Secondly, it decays
exponentially due to the g—radiation condition, so one could expect that if we
force the solution to zero at a finite distance, the effect near the scatterer is
minimal. To explain this in rigorous terms, we first formulate the truncated
scattering problem.

Problem 4.2 The truncated scattering problem for Mazwell’s equation on
the outgoing absorbing manifold (M, g) is to find 1-forms E and H which
satisfy in a compact set B\ ), B C M the equation

dE = ik« H, (33)
dH = —ikxE, (34)
ik = ¢, (35)
igE = 0. (36)
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Our aim is to show that the solution of this problem is close to the physical
scattering problem (Problem 2.1) in the vicinity of the scatterer. To analyze
the truncation of the manifold to a bounded domain, we need to specify
the asymptotics of the manifold at infinity and pose a new local coercivity
condition, as is explained below. Our main result for the truncated scattering
problem is given in the following theorem.

Theorem 4.4 Let (M, g) be an outgoing absorbing manifold which is asymp-
totically n-Euclidean. Moreover, assume that the metric g satisfies the fol-
lowing local coercivity condition: For each bounded set S C M there are
constants a = a(S) € C and C = C(S) > 0 such that

Re (a /S UA*U) > C /S U (@) Zdvoly(a) (37)

for all 1-forms U € L*(S,A'). Furthermore, let B C M be a bounded set so
that
R= disto(aB, ) > 0.

When R is large enough, the truncated scattering problem (4. 2) for the 1-
forms (E,H) has a unique solution. Moreover, the solution (E,H) is ez-
ponentially close in D to the solution (Fs., Hs) of Problem 2.1, that is, we
have

| Esc — Ellz2ipre) < Ce |9l 3-1/2(00), (38)
|Hse — H|lz2(p\0) < Ce [ @]]3-1/2(50)-

Above H~1/2(9Q) is a function space which defined later. At this point we
note that for instance the space C'(0M, A') can be continuously be embedded
to the space H1/2(00).

Remark 1. We note that the local coercivity condition (37) can be formu-
lated for the metric tensor by requiring that for all S there is a such that
the matrix Rag”(z)\/g(z), g(z) = det[g;;(z)] is positive definite for z € S.
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5 Proofs concerning geometry and Green’s
functions

In this section, we have collected some detailed proofs that were omitted in
the previous sections. We start by constructing a family of parallel vector
fields that generalize the Euclidean coordinate basis in absorbing manifolds.

First we prove Lemma 3.1

Proof. (of Lemma 3.1) Let (M, g) be a flat pseudo-Riemannian manifold, ¢ :
M — R® adiffeomorphism such that y = (y', ¥, y®) = () are the Cartesian
coordinates on M. Let zo € M be the point satisfying ¢(xy) = 0. First
we construct linearly independent g-orthonormal vectors e;(zy) € T, M,
j =1,2,3. Since the matrix G = [g,;(x¢)] corresponding to the metric tensor
in y-coordinates is non-degenerate, zero is not an eigenvalue of G. Thus we
can define its power

G2 = L /21/2(G —2) Mz

2m ),
where z7/2 is defined analytically in a set C\ 2oR,, 29 # 0 and v C C\ 2R,
is a path having winding number one respect to the eigenvalues of G. The
columns of the matrix G~1/2 give us the g-orthonormal vectors e; (7). Let
I, denote the connection coefficients of g in the coordinates y*. By writing
k_@

ej = ;5,5 the equation Vie; = Vg g rye; = 0 can be written as

where Ay = Ak(z) = (MRicnecs € C° a; = a4(y) = (f)1<e<s With

o%(0) = &% Since the curvature vanishes, we have [V, V] = 0, or in the

coordinate representation,

0 0
Bry=|=—+ A, — + A =0. 40
ke [ayk b 5y (| (40)
We can solve the equation (39) by a straightforward integration along paths
originating from y = 0. To see that the solution is independent of the path,
let v be a closed piecewise smooth path, and let S be a smooth surface having
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7 as its boundary curve. By Stokes theorem and equations (39) and (40),

oo K
?{83:’]“ dz* ?{Akajdx

= /d(Akoz]) A dz* = / Z (Bgerj)dat A da* =0,
s

S <k
as a straightforward calculation shows.

Since V is a metric connection, it follows from the properties of the fields e;
that

V(g(ej,ex)) = 0.
This yields
9(ej,ex)la = g(€j, €k)lag = Ojn, = € M.
The proof is thus complete. O

Lemma 5.1 Let (M,g) be as in Lemma 3.1. There erists an immersion
T:M—C, x— 1= (3',3% 7% such that for all vectors v € T, M we have

(d7?,v) = g(e;,v).

This mapping s called a generalized coordinate stretching.

Proof. Let E; € T*M be the 1-form corresponding to e;, i.e., (E;,v) =
g(e;,v). Because the torsion of V vanishes,

0 0 0 0
85<Ej’axk> ak< J’a g) = V( (61’8 k))_vk(g(ej’W))

o 0
= ei, | =—,=—1) = 0
g( J |:axg 83:’“})
by the properties of the vectors e;. But, this means just that dE; = 0.
Since M is diffeomorphic to R?®, by the Poincaré lemma, there is a mapping

i/ : M — Csuch that E; = di’. Since the forms E; are linearly independent,
T is an immersion. This completes the proof. O

To get further insight to the immersion z, let v : [0,1] — M be a given path
from the point zy to the point x € M, we have

/dxﬂ / A dt—/og(ej,f'y(t))dt.
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By Stokes formula, the integrals depend only on the endpoints of the inte-
gration path. We may thus write

= [Taw = [ gte 0 (a1)

o 0

i.e., the functions 77 are the integral functions of ;. They are generalizations
of the Cartesian coordinate functions on M.

Lemma 5.1 shows that there exists an immersion Z : M — (R° G) such
that ¢ = 2*G. Moreover, since the metric tensor g in non-degenerate, the
manifold (M) is totally real. Indeed, if Z(M) is not totally real at z, there
are non-zero a,b € TXM such that dz(a) + JdZ(b) = 0. This would imply
that g(a + ib, c) = G(dZ(a) + Jdi(b),di(c)) = 0 for all ¢ € TXM and thus g
would not be non-degenerate. This gives us the first part of Theorem 3.1.

Consider the converse part of Theorem 3.1. We need to show that a totally
real submanifold in C? is flat.

Lemma 5.2 Let M be a 3-manifold and assume that there is an embedding
Y : M — (RS G) such that (M) C (R®,G) is a totally real submanifold.
Let g = ¢*G be the pull-back of the complex pseudo-metric G. Then (M, g)
is flat.

Proof. As before, we see that g is non-degenerate since Z(M) is totally real.
Denote the Levi-Civita connection of (R, G) by V¢ and of (M, g) by V. By
definition of the Levi-Civita connection (11), we get

Vb = 9*(Vi 1),

where a and b are real tangent vectors of M. We note that Vg*aw*b is
well defined since 9,a is a real tangent vector of (M) in RS. We want to
generalize this for complex tangent vectors. We define a complexified push-
forward map ¥ as

U :ToM — TyR®,  a+ib— a+ Jipb,
where a,b € TXM are real tangent vectors. Since M is totally real, we have
R R _ R 6
Ty (M) & JTyy (M) = Ty R,
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implying that the mapping V¥ is a bijection. In particular, there are smooth
complex vector fields e; on M, 1 < 5 < 3 such that

0
\II(e]-) = @
Since G has the form (13), we see that V§(JB) = JV§(B) for vector fields
A and B in R®. Thus we have for real vector fields a, b and ¢
U(Vu(b+ic)) = U(Veb+iVace) = . (Veb) + Ju(Vace) =
=V b+ IV e =V (U(b+ic)).
This together with V9(9/027) = 0 implies that Ve; = 0, i.e., the vector
fields e; are parallel complex fields on M. By the definition of the curvature
tensor R, we obtain

R(ejaek)eZZO, 1 S],k,£S3,
and since the vectors e; span the complex tangent space, we have R = 0. O

Along with the above lemma, Theorem 3.1 is proved.

Next we consider the asymptotic behaviour of the immersion Z for n-Euclidean
manifolds.

Lemma 5.3 For a flat, asymptotically n-Euclidean manifold (M, g), the im-
mersion T : M — C* satisfies

#'(z)” + 2 (2)” + 2 (2)* = nlo(@)|* + O(p(z))),
and
|77 ()| < Clo(z)| + O(1),

where ¢ denotes the diffeomorphism appearing in the Definition 3.2 and |n| =
1, arg(n) €]0, 7.

Proof. We can assume that the embedding ¢ is given such a way that §jk =
djx- We denote the corresponding coordinates by y = ¢(z). Let I, (y)
be the Christoffel symbols of the connection V in y-coordinates. In the y-
coordinates the Christoffel symbols of the connection V° vanish. Thus by
Condition 2 of Definition 3.2 implies

|F§k(y)‘ < Ci(1+ [y (42)
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Let e; = afak be the representations of the parallel vector fields e; in y-
coordinates. The equation Ve; = 0 takes the form

da®
i LA (43)
Consider next of(y) at two points y1,y, € R® and a path ; connecting the

points y; and y,. We choose v, to be a line segment between points y; and
yo. Then by using (42) and (43) along this line segment, we see that

|0 (y2)| < [ (y1) e (44)
Thus, by considering a fixed y;, we see that there is a uniform bound
| (y2)| < C. (45)

Observe that here the exact value of the constant C' has not yet estimated
but we just know that |a¥(y)| is uniformly bounded by some constant C.
To improve this estimate, let us connect the points v, y, € R® by a path 7,
which the union of an arc from y; to %yg on the the ball {y : |y| = |y1|} and
the line segment from the point %yQ to the point y». By using differential
equation (43) with estimate (42) and (44) on the path 7, together with the

fact that the length of path 7, less than (1 + 7)|y; — y»|, we obtain

Ci(1+7) |y — yo
min((1 + |y1)%, (1 + [ya])4)

[ (y2) — a5 (1)] < e laf(yn)l.  (46)

This relation is valid for any y; and y,. Estimates (45) and (46) show for an
arbitrary sequence y, € R®, p < |yp| < p+1,p=0,1,2,... that (o (y))32,
is a Cauchy sequence in C. Indeed,

| A 2. 20C e (14 7) _ CCLeC (1 +7)
; |aj (ytﬁ-l) - Q; (yQ)‘ < Z (1 + q)g < (1 +p)2 : (47)

q=p

Thus there exists limits df = limy,(,)|-00 04 (y) and

001601(1 + 7T)
(1 +[y])?

k k
o (y) — dj| <
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Since e; are g-orthonormal, i.e., g(e;, e;) = d;;, Condition 1 of Definition 3.2
yields that

> afW)afy) =0+ O((L+1y) ™). (49)

k=1
Thus we see that

3
Z dfd;c = n_léjl. (50)
k=1

This means that the inverse of the matrix [d¥] is its real transpose times 7).
Next, let us consider complex coordinates 77 (y) defined in formula (41). By
using as the path 7 a line segment from the origin to y in formula (41), we
obtain

) ]
P(y) = / g(ej,y)dt = / gr(t)c (tg)g' dt, § = % (51)
o 0

Combining the above estimates, we get

, vl 3
#(y) = / (st + O((1+ 1) D)dt =03 diyb +0().  (52)

By (50) and (52) we get
3
> & (y)* =nlyl> + O(ly)).
j=1
This gives us the first assertion of Lemma 5.3. Moreover, formula (52) yield
|77 (y)| < Cly| + O(1) which is the second assertion of Lemma 5.3. O

By using previous considerations we can prove Theorem 3.2.

Proof (of Theorem 3.2) Let us consider a flat, n-Euclidean manifold (M, g)
which contain a compact Euclidean subset D. First we observe that condition
(19) for the metric tensor with Cy < 1 yields condition (15).

To obtain condition (16), we need to consider the proof of Lemma 5.3 in
more detail. By replacing vector fields e; by their linear combinations, we can
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assume that e; are parallel g-orthonormal vector fields for which d% = n=/25%
(see (50)). Thus when ¢(y;) is large enough, we have >, |of(y1)[> < 2. By
using estimate (44) for this y; we obtain

ok (y)| < C =2¢7, y e M.

This gives now estimate (45) where C' = 2¢“", that is, C' can be estimated
by using C;. Substituting this in to the formula (48) we see that

201 (1 + m)e?@
(1 +[y))>

Next, let 21,22 € M, y; = ¢(z;) € R® and consider integral

o (y) — dj| < (53)

(2, — 7 (25) = / glej, (1)) dt

Y

(compare with 51) where the path 7 is a line segment between y; and ys.
Then inequalities (53) and (19) imply that

3
|57j(371) - jj(ﬂb) - Zn(yi - Z/é)dﬂ
=1

/ g(e; — iy, 3)dt / (g — §)(d50p, 3)dt

Y Y
< (14 Co)-2C1(1 + m)e |y1 — ya| + Colyr — val.

IA

+

Thus when Cy < 5 and C) is so small that C;(1 + m)e?™ < &, we see that

conditions (16) and (17) are satisfied. O

Next we give the proof of Theorem 4.1. We consider first the complex volume
form
dvol, = g"/?(z)dz' A dz® Ada®, g(z) = det(gi;(z)).

This definition coincide with the definition given in Section 4. Indeed,
di?(ex) = 6, which means that dz’ are dual to g-ortonormal basis e;. A
direct computation gives

#di' = dF* N di®, +di® = —di' AdEP, xdi® = di' AdP?,  (54)
dvol, = di' AdE® Adz.
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Next we prove Theorem 4.1.

Proof of Theorem 4.1. The asymptotics of ®(z,y) follows from Lemma 5.3.
We will show equation (24) in the case £ = 0. The proof for general case
is analogous. At first stage, we keep y fixed. We start by showing that for
some 3 € C

| 2 a ()il @) = puly) (59

R3
for any ¢ € C§°(R®). For this end, let us consider differential dz|, at point
y. Next we fix some local coordinates near y and thus we can identify the
vectors v € T,*M with v € R® and dZ|, with the matrix H € C**. By
formula (18), the function

h(v) = g(v,v) = G(Hv, Hv) = H'Hv-v # 0

for v € R \ {0}. Since h(R®) is a convex set, and function h(v) does not
vanish for non-zero vectors v, we see there is a(y) € C such that

a(y)gy(v,v) > 0 for v e T,)M \ {0}. (56)
This implies that thereis § € C, |¢| = 1 such that g(v,v) ¢ ER_ forv € T,XM.

To analyze the Green’s function, we define a regularized function

1

Q. (z,y) = An((Z — §)? + &e2) 12

where £ € C, |[£] = 1 is chosen as above. A simple calculation using (54)
shows that

—3&e?
Ar((Z — §)? + &e2)5/%

Ag@.(z,y) = *dxdP.(z,y) =

Since A, is symmetric with respect to the inner product corresponding vol-
ume dvol,, we obtain in polar coordinates (r,0) € Ry x S%, rf =z —y

/R .0, 9) Ay () vl z) = /R 8. () () dvoly )

—3&6e? s 12
N /R+ /52 A ((z(r0) — 9)* + £62)5/2¢(7"0)7' g /“drdf.
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By using the variable s = ¢7'r, the matrix H = di|, and a = g(y)'/? =

det(H'H)'/? (where the sign of the root has been chosen continuously in
M), we obtain

3a&s?
/I;SCD (z,y)Agth(x)dvoly( /R+ /52 (2 (H +§)5/2¢(0) dsdf + O(e).

This shows that the equation (55) is valid for some . To find out the value
of 3, we consider the last integral as an analytic function of the matrix H
defined in the set

W={HecC> . (H))*ZER_, v e R\ {0}}.

Next we use the fact that W a path-connected and open. When H is a real
matrix, a change of variable shows that

3a§s
/ /52 I (2 (HO)? + 6 dsdf = +1,

where the sign depends on the sign of a. Since this integral depends analyti-
cally on H and is constant 41 for real matrices H € W, this integral has to
be a constant in WW. Hence we have shown for any point y that § = £1. As
a function of y, § = B(y) is continuous and get values +1. Since metric is
Euclidean in D, we see that 3(y) =1 in D. Since M is connected and 3(y)
depends continuously on y, we have to have 3(y) =1 in M. O

6 Proofs for Maxwell’s equations on absorb-
ing manifolds.

Having established the fundamental properties of absorbing manifolds, we
discuss next the solutions of Maxwell’s equations on these manifolds. For a
rigorous discussion of Maxwell’s equations, we fix first some notations and
the function spaces needed in the sequel. Let us denote by *¢ the Hodge-*
operator defined by Euclidean metric ¢g° in R®. For for an open set S C R?
we use the space L?(S) of 1—forms with the norm

Ullzs) = (| T A0y (57)
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Sometimes, we write simply ||U]|z>(sy = [|U]|2- The corresponding space of
square integrable r—forms is denoted as L?*(S,A"). We define an exterior
Sobolev space

H(S,A") = {U € L*(S,A") | dU € L*(S,A"™)},

equipped with the norm ||U||% = ||dU||2 + &||U||2, where k£ > 0 is the wave
number, k = w/¢, included in this norm for dimensional reasons. To consider
boundary value problems for forms, we define the space of r-forms, which
tangential component vanish on the boundary:

Ho(S,A") ={U € H(S,A") [ 130U = 0}

where i* : C°(S,A") — C*(9S, A") is the pull-back corresponding embed-
ding i : S — S. Further, if S C R? is an exterior domain, i.e., a neighbor-
hood of infinity, we define

Hraa(S, A™) = {U € H(S,A*) | U satisfies the radiation condition (5)}.
Finally, we denote
Hrad,0(S, A7) = Ho(S, A") N Hyaa(S, A7).
Next we generalize the definitions of the previous spaces on an absorbing
manifold. When the Euclidean space R? is replaced by the absorbing man-

ifold M we have two metric tensors g and 53 We denote by * and *° the

Hodge-* operators defined by metric g and 3, correspondingly. The space
L?(S,A"), S C M is defined with the norm analogous to formula (57) by

using the positive definite metric g. On the absorbing manifold M the usual
radiation condition needs to be replaced by an exponential decay condition
(30). When S is an exterrior domain in M, i.e., M \ S is compact, we denote

HE (S, A") = {U € H(S,A*) | U satisfies the g-radiation condition (30)},

rad
and, correspondingly we define %7, ,(S, A").

To solve boundary value problems, we need to specify the mapping properties
of the boundary traces. We denote by das : C®°(9S,A") — C>®(8S,A™1)
the exterior derivative of forms over the boundary. We denote by H*(9S, A")
the closure of C*°(9S, A™) with respect to the norm

|wllasas) = lldoswl| ms(as,ar+1y + Ellw s (as,a7)-
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By the theorem of Paquet ([18]), we have the following result: The mapping
154 extends to a continuous and surjective mapping

i5e : H(S, A7) — H~2(DS, A").

For later purposes, let us define the analog of scattering problem 2.1 on
absorbing manifolds for non-smooth boundary values:

Problem 6.1 Find the fields (E, H) € H2 J(M\Q, AY) xH? ,(M\Q, A) sat-
isfying Mazwell’s equations on an absorbing manifold (M, g) with the bound-

ary condition
inoE = o € H 2(80).

We refer to this problem later as a Full Space Problem.

Next we consider the proof of Theorem 4.2. For this, we have to consider
Green’s functions of Maxwell’s equations. Because of the form of Maxwell’s
Green’s functions (31) is given in explicit terms, we can compute by using the
formula (54) how the Maxwell’s operator operates to the function G 4 g(z, y).
This computation together with Theorem 4.1 gives the formula

(ME 406 ) = (3 )

in M. Moreover, by formulas (54) and Lemma 5.3, we see that the function
G 4,p satisfies the g-radiation condition (30). This proves Theorem 4.2.

Next we apply Theorem 4.2 for the Problem 6.1.
Theorem 6.1 The Full Space Problem (Problem 6.1) is uniquely solvable.
Proof. The existence and uniqueness of the solution is based on the represen-

tation theorems. Let G = G 4 p be the fundamental solution of the Maxwell
operator on (M, g), and G = G4 p the corresponding solution on (R?, g%),

CF (a.y) = ik — (ik)7'd +€ d«€ *€d ¢ (2,y)A®
z,Y) = ¥ d ik — (ik)"'d+€ dsf ) \ @F(z,y)B®
with ;
(DS(.T) ) — M
Y= At|z — y|’
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and A® = a;dz? and B® = b;dz?. We have

(EME +ik)GE( - ,y) = ( 4%, )
; BSé’y .
Now suppose that (Es., Hy.) € Hraa(R® \ Q,A!) X Hpaq(R® \ Q,Al) is the
unique solution of the classical scattering problem of Maxwell’s equations
with the boundary data i5,E¢ = ¢ € H™/2(8Q). Let us denote by brevity
Xeo = (Bye, Hye), G§ = G¢ = (G{,G%). An application of Stokes formula

A€ BE
in the exterior domain together with the classical radiation condition yields

the representation formula

B NP A% + Ho AN¥°B° = { / (Xee A MTGE — M X, A Gf)} dvol e
R3\Q

= {/aQ(HSc AGE — Ey A Gg)} dvol

By choosing first A = dz/, B¢ = 0 and then A® = 0, B = dz?, we obtain
the classical Stratton-Chu representation formulas for 1-forms, correspond-
ing to those in (32) with Euclidean metric. Now we simply define a solution
of Maxwell’s equation on the absorbing manifold M by

o= { [ CBenGualet Hh Guo) pa? (59

H = {/ (_Esc A (GO,dij)Z + Hsc A (GO,da'cj)l)} djj
N

Obviously, these fields satisfy Maxwell’s equations in M \ Q. Furthermore,
since G(z,y) = G°(z,y), as (z,y) € D x D, we have (FE(x),H(x)) =
(Es.(x), Hi(x)) as x € D. Thus (F, H) satisfy the boundary condition (29).
Thus we have proven the existence of a solution which satisfy formula (32).

Next we prove the uniqueness. First we observe that if (E, H) is a solution
of the Problem 6.1 with f = 0, then an application of the Stokes formula
yields a representation formula (32). By setting

Bl = { [ (=B A(Ghg+ H A G0 fd
o0

Hl, = {{ (—EA(Gam+HA(G§,W>1>}W,
o0
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we have a solution of the classical scattering problem (Problem 2.1) with
homogeneous electric boundary value. By the classical uniqueness theorem
(see [9]), we deduce that this solution must be zero, so also E = H = 0 at
the boundary. By using the Green’s formula with (E, H) and G4 g(z,y) on
M\ Q, we see that E = H = 0 everywhere on M \ Q. a

7 Approximation of scattering problem with
bounded computational domain

Next, we discuss the truncation of the exterior domain of absorbing mani-
folds. Let us fix some notations by using local coordinates on M. If U be
a 1-form on M, U = U;dz?, we denote by u = u?(9/dxz7) the vector fields
obtained as v/ = ¢/*U,.

The following definition has a counterpart in the previous work [16].

Definition 7.1 Let (M, g) be an asymptotically n-Euclidean absorbing man-
ifold and Cy the constant appearing in Definition 3.2. The point x € M is
said to be in the ezponential range if |¢(z)| > 4C,’* (Im n'/2)~1/4,

The fact that (M, g) is an outgoing absorbing manifold yields that /g(z) —

n*2\/g°, g° =det [513] as |p(z)| grows, so the exponential range corresponds
to a far field region.

Definition of the exponential range and the estimate (19) implies immediately
the following estimate.

Lemma 7.1 Let (M, g) be an asymptotically n-Fuclidean manifold and let
x € M be in the exponential range in the sense of Definition 7.1. Then

Im 77%

4

g(@ :
‘ @) o0, v) =230,y < B 0mv.

The previous lemma is used to establish an energy type estimate for fields in
the exponential range.
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Lemma 7.2 (a) Let S C (M, g) be a bounded domain with a smooth bound-
ary, and assume that S is in the exponential range. Assume that (E, H) €
Ho(S, AY) x H(S, A) satisfy Mazwell’s equations

dE =ik +H+ K, dH=—ikxE+J (59)
in S, where (K, J) € L?(S,A?) x L*(S,A?%). Then
k(B2 + [1Hl2) < CUK]l2 + [17]]2)- (60)

(b) Let S C (M, g) be the complement of a bounded domain with a smooth
boundary, S being in the exponential range. Assume that (E, H) € H;, 4 4(S, Ab)x
H? (S, AY) satisfy Mazwell’s equations (59) in S, where (K, J) € L*(S, A2) x
L?(S,A?). Then the estimate (60) holds.

Proof. (a) Since E € Ho(S, A'), we have
/dE/\H—/EAdH:O. (61)
s s
By substituting Maxwell’s equations it follows that
‘%@/EAQ?HE/?AHﬂ::|/EA7—HAK1
s s s
< ([Ellz + [[HI2) ([ ]l2 + [ K]]2)-

By definition of the Hodge-*, we have

EN*E =, /gg(E,F)dvolg, HAxH =, lgg(ﬂ, ﬁ)dvol;.

From Lemma 7.1, we obtain the estimate

—ik/ ‘/Eg(E,F)dvolo—i-ik/1/§g(H,H)dvolo
S go g o g

@ ) + 1) ~ & [ (|, [EatE By~ it )

“/ (H,H) — 1/2(HH)‘>dvolo

1—Zﬂmn)mEm+HHH)

v

v
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and so the desired estimate follows.

(b) The proof of the claim is similar to the proof above. The only thing that
needs to be observed is that the equation (61) follows from the exponential
decay of the solutions. This in turn is a consequence of the representation
formula (58). O

As a corollary, we get the following important result.

Theorem 7.1 Let S € (M, g) be as in Lemma 7.2. The Dirichlet problem
dE =ik« H, dH = —ik+E in S,

ineE = ¢ € H ?(9S)
has a unique solution (E,H) € H(S,A') x H(S,A') if S is bounded, or
(E,H) € H® ((S,A") x H (S, A") if S is an exterior domain.

rad rad

Proof. We consider the case where S is bounded. The case where S is an
exterior domain goes with obvious changes. Let R : H~Y/2(9S) — H(S, A!)
be a right inverse of i}5. We seek to solve the Dirichlet problem in the form
(E,H) = (Ey+ Ro¢, H), where (Ey, H) € Hy x H satisfies

dEy =1k x H — dR¢, dH = —ik x Ey — ik x R,

or in operator notation,
(M +ikx)X =Y,

where X = (Ey, H), Y = (—ik x Rp,dR¢), and

M= ( _Od Coi > : D(M) C L*(S,A") x L*(S,A") — L*(S,A%) x L*(S, A?),

the domain of M being D(M) = H,(S, A') x H(S, Al).

It follows from Lemma 7.2 that (M +ikx) is one-to-one. To show that it has
a dense range, let us denote

Mjﬁz/&AK+/&AE, (62)
S S

where X = (X, X,) € L?(S,A') x L2(S,A"), Y = (Y1,Y3) € L*(S,A?) x
L?(S,A?). By applying Stokes theorem, we can see that M* = M, where
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M* is the adjoint of M respect of pairing (-, - )g. Since (M +ikx)* = M+ikx
is one-to-one, the range of M+ikx is dense. Moreover, M is a closed operator
in the sense that its graph is closed. Thus, by applying Lemma 7.2 we see
that the range of M + ik« is closed, and hence M + ikx is surjective.

By open mapping theorem, M + ik* has a bounded inverse, proving the
existence of the solution (F, H) along with the norm estimate

E(I1ENz + [[Hll2) < Cll@ll3-1/2-
O

Consider now the truncated scattering problem on an absorbing manifold:

Problem 7.1 Let D C M be a neighborhood of the scatterer where g 1is

FEuclidean, and let Bg be a neighborhood of D, where distance in 9-metric
satisfies dist(D, M \ Bg) = R > 0. The truncated scattering problem on an
outgoing absorbing manifold problem is to find (E, H) € H(Br\Q) x H(Bg\
Q) satisfying

dE =ikxH, H = —ikxE,

with the boundary conditions

Z:‘;QE - ¢ € %71/2, Z:;BRE - 0.

Unfortunately, Theorem 7.1 gives the existence of the Dirichlet problem only
in domains away from the scatterer, so the solution of the above problem
cannot be deduced to exist. However, we can reduce the existence of the
solution to the existence in the far field region. To this end, we need to define
appropriate equivalent problems corresponding to the scattering problem 6.1
and to the truncated problem 7.1. Therefore, for r < R let B, CC By be a
neighborhood of D that is slightly smaller than Bg, 0 < dist(D, M\ B,) = r.
If r is large enough, the exterior domain M \Er as well as the annulus B R\Er
lie entirely in the exponential range. Then, by Theorem 7.1 we may find a

solution (E, H) € H? ,(M \ B,) x H? ,(M \ B,) satisfying
ZBBTE == '(/].

Let 6 > 0 be small enough such that r + 6 < R. We define a double surface
operator Z : H~'/2(0B,) — H~'/2(0B,,s) by setting

Zy =iy
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where E is the electric 1-form above. Similarly, Theorem 7.1 guarantees the
existence of (E, H) € ‘H(Bg\ B,) xH(Br\ B,) satisfying Maxwell’s equations
with the boundary conditions

s, E = € HY*0B,), 5y, E =0.

Thus, we may define the double surface operator in the truncated domain,
Zp: HV*(0B,) = H /%(0B,,;) by setting

ZR,lp - /L.ZBTJ,_(;E'

These definitions lead us to consider the following rather non-standard bound-
ary value problems.

Figure 3: The absorbing layer is truncated by surface 0Bg. To analyze the
convergence when R — oo, the full space problem is transformed to problem
in a bounded domain B, s by using operator Zr which maps the value of
the field on 0B, to the value of the scattered field on 0B, ;.

Problem 7.2 (a) Find the fields (E, H) € H(B,4s5 \ Q) X H(B,45 \ Q) sat-
isfying the Mazwell’s equations with the boundary conditions

isoB=0¢€H ?00), iy, F=ZijFE.

(b) Find the fields (E, H) € H(B,15\Q)xH(B,1s\Q) satisfying the Mazwell’s
equations with the boundary conditions

B =0 € HT?(0Q), sy, E = Zrij E.
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We have the following result.

Theorem 7.2 The problems 6.1 and 7.2 (a) are equivalent. More precisely,
Problem 6.1 has a solution (E, H) if and only if Problem 7.2 (a) has a solution

(E,f]), in which case (E,H) = (E, H)|BT+5\§-

Similarly, the problems 7.1 and 7.2 (b) are equivalent in the same sense.

Proof. If (E, H) is a solution of the Problem 6.1, a solution for Problem
7.2 (a) is obtained by setting (E, H) = (E, H)|p \g. To prove the converse,

let (E,ﬁ)_be the solution of the Problem 7.2 (a). We define (E',H') €
HI (M \ B,) x H? (M \ B,) as the solution of Maxwell’s equations with

rad rad

the Dirichlet data B
Z'BBTE, :/L'BBTE’
which is possible by Theorem 7.1. Then also

-k o g%
ZBBTHE = zaBTHE,

and by Theorem 7.1, (E,FI) = (E',H') in the annulus B,,s \ B,. Hence,
(E, H) can be continued to a scattering solution by gluing it with (E', H').

The proof of part (b) goes similarly. !

From now on, we consider solely the solvability of the Problems 7.2. From
Section 6.1, we already know that the problem (a) is solvable. The solvability
of problem (b) and thus the solvability of the Problem 7.1 is proved by
showing that is in fact a small compact perturbation of the problem (a).

Lemma 7.3 The operators Z, Zr : HY?(0B,) — H?(0B,,5) are com-
pact operators with
|1Z — Zg|| < Ce™®/2.

Proof. Let (E,H) € H\q(M \ B,) x Hey(M \ B,) and (E, H) € H(Bg \
B;) x H(Bgr \ B;) be the solutions of Maxwell’s equations in M \ B, and
Bgr \ B,, respectively, with

% . % = _ % _
ZBBTE = zaBTE =), ZBBRE =0,
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and write

E'=Ely,5 — B H =H,5 —H.

Then (E', H') satisfy the Maxwell’s equations in Bg \ B, with the boundary
conditions
iy, E' =0, 5y E' =iy E.

From Theorem 4.2, Theorem 4.3, and Lemma 7.2, we obtain the estimate
K(IE |2+ [1H'l2) < Clligp, Blly-rr2 < Ce 72163y

Also, the same theorems imply that
1dE"||2 + |dH "l < Cllip, Bl < Ce*0%2](g] |3y

Thus,

1958, s Ella-1208,15) < | Ellas, 8, < Ce kOR8] 312,

as claimed. O

Our goal is to find Fredholm type equations that are equivalent to the prob-
lems (a) and (b) of Theorem 7.2 and that are close to each other. To this
end, let

p:HY2(0Q) = H(Bris \Q), R :H Y?(0B,.5) = H(Bris \ Q)

be right inverse of the trace mappings ¢}, and 7} Byis) respectively. We assume
that 155 p = 55 R = 0 and 55, p = i3oR = 0. Consider first the problem
(a) of Theorem 7.2 that is known to be uniquely solvable. We write the
component F of the solution (E, H) as

E = pgb—l—Rifr,BH&E-l- E, Ee HO(BT—I—J\ﬁ)a

or, since i, F = Zijy E and ijy E =iy, E,

E=pp+RZiys E+E. (63)
With these notations, we find that X = (E, H) € Ho(Br45\Q) X H(B,15\ Q)
satisfies

(M +ik)X + BX =Y, (64)
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where M is the Maxwell operator in B, 5\ with domain D(M) = Ho(B, 15\
Q) x H(B,+s \ Q) and

[ ikx d RZi5s 0 [ =ik % pg
B_(—d zk*)( 0 o)’ Y‘( s ) ©)
To solve the problem (b) of theorem 7.2, we write a similar ansatz,
(M + k%)X + BpX = Y, (66)

where the operator Bg, is defined as the operator B in (65) but with Z replaced
by Zr. We have

Lemma 7.4 Assume that there are constants o € C and C > 0 such that

Br+5

Then the equations (64) and (66) are of Fredholm type

Proof. Let us denote by Ran(M) C L?(B,,5\ Q,A?) x L2(B,;; \ Q, A?) the
range of M. As in the classical case (see [17]) one can show that Ran(M)
and thus xRan(M) C L?(B,5\Q, A') x L?(B,,5\Q, A!) is a closed subspace.

Let us next consider the operator *M in the space Ran(xM). For X =
(E,H) € Ran(*M) we observe that

E AlE
2 = g
s (5 )= (3)
where A} is the Laplace-Beltrami operator for 1-forms defined in (21). For
these (E, H) the boundary value problem

E A E
e ()= (%) (5) ePempnRanea
can be written as
Al 0 E\ (A4
o al)J\wm) = \B
om0 =0, e, a0(dxE) =0,
loB ) (FH) =0, iy, \0)(¥dH) =0
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The principal part of the differential operator A_}] is diagonal matrix with
diagonal elements AJ. Thus by inequality (56) A; is an elliptic differen-
tial operator. Moreover when r + § is big enough, conditions (19) and
(20) imply that the metric on 0B,.4 is C'-close to nd;;. Thus (see e.g.
[2], Proposition 6.1.1 or [1]) we can see that the above boundary bound-
ary conditions satisfy Shapiro-Lopatinskij condition. Thus, by e.g. [2],
(*M)? : D((*M)?) N Ran(*M) — Ran(xM) is a Fredholm operator. This
in particular yields that the operator *M + ik in the space Ran(xM) has
a parametrix A for which A(xM + ik) C I + K in Ran(xM) where K is a
compact operator.

Consider the quadratic forms

ﬂamz/

B'r+5

U AV, ]—‘S(U,V):/ U AV

Br+5

The assumption of the lemma guarantees that F is coercive and thus the
Lax-Milgram lemma gives that there exists a continuous projection

P:L*(B,ys \ Q,A"Y) x L*(B,45 \ Q,A") = Ran(x M),
Let @ = 1 — P. Next we show that QX € Ker(M). First, we observe that
for all U € L? x L2, V € D(M),
FU, i MV) = / T AIMV = FE(U,i £ MV).
Br+5

On the other hand, we know that i * M is self-adjoint with respect to F¢.
Therefore, we have

0= F(QX,i* MV) = FE(QX, i+ MV) = FE(i +* MQX,V)

for all V. € D(M). Since DM is dense, we deduce that ** MQX = 0 and
hence Ran (@) C Ker (xM).

Consider now the equation (64). By writing X = PX + QX the equation
splits as

(*M +ik)PX + P+ B(PX + QX) = PY,
ikQX +Q xB(PX +QX) = QY.
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By operating with parametrix A to the first equation we obtain
I+ K)PX+APxB(PX +QX) = APY,
1 1
QX—i-%Q*B(PX-I-QX) = %QY,

which is Fredholm by the compactness of B and K.
This equation (66) is treated similarly. O
This result at hand, we are ready to give the proof of the Theorem 4.4.
Proof (of Theorem 4.4) From the previous lemma, the operator (x M+ik+x*3)
is invertible. Assume that
Obviously, then X, satisfies the estimate

[ Xl2 < [[(+M + ik + *Br)|[[|B — Brll[| Xoll2- (67)

When R > 0 is large enough, Lemma 7.3 implies that ||B— Bg|| tends to zero,
implying that X, = 0, and the claim follows from the Fredholm property.
Finally, the norm estimate (38) follows from the formula (67) and Lemma
7.3. O

Appendix 1: Convex geometry

In this appendix we show that the previously discussed PML model around
a strictly convex domain D (see introduction) can be obtained as a special
case of the equations for absorbing manifolds. More precisely, we shall prove
the following result.

Theorem 7.3 Let g be the complex metric on M = R® defined in (10) and
embedding T given in formula (8). The manifold (R3,g) is an absorbing
manifold, i.e., it satisfies the properties listed in Definition 3.1.

Proof. We have to check that the properties of Definition 3.1 are satisfied.
For the diffeomorphism ¢ : M — R?® we use just the identical mapping. Since

di|, = I +idal,
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and dal|, is real, symmetric and positive definite (see [16], Lemma 3.1) the
metric ¢g is symmetric and non-degenerate. Moreover g(v,v) # 0 for real
v € T®M and hence (15) is satisfied. In [16] one uses stretching function
Zs(r) = 4 sa(z) which depends on a stretching parameter s, Re s > 0. For
real s the stretched manifold is(M ) is R? and thus flat. Since the Riemannian
curvature tensor of metric g, = *¢¢ is an analytic function of s the stretched
manifold (M, gs) is also flat for complex s, particularly for s = i. The
condition (16) is a straightforward consequence of Lemma 3.2 in [16] and
(17) follows immediately from the definition of the stretching function and
. This proves the claim. O

Appendix 2: Scattering poles and absorbing
manifolds

Next discuss shortly the relation of absorbing manifolds, the Sjostrand-
Zworski complex scaling, and scattering poles of obstacles.

Let A : H3 R\ Q)N H(R*\ Q) — L*R3 \ Q) be the Laplacian in the
exterrior domain of the obstacle 2 C B(0, R) and consider the resolvent

(A+E) R*\ Q) — Li,(R*\ Q)

comp(
where Im £ > 0. This operator has a meromorphic continuation through
R, to the lower half plane and the poles of the meromorphic continuation
are called the scattering poles. For 1nstance when € is a sphere of radius
r, the zeros k of the Hankel function H (rk) are scattering poles and the
correspondln% solutions of the Helmholtz equation, called resonances, are the
solutions Hy’(k|z|). The canonical method to study the scattering poles is
to use Sjostrand Zworski complex scaling, where one studies the equation

(831 + (952 + 833 + kQ)f(Zl, 22, 23) = 0 (68)

on a totally real submanifold I' of C?, where complex derivatives 0., are
computed by using almost analytic continuation of f to C3. Next, let I' =
T(R3\Q), where 7 : R®* — C* | (z) = a(|z|)z, and a € C®(R; C), \a( ) =1,
arg(a(t)) € [0,7/2] is a function for which «(t) =1 for ¢t < R and «(t) =i
for t > R+ 1. By using previous methods together with [16] the equation
(68) can be written in the form

(Ay+Ek*)F =0 (69)
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where ¢ = 7*¢¢ and F(x) = f(Z(x)). Thus we see that the eigenvalues
of (68) on I'\ © and (69) on R \ Q coincide. By [20], the eigenvalues of
the equation (68) and the scattering poles of the obstacle 2 coincide in the
domain S = {# € C: —r < argf < 0}. Thus the scattering poles in S can
be considered as eigenvalues of Laplace-Beltrami operator on an absorbing
manifold (R® \ €, g). This fact will be discussed elsewhere in detail.
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