INVERSE SCATTERING PROBLEM FOR A
TWO DIMENSIONAL RANDOM POTENTIAL
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ABSTRACT. We study an inverse problem for the two-dimensional random Schro-
dinger equation (A+q+k?)u = 0. The potential ¢(x) is assumed to be a Gaussian
random function corresponding to a pseudodifferential covariance operator. We
show that the backscattered field, obtained from a single realization of the random
potential ¢, determines uniquely the principal symbol of the covariance operator
of q. The analysis is carried out by combining harmonic and microlocal analysis
with stochastic methods.
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1. INTRODUCTION

The goal of inverse potential scattering theory is to determine the scattering po-
tential ¢ from appropriate measurements. In many applications the scatterer can be
non-smooth and vastly complicated. For such scatterers, the inverse problem is not
so much to recover the exact micro-structure of an object but merely to determine
the parameters or functions describing the properties of the micro-structure. One
example of such a parameter is the correlation length of the medium which is related
to the typical size of “particles” inside of the scatterer. In mathematical terms, we
assume that the potential ¢ has been created by a random process. This causes that
the scattered field that will be random, as well.

In applied literature the measured data is often assumed to coincide with the
averaged data. This corresponds to the case when the measurements could be made
from many independent samples of the scatterer and these measurements could be
averaged. This appears not always to be a well justified assumption since often the
scatterer does not change during the period of measurements. Also, in applications
the multiple scattering is often omitted. This leads to a linearization of the inverse
problem which approximates the original problem only when ¢ is small.

A related approach for the scattering from a random medium is the study of the
multi-scale asymptotics of the scattered field. In this case the approximations is good
only when the frequency k£ and the spatial frequency of the scatterer have appropriate
magnitudes. This type of asymptotic analysis has been studied by Papanicolaou
and others in various cases, cf. e.g. |42],[43],|6],|9]. Random Schrédinger operators
have also been studied from the point of view of spectral theory by Kotani, Simon,
Bourgain, Kening, and others (cf. [28],[44],[17],[48],[47],|29],[10]). Like the present
paper, these paper concern the properties of the random Schrodinger operators that
are valid almost surely.

Let us now set the model for the stochastic scattering problem. Consider the
Schrédinger equation with outgoing radiation condition

(A =g+ k*)u =6, in R?
(1.1) (% - zk:) u(z) = o(|z|7?) as |z| — oo

where the potential ¢ is a random generalized function supported in a compact
domain D. In the scattering problem the wave u is decomposed as

U = UO(I7 Y, k) + us(l‘7 Y, k)a
where ug(z,y, k) is the scattered field and

{
uo(,y. k) = Bu(x —y) = — H' (k|z —y))

is the incident field corresponding to a point source at y and Hél)(-) is the Hankel
function of the first kind. We shall assume that the sources y are taken from a
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bounded and convex domain U C R?\ D. Since the measurements are done in the
same set U, it is called the measurement domain.

Recall that the potential ¢ is random means that it is created by a stochastic pro-
cess i.e., ¢ = q(x,wy) is a realization of a random function ¢(z,w). Here wy denotes
an element of the probability space 2. As ¢(x,w) is random, the scattered field is
also random and we sometimes emphasize this by writing us(x, y, k) = us(z,y, k,w).
The inverse problem is to determine the parameters describing the random process
q(z,w), e.g., from the amplitude of the scattered wave |u,(x,y, k,wo)|>

The main result of this paper (Theorem 2.3 below) shows that suitable mean
values over the frequency k of the backscattered amplitude |u,(x, x, k, wy)|?, obtained
from a single realization ¢(z, wy), almost surely determine the micro-structure of the
random potential, or more exactly, the principal symbol of the covariance operator
of the random function ¢(z,w). We stress that, after the model for the random
potential is fixed, no approximations are made. In particular, we study the full
non-linear inverse problem. Below in Section 2 we describe these results in detail.

To avoid any approximations, such as linearization, we apply techniques that
were originally developed for deterministic inverse problems. What is interesting,
our stochastic setup leads to new type of analytic problems. Our tools include
basic stochastic analysis for generalized Gaussian fields, and, especially, we make
use of harmonic and microlocal analysis, techniques that are also often used in the
deterministic case, cf. [12],[33],[34],[51]. An extensive review for this is given in
[63]. What is different here is that in the stochastic settings the realizations of
the potential are tempted to be rough, in some cases not even fuctions. For inverse
problems involving non-smooth deterministic structures see e.g. [5],[11],[19],[39],[40].

The rest of the paper is organized as follows: In Section 2 we set up the model for
the random potentials. We also consider two important and natural examples of the
processes that fit into our model, namely the two dimensional fractional brownian
motion and the two dimensional Markov field. Moreover we formulate the main
theorem of the paper. The regularity of the realizations of the random potential
is considered in Section 3. It turns out that g is not a function almost surely. In
Section 4 we study the scattering problem where the emphasis is in the case were the
potentials are not measures but true distributions. Especially, we show that (1.1) has
a unique solution in all the cases that are studied here. Section 5 considers oscillatory
integrals in order to establish the asymptotic independence of the solutions u(x, y, k1)
and u(z,y, ko) for large values of |k; — ks in the Born approximation. The validity
of this approximation in the context of our measurements is shown in Section 6.
The results of the previous sections are combined in Section 7, where it is shown
that the measurements can be expressed as a deterministic weighted avarage over
the unknown parameter u. Section 8 verifies that this data allows us to recover u
almost surely.

Part of the results of the paper have been announced without proofs in [30].
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2. THE MAIN RESULT

2.1. The model for the random potential. Fix a bounded simply connected
domain D C R2. We assume that the potential ¢ is a generalized Gaussian field
supported in D. This means that ¢ is a measurable map from the probability space
Q) to the space of (real-valued) distributions D’'(R?) such that for all ¢y,..., ¢, €
C3°(R?) the mapping @ > w — ({g(w),;)), is a Gaussian random variable.
We will assume that the probability measure space (2, F,P) is complete. The
distribution of ¢ is determined by the expectation [E ¢ and the covariance operator
C, : C°(R?) — D'(R?) defined by

(2.1) (1, Cqth2) = E((g — Eq,9n)(q — Eq,12)).

Let k,(z,y) be the Schwartz kernel of the covariance operator C,. We call k,(x,y)
the covariance function of . Then, in the sense of generalized functions, (2.1) reads
as

kq(z,y) = E((q(x) — Eq(x))(q(y) — Eq(y))).

We will assume that the potentially is locally isotropic and moreover, that the
average roughness or smoothness remains unchanged in spatial changes. However
we allow the size of the (rough part of the) potential change from point to point in
space. Eventually, it is this change, called the local strength of the potential that we
would like to determine from our measurements.

It is natural to assume that the covariance function k,(x,y) is singular only on the
diagonal since the long range interactions depend often smoothly on the location.
Also the basic stochastic processes like the Brownian bridge, Levy Brownian motion
in the plane, or the free Gaussian field share this property.

As the above properties are characteristic for Schwartz kernels of pseudodifferen-
tial operators, we introduce the following definition.

Definition 2.1. Let p € C§°(D), p(x) > 0. A generalized Gaussian random field
q on R? is said to be microlocally isotropic (of order ) in D, if the realizations of
q are almost surely supported in the domain D and its covariance operator Cy is a
classical pseudodifferential operator having the principal symbol p(z)[&]~2.

In particular, we are interested in the case x € [0,1/2), that correspond to rough
fields, cf. subsections 2.3 and 2.4 where natural examples of such fields are given.
The case k = 0 is especially interesting as in this case the potentials are proper
distributions. Indeed with probability one the potentials in this case are not even
measures. In Section 4 we will show that the Schrédinger equation has a.s. a unique
solution for such potentials.

We call u the (local) strength of q. We the role of 1 and « is better clarified as we
now describe their effect on the covariance function — in this respect we refer also to
the basic examples given in Subsections 2.3 and 2.4 below. The covariance function
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ky(z1, z2) is locally integrable for fixed z;. In the case k = 0 it has the asymptotics

kq(21, 22) = —cu(z2) log |21 — 22| + f(21, 22)

where c is positive constant and f is a locally bounded function. Strength  is closely
related to the local correlation length of the random field. Namely, u(z) determines
approximately the radius of the set {21 : k,(21,22) > M} with a given large bound
M. In the case 0 < k < 1/2 the asymptotic reads as

kg(z1,22) = —cu(z2) |21 — 2o + f(21, 22),

where f is smoother than the first term, as we shall see later. In this setting the
parameter « is tied to the Holder continuity of the realizations of the potential.

2.2. Main result. We next formulate the measurement configuration. Recall that
us is the scattered field corresponding to problem (1.1).

Definition 2.2. Given w € Q and z,y € U , the measurement m(z,y,w) is the
pointwise limit

1 K
(2.2) m(,y,w) = lim - /1 k2 g (2, y, k,w) | 2dE.

An important special case is the backscattering measurement m(zx, z,w).

Note that the measurement in the above definition is an average over frequencies
whence it is not sensitive to measurement errors. For example the white noise
error in the measurement is filtered out by frequency averaging. Note also that
the measurement uses information only from the amplitude (not the phase) of the
scattered field. It is truly a non-trivial fact that the above definition gives a well-
defined, finite and non-zero quantity. That this is so, is part of Theorem 2.3 below,
which is the main result of this paper.

Theorem 2.3. Let D C R? be a bounded simply connected domain, U C R?\ D be a
bounded and conver domain, and let q be a microlocally isotropic Gaussian random
field of order r € [0, %) in D, as described in Definition 2.1. Then

(i) For any x,y € U the measurement m(x,y,w) is well-defined (that is, the
limit in (2.2) exists almost surely).

(ii) There exists a continuous deterministic function mg(z,y) such that for any
z,y € U the equality m(z,y,w) = mo(x,y) holds almost surely. In par-
ticular, the function no(x) := mo(x,z) is almost surely determined by the
backscattering data {m(x,z,w) : x € U}.

(iii) The backscattering data i.e. no(x), x € U uniquely determines the micro-
correlation strength 1 in 2. Moreover, there exist a linear operator T such
that

T(ng) = p.
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By the above result the principal structure of the covariance is determined by
measurements from only one single realization of the potential. Observe that the
needed data is the energy averages of the back-scattered field — no information
on the phase is needed. We refer to the Remark 3 at the end of Section 8 for a
more thorough discussion of the relation of the above result to its deterministic
counterparts. Property (ii) in Theorem 2.3 is called statistical stability, c.f. [9].

For the simplicity of notations we will assume in the proof of Theorem 2.3 that
E g = 0; one can easily dispense with this assumption. We refer the reader to the
Remarks at the end of the section where this fact and other generalizations are
considered.

Using the fact that the measurements m(z,y,w) exist, our analysis could be gen-
eralized to other kind of measurements. For instance, it would also be physically rel-
evant to analyze measurements of fixed source point z — m(x, yo,w), where yo € U.
We hope to come back to this and other related stochastic scattering problems in
future work.

2.3. Example 1: Analogies of fractional Brownian fields. Let us recall that
standard Brownian motion in the plane is a gaussian process on the real line with
the covariance C(t, s) = max(t, s) for t, s € R, and with a.s. continuous realizations.
The Brownian paths are fairly regular: they are a.s. Holder continuous with any
exponent less that one half. In order to obtain more rough stochastic model a
natural analogue is fractional Brownian motion F'BMpy, where the Hurst index H
takes values from the interval H € (0,1). The case H = 1/2 corresponds exactly
the Brownian motion, and rougher paths are obtained by considering Hurst indices
with H € (0,1/2). Instead of recalling the definition of F BMy in one dimension
we next give the definition in arbitrary dimension.

The multidimensional fractional Brownian motion F'BMp in R™ is easily obtained
as follows: Let H € (0, 1). One considers a centered Gaussian process X y(z) indexed
by z € R™ and with the following properties:

E|Xp(21) — Xg(20)? = |21 — 2o for all 21, 2, € R™
the paths z — Xpy(z) are a.s. continuous.

We refer e.g. to [25] for the proof of existence and basic properties of n-dimensional
fractional Brownian motion. Especially, the obtained random functions R? — R are
almost surely Holder-continuous with any exponent less that H. Observe that the
differences of the process are completely invariant under rotation and translation,
also there is a natural scaling in dilations. The deterministic zero-point z, with
X(z9) = 0 can of course be chosen arbitrarily, often one sets zp = 0. In the case
H = 1/2 one calls FBM/; a Levy Brownian motion. There are other higher
dimensional generalizations of Brownian motion (e.g. the so called Brownian sheets),
but none other has the natural invariance properties just described.
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An important example of microlocally isotropic Gaussian fields is now obtained
by considering the random functions

(2.3) q(t,w) = a(t) Xg(z,w)

where Xy (2) stands for a F’BMp in the plane with Hurst index H € (0,1/2), and
the deterministic function a € C§°(D) is supported in the domain D. One observes
that a modulates the size of the potential, (or, with another point of view, the size of
the local correlations). We assume here that the zeropoint zj lies outside D. In order
to verify that Xy (z) really satisfies definition 2.2 we observe that the covariance of
the random field ¢ can be computed as follows:

1
Cyl21, 22) = §G(Zl)a(22)(|21 — 20" + |22 — 20| — |21 — 2.

The only singular term is a(z1)a(z2) whence it is clear that in case the principal
symbol has the form cy(a(2))?|€|7272 | i.e. the potential q is microlocally isotropic
of order k = H. We may thus view (2.3) as a simplest type of natural examples
of microlocally isotropic Gaussian potentials of positive order, for which our main
result applies. More complicated examples can be easily constructed.

2.4. Example 2: Markov fields. We introduce the notion of Markov fields and
briefly overview their basic properties (we refer to the monograph [46] for more
information). These fields provide natural examples of microlocally isotropic fields.
Let us assume in the present subsection that our random potential ¢ is a localization
of the generalized Gaussian Markov field @), that is, ¢ = xQ, where x € C§°(D). The
definition of Markov fields mimics the situation where physical particles in a lattice
have no long-term interaction, i.e., only neighboring particles have direct interaction.
Assume that S; C D is an open set with S, C D. Weset S, = D\ S; and S, = {z €
D : d(x,05,) <¢e}, € >0, a collar neighborhood of the boundary 05;. Intuitively
the Markov property means that the influence from the inside to the outside must
pass through the collar.

Definition 2.4. A generalized random field Q on R? satisfies the Markov property
if for any S, S5 and S. as described above, and € > 0 small enough, the conditional
expectations satisfy

E(hoQ(¥)IB(S:)) = E(hoQ(4)|B(S: U 5))

for any complex polynomial h and for any test function i) € C§°(Sz).

Here B(S5;) is the o-algebra generated by the random variables Q(¢), ¢ € C5°(S;),
Jj =1,2,and B(S.) is defined respectively.

The Markov property has dramatic implications to the structure of the field @
and especially to its covariance operator Cp. Under minor additional conditions (cf.
[46, e.g. p. 112]), we may define the inverse operator (Cg)~! which turns out to be
a local operator: it cannot increase the support of a test function. By a well-known
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theorem of J. Peetre [45] (Cg)~" must be a linear partial differential operator. As
Cg is non-negative operator, (Co)~" has to be of even order. To obtain an isotropic
situation we finally assume that (Cg)~! is a non-degenerate elliptic operator, is
of 2nd order, has smooth coefficients, and finally its principal part is positive and
homogeneous. This implies that

(2.4) (Co) ™' =P(z, D)=~ %a(z)% +b(z),

where a(z) > 0 and b(z) are smooth real functions in R%. Then the field Q is micro-
locally isotropic of order two as Cy, is a pseudodifferential operator with an isotropic
principal symbol.

To motivate the assumption that the order of (Cg)~' is two, let us consider the
case where (C)~! would be of fourth order or higher, with smooth coefficients. Then
one could easily verify (cf. the proof of Theorem 3.3) that the realizations of ¢ are in
the Sobolev class H3P (R?) for all s <1 and 1 < p < co. As our aim is to consider
the case of non-smooth potentials, the second order case is the most interesting in
view of many applications. An important example of such random fields of this type
is obtained by the free Gaussian fields, which appear in two dimension quantum
field theory (c.f. e.g. [20]). The free Gaussian field on the bounded domain D,
corresponding to Dirichlet boundary values, has the (Dirichlet-)Green’s function as
the kernel of its covariance operator. This corresponds to choices a(z) =1, b(z) = 0.
Examples with variable a(z) can be constructed easily.

Finally, the covariance operator C, of the potential ¢ has the kernel

kq(21, 22) = X (21)kq(21, 22)x(22).
This implies that ¢ is microlocally isotropic of order zero in D and has the micro-
correlation strength function u(z) = x(z)%a(z)™".

3. REGULARITY OF THE STOCHASTIC POTENTIAL

We will study what kind of regularity (or irregularity) is implied for the potential
by Definition 2.2. In the case x > 0 we will see that the realizations are almost
Holder continuous of exponent k. In case k = 0 it turns out that ¢(w) is not a
function (or even a measure); almost surely it is a proper distribution. This is not so
surprising since similar phenomenon is well known in the case of a free Gaussian field.
However, the potential just barely fails to be a function: almost every realization of
the potential satisfies

(3.1) q(w) € Hy?(D) for all e >0 and 1< p < oo.

Here, H*?(R?) = F~'((14[£|?)~*/2F LP(R?)) is the standard Sobolev space, defined
with the Fourier transform F and H;”(D) is the closure of C§°(D) in H*P(R?). In
this section we verify the stated Holder continuity in case x > 0, and for kK = 0 the
fact (3.1), which is needed in the subsequent analysis of our problem.
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We start by recording a result which yields a criterion for realizations of a random
field to lie in (., LP(D). Throughout the paper ¢ denotes a generic constant the
value of which may change even inside a formula.

Lemma 3.1. Assume that the covariance operator K of a random field F' on the
open bounded set D C R™ has a locally integrable kernel (denoted also by K(x,y))
satisfying

|K(z,y)| <c<oo for every z,y € D.
Then the realizations of F' belong almost surely to ﬂp>1 LP(D).

Proof. This is an immediate consequence of [8, Prop. 3.11.15|. To sketch a direct
proof of this result, one may first mollify F' and observe that in the smooth case
E(|F1l,)" = ¢ [, |K (z, )" dz. O

Recall that C, is the covariance operator of the random potential g. We next
analyze the singularity of the Schwartz kernel k,(x,y) of C,,.

Proposition 3.2. Let q be a microlocally isotropic Gaussian random field of order
k € [0,1/2). Then the Schwartz kernel of the covariance operator C, has the form

C(I ): co(x,y)10g|x—y|+7’1(x,y), HZO»
Y co(x,y)|x—y|2“+r1(x,y), K€ (071/2>

where ¢y € C°(D x D) and ry € C§(D x D) for any o < 1.

Proof. By definition, C,(z,y) is a kernel of a (compactly supported) classical
pseudodifferential operator with symbol a(z, &) = pu(z)(1—(£))[E]7* 2" +b(z,€) in
the class S7§(R? xR?) (c.f. [23]), where the smooth cutoff ¢» € C§°(R?) equals 1 near
the origin, and in any case b € 57, 3(R? x R?) is compactly supported in z-variable.
We obtain 272C(x,y) = I(x,y) + ro(x, y), where

I(:c,y) _ :U/(x>/ ei(xfy){(l _ w(g))|§|7272nd£7 rg(a:,y) _ /R2 ei(acfy)fb(x’g)dg_

R2
Function /(x,y) may clearly be written in the form u(x)log|z — y| + ro(z,y) (resp.
pw(x)|z — y* + ro(z,y)) with ro € C=(R*) if Kk = 0 (resp. x € (0,1/2)).
It reamins to check that ry is in C* for any o < 1. Let > 72 $;(§) = 1 be a
smooth partition of unity with ¢g, ¢1 € C*(R?), supp(¢1) C {€: 1/2 < |¢| < 2},
and ¢;(&) = ¢1(21779¢) for j > 2. By writing Ry(z,y) = r2(x, 2 — y), we get

Dk¢;(Dy)Ry(x, y) =/ e (&) DEb(x, £)dE,  j k> 0.

R2
Since |DEb| < Ci(1+¢]) 3 we see that || DE¢; (D) Ro||p(rsy < C277 where Cj, does
not depend on j. This implies immediately that R, in the Besov-space Bl (R*)
that coincides with the first Zygmund class A;(R*) € C*(R*) for all a < 1 (see [50,
5.3. O

The following immediate implication is needed for realizations of ¢
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Theorem 3.3. (i) Let k = 0. Almost surely q(w) € H=“P(D) for alle > 0 and
1 <p<oo.

(ii) Let k€ (0,1). Almost surely q(w) € C* for all a € (0, k).

Proof. (i) Recall that for given s € R the Bessel potential J* provides an iso-
morphism J* : H'"P(R?) — H'™*P(R?) for all t € R and 1 < p < co. Moreover, J*
is a pseudodifferential operator, whence it preserves singular supports. Thus it is
enough to verify that locally the covariance of J°q has a uniformly bounded kernel
for any small ¢ > 0. That is, by letting J; . stand for a suitable localization of J*
we have to study the kernel of J; C,J; .. It is well known that for small € > 0 the
kernel has form

C
Jo (2, y) = -y + S(z,y),

where S has a lower order singularity. Now the claim follows by combining Propo-
sition 3.2 and the fact
1
/ | ngl_xade < 00
B(0,R) ||
for any radius R > 0.

(ii) One may reduce the situation to the one in case (i) by simply considering
the field J~"q. It follows that for any ¢ > 0 and p € (1,00) we have almost surely
that J "q(w) € H =P. Equivalently, ¢(w) € H* =P and the claim now follows from
the Sobolev imbedding theorem. [

4. DIRECT SCATTERING PROBLEM FOR A DISTRIBUTIONAL POTENTIAL.

4.1. Unique continuation. We showed above that the random potential ¢(w) be-
longs with probability one to the Sobolev space H “P(D) for all 1 < p < oo and
e > 0. Consequently, we need to study the existence and properties of the solution
for the Schrodinger equation for such irregular potentials. In this section we ac-
complish this by considering scattering from a deterministic non-smooth potential
go € H “?(D), and the obtained results have independent interest.

The direct scattering theory from a potential that is in a weighted L? space
is classical (c.f. [7],[3]). For the L? scattering theory the key tool is the unique
continuation of the solution. Jerison and Kenig showed in [24] that the strong
unique continuation principle for LP-potentials in R™ holds for p > n/2 and fails
for p < n/2 in dimensions n > 2. In dimension two the unique continuation holds
in a space of functions that is close to L' [24]. For Sobolev space potentials, the
selfadjointness of the operator has been studied in [36]. Below in Lemma 4.2 we
show a positive result for negative index Sobolev spaces.

More precisely, we study the scattering problem

(A —qo+K)u =9,
(4.1) {(g —ik) u(z) = of|x|~?)
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where the potential ¢y € H 5 (R?), p~' + (p/)™* =1, 1 < p < 2. We claim that the

comp
problem (4.1) is equivalent to the Lippmann-Schwinger equation

(4.2 la) = wale) = [ Bule = o))y

In the proof we show that the pointwise product gou in the integrand of (4.2)
is well defined and that the integral exists in the sense of distributions. We will
then show that (4.2) has a unique solution u € H.?>“(R"). The starting point is the
unique continuation principle. Roughly speaking, it says that if u is a compactly
supported solution of the Schrédinger equation with ¢o € H=*",r > n/2 and if €
is small then v must vanish identically. It appears to the authors that this result
could also be obtained as a special case of D. Tataru’s and H. Koch’s recent unique
continuation results based on L? Carleman estimates [27]. In our case, we present a
direct and simple proof for unique continuation. We start by observing that known
pointwise multiplication results allow us to define the product distribution ggyu.

Lemma 4.1. Assume that u € Ho*(R™), qo € HO_E’Z’I(R"), l<p<oo,e>0. Then

loc
the product qou is well-defined as an element of Hy “P(R™), where p = 25—51 and

(4.3) ot =gy < €10l el 120 ey

Proof: Take ¢ € C§°(R") to be a test function. By duality, the product gou €
D'(R™) is a well defined through

(4.4) {q0u, @) = {90, Pu)
when ¢y € H 5P (R") and v € HP(R"). By using Bony’s paraproducts one can

comp loc

verify the following pointwise multiplier estimate in Sobolev spaces ([52, pp. 105])

(4.5) [oull ger@ny < ¢ (0]l r @ llull gers @ny + 1ullLri@ey |0l zrers @)
for 1/p=1/r; + 1/rs. From (4.4) and (4.5) with r; = ry = 2p it readily follows by

duality that gou € Hy “"(R™) where p = 25—31. 0

Proposition 4.2 (Unique continuation principle into an interior domain). Assume
that p' € (n/2,00), together with 0 < ¢ < %(2/n — 1/p'). Let qo € H P (R™). If

4 comp

ue H f(;fp (R™) is compactly supported and satisfies the Schrodinger equation
(A—qo+Kk)u=0
in the weak sense, then u = 0 identically.
Proof: Assume that the support of ¢ is contained in the bounded domain D C R™.
To prove the unique continuation we use the well-known techniques of exponentially

growing solutions for the Schrodinger equation, cf. [21], [26]. To this end we write
the equation (A + k*)u = qu as

(A + 2iC - V)e’ig'xu = e g,
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where ¢ € C" is such that ¢ - ( = k2. Since u is supposed to have compact support

we have v 1= e "y € HG (R?). For v we obtain the equation

(4.6) v = Gc(gov)
where the Faddeev operator G, is defined as the Fourier multiplier
-1 .

=F Ho—— :
G(1)(0) = F (g @
It is well known (see for example the proof of Theorem 4.1 in [38]) that for 0 < s < 3
c
(4-7) ||gC||HgS(D)—>Hs(D) < |C|1—_25

where H*(D) = H**(D) and Hg(D) = Hy*(D) are L*-based Sobolev spaces. By
[26], G is a bounded operator

(4.8) G¢: L'(D) — L (D),

for r = n2—]:2 if n > 3 and for » > 1 for n = 2. We continue first in the case n > 3.

Interpolation of (4.7) and (4.8) yields

(4.9) ||G<HH66,5(D)_>H€,QP(D) < cf¢|7-2000
where € = fs and § =1 — 5. Finally, (4.3), (4.6), and (4.9) show that

(4.10) ||v]

C
He2p(D) < WHU' He2P(D)-

Choosing 0 < s < % and ( large enough, we conclude that v and hence v must
vanish identically. Finally in the case n = 2 we interpolate (4.7) and (4.8) for r > 1
and by letting » — 1 the same conclusion follows. [J

Remark. Note that for n = 2 the uniqueness follows for u € H . (R?) when
r>20<e<?i and g € H oo (R?).

comp

4.2. Existence and uniqueness for solutions of the scattering problem.
After having proven the unique continuation principle, the proofs of Theorems 4.3
and 4.4 below are relatively straightforward extensions of classical proofs for regular
potentials. For the convenience of the reader, we include the details.

Theorem 4.3. For qo € H_7 (R™), withn > 2, p € (n/2,00), and 0 < € < %(% —

comp

I%), the Lippmann-Schwinger equation (4.2) has a unique solution u € Hfo’fp(R”).

Proof: Let D be a bounded domain such that supp(qy) C D. Consider the
equation (4.2) in H%?’(D). Since the operator Hy,

(4.11) Hyf = @4 = f,

defines a bounded operator Hy, : Hy*(D) — H*(D) for s <1 we see from Sobolev
embedding and Rellich’s compact embedding theorem that Hy, : H, “*(D) — H%*(D)
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compactly. This and Proposition 4.2 give that the operator K : H*(D) —
He*(D), Kif = Hyqof is compact.

Thus by Fredholm’s alternative it is enough to show that in H?’(D) the homo-
geneous equation

(4.12) u = Hiqou

has only the trivial solution u = 0. If u € H%?’(D) satisfies (4.12) then u belongs
to the Schwartz class S’ and by taking the Fourier transform we obtain in the sense
of distributions that (A + k*)u(x) = qgou. In particular « must be smooth in R™\ D
and satisfy (A + k?)u = 0 there. Note that by (4.12) the values of u in D define u
in all of R™.

As the fundamental solution and its derivatives satisfy the radiation condition,
we see from (4.12) that u also satisfies the radiation condition in (1.1). Thus, as u
is a classical solution in R™ \ D satisfying the radiation condition, it has a far field
expansion (cf. [13, Thm. 2.14|). By Rellich’s lemma (cf. |13, Lem. 2.11]) and the
unique continuation principle it is enough to show that the far field u., of u, defined
by

_ el x —(n—1)/2
as |x| — oo, vanishes for .
Note that
Au = (qy — k?)u € H P(R?) + HS*P(R™).

loc

This implies that Vu € L? , and that v and Au belong locally to spaces that are

loc

dual to each other. Take r > 0 so large that D C B(0,7). Thus by approximating
u by smooth functions we get from Green’s formula

0
Im u—1uds = Im (IVul® + (g0 — k*)|ul?) dz = 0.
jel=r OV jel<r
Thus
2 2
/ 3u + K ul? | ds = / gu —iku| ds — 0
|z|=r ov |z|=r ov

as r — oo. Especially, this implies that ||u||z2(fz=r}) — 0 as 7 — oo. This is
possible only if u,, = 0. Thus the assertion is proven. [

Theorem 4.4. For qo € H 57 (R™), with n > 2, p € (n/2,00), and 0 < € <

comp
”(% — i), the scattering problem (4.1) is equivalent to the Lippmann-Schwinger

4

equation and thus has a unique solution u € H{>P(R™).
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Proof: As reasoned in the proof of the previous theorem a solution of the
Lippmann-Schwinger equation satisfies (4.1). Suppose u € H;2’(R") NS’ is a solu-
tion of (4.1). We need to show that

(1.13) w (@) = [ Bl = an(o)uly) dy.
Since (A+k?)u, = qou € Hege? (R™) and $y(x—-) € H;2P(R™) and both functions

are real-analytic outside a large ball we have from (4.1) in the sense of distributions
that

(4.14) /| L n (B K2 (y) dy = Hilgou).

Denote the operator that operates to us in the left hand side of (4.14) by 7. Now
for ¢ € C*(R"),

To—o+ [ (Bl =)o) - s —0)o)) ast)
ly|=r ‘ Y 8T<y> Y ar(y) ‘ Y Y v

Thus, approximating us with smooth functions we obtain

@)+ [ @ ) ) 5t~ ) dsty) = Hiao).

From the radiation condition it follows that the boundary integral in the above
formula approaches zero as r — oo, cf. [13, Thm. 2.4]. This proves (4.13) and
hence the theorem. [

Note that, in view of Theorem 3.3, Theorem 4.4 implies that the original stochastic
scattering problem (1.1) has a unique solution almost surely.

5. THE ASYMPTOTIC INDEPENDENCE OF THE FIRST ORDER BORN TERM

By iterating the Lippmann-Schwinger equation, one can formally represent u as
the Born series,

(51) U(l‘,y,k) = Uo(l',y, k) + ul('x>y7 k) + Ug(l',y, k) +..

where ug(x,y, k) = p(xr — y) and u,41 = (A+k? +40) " (quy,). A considerable part
of our work consist of analyzing the different terms in this development. We will
later prove in Subsection 6.2 that the series (5.1) converges for large enough values
of k. In the proof of our main result we need to establish asymptotic independence
for the first terms in the Born series, corresponding to different values of k. The
verification of this fact leads to estimation of certain oscillatory integrals, and needs
a fairly involved computation. As a useful tool we apply the calculus of conormal
distributions. The results of this section will be applied later in Section 7.
As the first term in the Born series is

(. k) = /D Du(w — 2)g(2)Pi(z — y) dz,
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we start with the asymptotics of ®y(z) = —% él)(k\zl), when k — oo. These are
given by
(5.2)  DBp(z) = (|t p Ly ) = i 4/, >0
e oEL 2 4t =0
where dy = —\/% and d; are constants whose actual values are not important for us

in the sequel. The series (5.2) and its derivative have the property that for N > 1
(c.f. [1, formulae 9.1.27, 9.2.7-9.2.10])

N N
‘ d ,
N+1 N
(56.3) |F(t) — E dit’| < et™ T, @(F(t) — ]EZO dit))| <et”, 0<t<l.

§=0
Using first three terms in the asymptotics of @, we write
(54) U1<$,y, k) = al(xaya k) +b($,y,k’)

where, for kK > 1

uy(z,y, k) = / <I>,E:3)(x — z)q(z)q),(f’)(z —y)dz,
D
3
3 —L i(k|z|—7 —7
() = (klz]) "2 CETTD S 7 d; (kle) .
=0
Let us denote by O(k; "k, ") functions h(x,y, k1, ko) which satisfy an estimate
|h(x,y, k1, k2)| < cky™ky™ for x,y € U and ki, ky > 1 where ¢ is independent
of x,y, k1, and ky. Next we compute the asymptotic expansion for the covariance
of w; thus showing that the fields u; with different frequencies are asymptotically
independent. We emphasize that formula (5.8) below is crucial for the construction
of 1(z) in Section 8.

Proposition 5.1. Assme that k € [0, %) For ki,ky > 1 the random wvariable u,

satisfies uniformly for x,y € U the estimates

(5.5) Dl L A ) [ ey T Ty
(5.6) |E (@1(2,y, k1)t (2, y, k2))| < € (kr + k)™,

where n is arbitrary. Moreover, for ki = ko = k we have the asymptotics
(5.7) E (1 (2, y, k)i (2, y, k) = Rz, y)k~* 7 + O(k™)
where R € C>(U x U). Especially, it holds that

(5.8) R(z,x) ! / Hz) dz for ze€U.

T o8t2eg2 [, |z — z|?
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Proof. Denote ¢(z,x,y) = |r — z| + |z — y|. As the covariance operator C,, has a
weakly singular kernel C'(zy, z2) = ky(21, 22) with asymptotics given as in Proposition
3.2, we see that

3
(59) E(al(%% kl)al(xvya k?)) = Z ]jl,jz,ll,lz(klﬁk%x?y)

J1,J2,l1,l2=0

where

(5.10) Ly oo (K1, Koy, y) =

djl deEhEZQ / exp (iqub(zl; x, y) - ik2¢(227 xz, y)) E (Q(zl)Q(Z2>)
R4

THj1+i2 g1+l + 1 1622-
kl J1 JQk% l1+l2 la+5

|z — 21|j1+%|21 _ y|j2+%\:v _ Z2|ll+§122 — ]
Assumption 2.1 with x € [0,1) states that k,(z1,22) = E(q(z1)q(22)) is the
Schwartz kernel of a pseudodifferential operator C, with a classical symbol ¢(z,&) €
S0 **(R?* x R?), and the principal symbol of C, is given by ?(z,&) = u(z)(1 +
|€]?)~17". The support of C,(21, 22) is contained in D x D. We may write (c.f. [23])

(5.11) ko(21,22) = (2#)_2/ e1=22) 8¢5, €) dE.
RQ
All symbols appearing below will be classical symbols [23].

In order to obtain uniform estimates with respect to variables = and y we shall
introduce them as variables in the covariance in the following way. Let us define
the function C(z1, 22, 7, y) = ky(21, 22)0(x)0(y) where 6 € C5°(R?) equals one in the
domain U and has its support outside D.

The formula (5.11) now takes the form

(5.12) Cy(z1, 20, ,y) = (2%)_2/ e1=2)8e (21 2y, €) dE
RQ

where c1(z1,2,9,£) € Si572(R® x R?). In fact, ¢; € S7g 2 ((D x R*) x R?), but
we consider it extended by zero to values z; ¢ D. By definition, (5.12) means that
C1(z1, 22, ,y) is a conormal distribution in R® of Hérmander type having conormal
singularity on the surface S; = {(z1, 20, 7,y) € R®: z; — 29 = 0}. Using notations
of [23], if X C R™ is an open set and S C X is a smooth submanifold of X,
we denote by I(X;S) the distributions in D’(X) that are smooth in X \ S and
have a conormal singularity at S. The set of distributions in /(X;S) supported
in a compact subset of X is denoted by I.om,(X;S). Let D C R® be an open set
containing D x D x supp (6) x supp (#) so that Cy € I.omp(D; S1 N D).

We employ the fact that conormal distributions are invariant under a change of
coordinates. Actually, our plan is to consider several different coordinates systems.

The first set of coordinates that we consider are (V,W,x,y), defined as V =
21 — zo and W = z; + 2. Denote by 7 the change of coordinates n : (V, W, z,y) —
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(21, 22, x,y) and consider the pull-back Cy = n*(C}). Then a direct substitution
shows that

Co(V W, 2, y) = (27) / Vo (V. W, . €) de,
RQ
CQ(M Wamay7§) = 61(2’1(‘/, W7x7y)ax7y7€)

which means that Cy € I(R®;S;) where Sy = {(V,W,z,y) : V =0}.

To find out how the symbol transforms in the change of coordinates, we have to
represent Co(V, W, z,y) with a symbol that does not depend on V. We can achieve
this by way of the representation theorem for conormal distributions [23, Lemma
18.2.1] because of the special form of the surface Sy, = {V = 0}. We have:

(5.13) Co(V,W,a,y) = (27)2 / oV ey (W, 2,1, €) de,
R2

—ZDv,Dg CQ(V Wl‘ Y, €)|V 0 € S_Q 2'{( X RQ)

Mg

cs(W,z,y,8) ~

=0

In particular, we see that c3(W, z,y, &) has the principal symbol

(5.14)  E(W,2,y,&) = p(z1(V.W,z,y)) (1 + [£*) 7 "0(2)0(y)],,_, -

The second set of coordinates that we consider are (v, w, z,y) defined below. For
this, to consider the oscillatory integrals (5.10) we change the coordinates so that
d(z1,%,y) — ¢(22, z,y) will be a coordinate. We will do this change of coordinates
in two steps. First we change the coordinates (21, 22, 2,y) to (Z1, Zs, x,y), where
Z; = Zij(x,y,z;) € R?, j = 1,2 are related to ellipses having focal points in z and
y. More precisely, we write

Zj = (tj,Sj) S R2,
vzj'(b(zjax?y)
\sz¢(2j,:c,y)|!

where e; = (1,0). In other words, here ¢; corresponds to the semi-major axis of
the ellipse having focal points z and y and containing the point z;. The variable s;
specifies a 'normalized’ angle of the normal vector of the ellipse with the x-axis at
the point z;. Since the domain U is convex and D is simply connected, our definition
of the new coordinates is well-posed in a neighborhood of the domain D.

Secondly, we change from (7, Zs, z,y) to coordinates (v, w, z,y) where v = Z; —
Zy, w = Z1+Zs. Together, the above steps define the coordinates (v, w, z,y) and the
map 7 : (v,w,z,y) — (21,22,2,y). Note that the first component of v(z1, 29, x,y)
equals (¢(z1, 2,y) — ¢(22,2,y))/2.

To simplify the notation, we denote X; = D, Xy, = n~}(D) and X3 = 77 (D)
so that 7 : X3 — X; and n : Xy — X;. We are ready to represent the conormal
distribution C(z1, 22, x,y) in coordinates (v,w,z,y) as the pull-back distribution

tj:

)7

1 .
§¢(Zj,$,y), Sj = §¢(zj,x,y)-arcsm(el- ’
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Cy = 1(C1) € I(X3; 53N X3), S3 = {(v,w,x,y) : v = 0}. By the invariance of
conormal distributions under the change of variables we may write

]comp<X1; Sl N Xl)

/ \
Icomp(X2;52 mXQ) ]comp(X?);S?) ng)

To apply this diagram and the integral representation (5.13) of Cy € I pmp(X2;S2 N
X5), consider the transformation x = 7! o 7. We will below use [23, Theorem
18.2.9], to provide a representation for the pull-back C; = k*Cs. Since surfaces Sy
and S3 have the special form S, = {V = 0} and S3 = {v = 0}, and x maps S3 N X
onto Sy N X5, we obtain

Culv,w, 2, ) = (27)° / ey (w, v, y, €) de,

R2

where ¢s(w,z,y,€) € S75 (RS x R?) is a symbol satisfying

(515) 04(711:957%5) =
Cg(fig(’l}, w, T, y)7 ((’%/11(1)7 w, T, y))_l)tg)ldet /{lll(va w, x, y)|_1 |v:0 + r(w, z,Y, g)

Here, r(w, x,y,§) € Sig’Q’*(Rﬁ x R?) and the coordinate transform « is decomposed
into two parts, the R%-valued function x(v,w,z,y) = V(v,w,z,y) and the RS-
valued function ko(v,w,z,y) = (W(v,w,x,y),x,y). This yields for the differential
k' of Kk the corresponding representation

/ /
1 F11 Rig
K = ; p .
Ko1 Koo

We note that the transformation rule in £* in [23, Theorem 18.2.9] is presented
for half-densities. The proof of the analogous result for distributions, however, is
immediate.

Plugging the principal symbol of c3(z, &) given in (5.14) to formula (5.15), we see
that the principal symbol of ¢4 (w, z,y, &) is

lw,z,y,€) = plzi(v,w,2,y))(L+ (85 (0, w,2,9) 7€) T
0(2)0(y)J (w, z,y)
where J(w,x,y) = |det x|, (0, w, z,y)| .
We are ready to compute the asymptotics of I;, j, 1, 1, (k1, k2, z,y). We denote
J = (41,J2,11,12). By writing the integral I; = L i go (K1, ko, z,y) in coordinates
(v, w,x,y) we obtain

If — /€1_(1+j1+j2)k2_(1+l1+l2) / exp(i((kl + ]{?2)61' v+ (]f1 _ k‘g)@l' w))

R4
(5.16) -C’4(v,w,x,y)H3(v,w,x,y) dvdw
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where e, = (1,0) is the unit vector and H7 = Hi(v,w,z,y) is

i — dj, djydy, i,

| — 21|22 — yr TR — 2|1 |z — |

where z; = 2z (v, w, x,y) and z3 = 29(v, w, x,y).
Since HY is smooth in X; in all variables and the class I (R®; S3) is closed un-
der multiplication with a smooth function, we have Cy(v,w,z,y) Hf(v,w,x,y) €
I(R?; S3). To evaluate the oscillatory integrals (5.16) in a convenient way, we need
to represent this conormal distribution with a symbol that does not depend on wv.

Again, by using the representation theorem for conormal distributions [23, Lemma
18.2.1], we obtain

(517) 04(anax7y) Hf(”awax7y) = (27T)_2/ eiv-écg(w7x’y7£) déa
R2
C‘é w,x,Yy, 5 ~ Z ZDMD{ c4(w,x,y,E)H5(v,w,x,y))|v:0.
=0

In particular, we see that (w x,y, &) has the principal symbol

P (w,2,,€) = p(z (v, w,2,9)) (1 + (- (0,0, 2,9)) 7 )EP) ™
(5.18) -0(x)0(y) J(w,x,y)H](v,w,x,y)

By substituting (5.17) in to (5.16) and using the Fourier inversion rule we obtain
the important formula

(5.19) [; _ k:l_(1+jl+j2)k32_(l+h+l2)(fwcg)((k’g _ k’l)@l,xa Y, _(kl + kz)el)

where F,, denotes the Fourier transform in the w variable,
Fudinz,0.6) = [ e (w9, do
RQ

As the symbol cg(w, x,y, &) is C* smooth and compactly supported in the (z,y, w)
variables, we see that |D%cl(w, z,y,&)| < co(1+ |€])7272 for all || > 0, where c,
is independent of (w,x,y) € R®. This implies after n integrations by parts that

1 o
R e
L+ [y + ko2 Rl
for all n > 0. By considering separately the cases |k; — ka| < |k1 + k2|/2 and
|k1 — ka| > |k1 + k2| /2 we deduce that
(5.20) [;(ku, ko, 2, y)| < ey (14 [hy — ko) 7" (14 [y ko) 1720707927072 0y > 0,

This verifies the estimate (5.5).
Before proving (5.6) we consider the asymptotics when k; = ko = k. We denote
0 = (0,0,0,0). For j # 0 we have Ik, k,z,y) = O(k=°7%%). Thus, in order to

’I;<k17 k?a €, y)| < Cn
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establish (5.7) it is enough to consider Io(k, k,x,y). To obtain the leading order
asymptotics of Iy, we consider the contributions of the principal symbol and the
lower order remainder terms separately. Write

cg<w>$ay7€) = Cgp(wax7y7€) + cr(w>xay>£)7

where ¢, (w,z,y,§) € Sy, 572%(RS x R?) is smooth and compactly supported in the
(w,x,y) variables. Thus |D%c,(w,z,y,&)| < co(1+ [£]) 7372 for all multi-indices «
and we infer as above that

|chr(07 x, y’ —2k61)|:O(k—3—25)’

for all n > 0. Thus the contribution of ¢, to [ is estimated by the right hand side of
(5.7). Hence it is enough to consider the principal part. To this end, we substitute
the principal symbol (5.18) into formula (5.19) and obtain

(521) ]O(k’ ka z, y) =

]C_29(?L’)9(y) / :u(zl(O? w, T, y))H0(0> w, T, y)J<wa Zz, Z/)

d k—5—2l€ .
o (L 2R, (0w, 2, ) feg P 40 T ORT)

Since one may compute that a = 4|((x},(0,w, x,y)) " ')te1|* # 0 we may apply for for
. A 14k

large k the development (1 + k?a)~17" = (oflkf2 >t k*29(—a)ﬂ> . We obtain

the desired formula (5.7) with

R 1 u(zl((),w,x,y))ﬂo((),w,x,y)J(w,x,y)
= d .
(z,9) 41tk /2 |((K)1(0,w, m,y))~1)tey [>2- v

cosa + asina  —sina
sina —acosa  CcoS
wo/wy. It follows that J(w,z,z) = det(x};) = 1 and |((x};) ")'e1] = 1. More-
over, we also have det (7'(0,w,z,z)) = 1, and (det(%L (v, w,z,x)|,—)) " = 4. Put
together, these observations yield (5.8) for R(x,x).

Finally we prove estimate (5.6). Observe that E (u;(z,y, k1)u1(z,y, ko)) is given
by a linear combination of terms f; analogous to (5.10) where, in addition to chang-
ing constants d;, we only replace k; with —k;. Notice also that in the proof of
formula (5.19) one may allow k; to be negative, whence the estimate (5.6) follows
immediately. [J

Moreover, for y = x we compute k|, = ( , Where a =

Lemma 5.2. In the decomposition (5.4) the random variable b(x,y, k) satisfies a.s.
the condition

b(x,y, k)| <L+ k)2, 2,ycU k>0

where the constant ¢ depends only on Ho_l’l(D)—norm of q(z,w).
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Proof. By (5.3), ||®4(- —2)|| gree(p) + |0 (- =) || mrioe(py < k2 for k> 1, 2,y €
U. This implies

(a9, k)| < Nl g0y (1100 =) = @ (=) e |94 =) 1y +

3 3
1100 =)l 0y |94 =9) = & =)l )
< C||Q||H(;1‘1(D)(1 +[k[) T

O
The above results have the following corollary that plays a crucial role in sequel.

Corollary 5.3. Assume that ki1,ky > 1 and xz,y € U. Then
E |Re (kiui(z, y, k1)) Re (k3 (2,9, k2))| < ca(1+ [k1 — ko|)™", n >0,

where ¢, s independent of v,y € U, and one may replace one or both of the real
parts by imaginary parts.

Proof. When ki, ky > 1 we have that |ky + k| ™™ < |k; — k2|™™. The claim now
follows immediately from estimates (5.5) and (5.6) by simply observing that for any
a,b, c,d € R we may recover all the products ac, ad, bc and bd as linear combinations
of real or imaginary parts of the numbers (a + ib)(c & id) = (ac F bd) + i(bc £ ad).
0]

6. HIGHER ORDER TERMS IN BORN SERIES

6.1. The second term. In this subsection we consider the second term wus of the
Born series (5.1), given by

(6.1) us(z,y, k) = /D/Dq)k(x — 21)q(21)Pr (21 — 22)q(22) Pr(22 — y) dz1d 2.

It turns out that out of all terms in the formal Born series this one is the hardest
one to analyze for our purposes. However, the following result yields exactly the
estimate that will be used later to show that the contribution of uy can be ignored
in the measurement (2.2).

Theorem 6.1. Assume that k € [0,1/2). For all x,y € U it holds almost surely
that

R S s 2

I}{%Oﬁ/l K ug (, y, by w) [Pdk = 0.

Proof. One may assume that © = 0, so we will abbreviate us(k) = uy(0,y, k,w)
(the dependence on y and w is suppressed in the notation). A main reduction will
be that we replace the Hankel functions, one by one, in (6.1) by the principal terms
in the asymptotics (5.2). It will be useful to abbreviate

(6.2) fr(z) = Pp(z) — do(k‘zy)—l/zemz\ and  gu(z) = do(kyzl)fl/QeiMzu



22 MATTI LASSAS, LASSI PAIVARINTA, AND EERO SAKSMAN

where the constant dy comes from the asymptotics (5.2). We need two auxiliary
results. The first one collects together useful knowledge on the behaviour of f, g,
and P, (- — y) with increasing & (in this section we always assume that k > 1).

Lemma 6.2. Let ¢ € [0,1]. Then

(1) gkl zewmys |Px(- = Y)||gerpy < k™2 forp>1 and y € U.

(i) fe(- = Yl gerp) < k32 forp>1 and y € U.

(iii) || fu(21 — 22) || mer(pxp) < k> 732 for p € (1,4/3).

Proof. Assume y € U and recall that dist (U, D) =: d > 0. Recall that
c d c

(6.3 OO 5 1 .

Then by denoting R = sup{|ly — z| : y € U,z € D} we have

HP @) < t>d.

/|fy(z)|pdz < / Op(u)Pdu < e,k PP(RYPZ — P2y = kP2
a<jul<R

where c is independent of y, and by the same manner one may estimate the gradient
V&, (- —y). We thus have

(6.4) sup|| P4 (- — )| opy < k2, sup||VO4(- — y)||ro(py < k2
yelU yeU

These estimates interpolate for 0 < s < 1 to what was claimed for ®,. Next, the
statement (i) for g is obtained similarly by noting that direct computation of Vg
shows that g, obeys bounds similar to (6.3).

In order to prove (ii), observe that the asymptotics (5.3) yield the estimates

(6.5) 1 fille(oy < ek™2, IV filli=(o) < k',

from which the claim again follows by interpolation.

To prove (iii), we again use the asymptotics (5.3) and observe that |V®g(z)]
ck'/? max(|z| 71, |2|71/?) for all z. Moreover, by direct computation |Vg(z)|
ck'/? max(|z|73/2,|2|71/2). These together yield that

IAINA

(6.6) IV fi(2)] < ck'/? max(|z|_1/2, |z|_3/2), k> 1.

By direct computation, we obtain || fi||rr5) < ¢pp(k™2 +k~ ) for p < 4/3 in any
bounded domain B. By combining this Wlth (6.6) we obtain by interpolation the
counterpart of (iii) for the function z — fi(z) on any bounded subdomain of RZ.
The estimate for the map (zy, 22) — fr(21 — 22) follows since D is bounded. [

In order to state the second Lemma, recall that the operator H, was defined
through (4.11) in Section 4. We also need to consider the operator K which com-
bines the multiplication operator with ¢ to Hy, i.e. Kyf = Hy(qf).
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Lemma 6.3. For anyp > 1, s € (0,1) and k > 1 it holds that

(6.7) ne
(6.8) ne

< ey FAsHO-1/D).

Hs2p_ [{s,2p

Hoor oo < TP

where the constant ¢; = c1(w) 1is finite almost surely.

Proof. For0 <s<land1 <p <2 <7 < oo one has that H, : H,”"(D) —
H*"(D) with the norm estimate

(6.9) HHk‘|H()’S’p(D)—>H5,T(D) < Ck71+2(s+(1/17*1/r))'

This estimate follows easily from the proof of Theorem 3.1 in [38|. An application
of (6.9) together with Lemma 4.1 and Theorem 3.3 immediately yields the claim.
O

Let us now replace the left-most Hankel-factor in the integral (6.1) defining uy (k)
by the approximation g, and consider

ug (k) == dok_1/2/ / eiklzl‘q(zl)|z1|_1/2<1>k(z1 — 29)q(22)Pr (22 — y) dz1d2s.
pJp
By the definition of the operator K we have

|uz.e (k) — ua(K)| = (g, [k (®i(- — y)))];

where the brackets refer to distribution duality. According to the previous Lemmata
we may estimate the left hand side above by

g1l sr-<.cover (o) [ Bk (PR (- = 9)) | o142 ()

S C2kaHH5’2+25(D) “ Kk- ‘|H5’2+25(D)4)H€72+25(D) ”@k(‘ - y)HH€72+25(D)
< 02]{;25—3/2k—1+2(e+(1—(1+a)*1))kje—l/z7

where c; = c(w). Here Theorem 3.3 verifies that [|q|| ;;—-.a+2(py < oo almost surely;
we use here only the lower bound of smoothness obtained from Theorem 3.3 corre-
sponding to the case k = 0. Thus we obtain that

(6.10) Uy (k) = uge(k) + O(KF=3) forall & > 0.

We next apply the same asymptotics to the ®,-term on the right and consider

ug,p (k) = d(%k_l/ / MDDy (2 — 2)q(21)q(22) (|21]122 — y)) 712 dzads,
pJpD
In this approximation the induced error term to ug (k) is given by

|u.r (k) — uze(K)] = g, LSk (fi(- = 9));
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where hy(z1) = doe™**1l|kz;|71/2. Note that |z;|~'/2 is smooth on D. Clearly
||| rece(py < ck®~1/2, and hence we may apply again Lemma 6.2 and obtain anal-
ogously to the previous computation

U o(k) = g, (k) + Ok V2E~ 12+ (4e) 1) =3/242¢)
(6.11) = ug,(k)+ O(kg/_?’) for all ¢ > 0.

To complete the reduction, we apply the same asymptotics to the remaining ®-
term in the integral defining u,, (k) and consider

v(k) = dg/ / eik(‘zl|+|Z2|+|Zl_z2|)(1(21)9(22)(|21 — 221|220 — y|)_1/2 dz1dzs.
DJD

Following our definitions, this integral is understood in the sense that one first does
the integration (distributional duality) with respect to the z; variable. However, one
verifies without difficulty that we also have ug, (k) = (®p(- — -), si), where

si(21, 20) = A2k q(21)q(z0)e™ 2D (1 21|12y — y|) 7Y% (21, 22) € D x D.

One easily verifies that a;(21)as(z2) € H=2°°(R?) whenever a;,a, € H 5>°(R?), and
€ > 0. Thus, according to Theorem 3.3 and the Sobolev embedding theorem we have
that i ®qy € Hy =*°(Dx D) for alle > 0. Observe that ||e*(=11H122D|| g o 5 py < ck®.
A simple duality argument using (4.5) shows that

<ck!, forall € >0.

HSkHH & (DxD)

Combining this estimate with Lemma 6.2 we obtain

|k~ 20(k) — uzr(K)| = [(fi(- =), s < [ fw(- — )||H5’5/4(D><D)||Sk||HJS’5(D><D)
S Ck3€*5/2.

In conjunction with (6.10) and (6.11) this finally gives
(6.12) uy (k) = k=%%0(k) + O(k* /%) forall £ > 0.

We now enter the main difficulty of the proof, that is, the estimation of v(k). Our
first observation is that it is possible to circumvent pointwise estimates with respect
to k altogether. Namely, in order to prove the Theorem 6.1 it will be enough to
show that

(6.13) / lv(k)]Pk* dk < 0o a.s.
1

To see this, we notice that by (6.12) one may write

K/ k2+n ‘dl{? < / K k2ndk+O(K2fc+2E’fl)

< 2/ min(l, E)|U(k)|2k2fi dk—FO(K?’H'QEI_l)_
1
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This last integral converges a.s. to zero by the dominated convergence theorem as
K — o0, and the claim follows if €’ is small enough.

Towards (6.13) we will shortly express v as a one-dimensional Fourier transform
and get rid of the variable k. Before that a couple of auxiliary considerations are
needed to treat the case where k = 0. First of all, in order not to have prob-
lems with interpreting the distribution dualities that will emerge, we introduce the
modification vs, 6 > 0, of v that is obtained by replacing ¢ by the standard mol-
lification g5 := q * ps, where ps(z) = 6 2p(z/d) and p € C§°(R?) is a radially
symmetric function satisfying | p(z)dr = 1. We denote the mollification operator
by Mg : f — f % ps. Observe for later use that the covariance operator of g; equals
Cs = MsC,Ms. Clearly vs(k) — v(k) as 6 — 0. In order to verify (6.13) in case
k = 0 it is enough to show that

(6.14) sup/ E |vs(k)[2dk < oo,
e(0,1) J1

since an application of the Fubini theorem and Fatou’s lemma then yields that
E ([ |v(k)[*dk) < oo, which immediately implies (6.13).

We need to take a closer look at the phase function A(z1, 29) := |21| + |21 — 22| +
|zo — y|. Observe first that A is smooth on D x D apart from the subset where
z1 = z3. Moreover, the gradient of A is bounded from below and above;

(6.15) 0<c <|VA(z1,2)| < g <oo for (z1,22) € D x D, 2z # 2.

The upper bound is evident. For the lower bound it is enough to apply the convexity
of U, the fact that 0,y € U and compute

22— Y
|20 — Y|

for 21 # 20, 21,22 € D.

(6.16) (21,22) - VA(z1,22) = |21+ |21 — 22| + 22 -

>co >0

Here we are using the fact that the measurement domain U is convex. Moreover, it
shows that the surfaces

F; = {(21,22) eDxD ’A(Zl,ZQ):t}, t>0

are (if non-empty) locally boundaries of starshaped domains with respect to the
origin.

There are smallest and largest values 0 < Ty = Ty(y) and T = T)(y) such that
I} is nonempty only for 7y < t < T}, and we only need to consider these values
of t. We now fix a t € [Ty, T1]. Simple geometrical considerations verify that there
is 7 = n(t) and an open cone K = K(t) C R* with center at the origin with the
following properties: By writing to = ¢ — n and t; = ¢ + n it holds that

DxDnN {to < A(Zl,ZQ) < tl} C KN {t() < A(Zl,Zg) < tl} =1\
By defining T, = T'N {(21,22) : A(z1,22) = t} for t € (to,t1) we thus have I' =
Uy <i<t, ['+- Moreover, one on basis of (6.15) and (6.16) one deduces that there is a
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radial strech B; yielding a bi-Lipschitz chart B, : ' — I'; over a subdomain F' of
the unit ball. The bi-Lip constant of B; is uniform over t, < t < t; and each B, is
actually a local diffeomorphism outside the subset where z; = z,. Moreover, since
D has a positive distance to the origin one may also make the choice of n and K so
that the condition

(6.17) |21], |22] >0 >0 forall (z1,29) €l

holds true. In the preceeding discussion the quantities [', B;, F' of course depend on
the fixed ¢, but we will suppress this in what follows.

We hence see that the surfaces I[';, with varying ¢ provide a fairly regular foliation
of the domain I' — actually (6.15) and (6.16) show that we may write

Bt(wh U)Q) == ()\(ta w1, w2)w17 )\(ta W, w?)wQ);

where the dependence (wq,ws) — A(t,wy,ws) is Lipschitz with respect to ¢ with a
uniform Lipschitz-constant with respect to wy, ws.

The considerations in the preceding paragraph justify a generalized co-area for-
mula for integrals over I':

t
_[” 1 3
(6.18) /Fg(zl,zg) dz1dze = /tl </Ft g(z1, z2)7|v14(21722)| dH (z1,22)> dt,

where the inner integral is with respect to the 3-dimensional Hausdorff measure on
I';, and g is any integrable Borel-function on I'. In a similar vain, we may perform
a change of variables and write for any fixed ¢

(6.19) / g(21, 22) dH? (21, 29) = / 9(By(wy, wa)) Hy(wy, wy)dH? (w1, wy),
I F
where the Jacobian H; satisfies the uniform bound

_|Bi(wy, we) | VA(By (wy, ws))]
(6.20) 0 < Cy < Hy(z1,29) := Cwr.w9) - VA(B: (wr.wg)

S 027

according to (6.15) and (6.16). Moreover, it is important to note for our later
purposes that the dependence t — H;(z1, z2) is uniformly Lipschitz with respect to
the variable ¢.

Lemma 6.4. Given v € (0,2) there is a finite constant ¢ such that for every t €
[to, t1] we have

(6.21) / |21 — 22| YdH?(21,22) < ¢ and
Iy

(6.22) / |2 — 2| TAH? (21, 20)dHP (2], 25) < ¢ for k,j=1,2.
FtXFt
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Proof. Observe that for any (z1,2;) € I'y, in the change of variables (w;,ws) =
B; (21, 22) one has (wy,ws) = (A(21,22)21, A(21, 22)22), where the scalar factor A\ =
A(z1,22) € RY satisfies uniformly A > a > 0. Hence an application of (6.19) and
(6.20) yields that

|21 — 22|_7d7-{3(z1,22) < c/ a wy; — w2|_7dH3(w1,w2).

r BN ()

The last written integral can be estimated by the integral over the whole sphere S®,
which is easily seen to be finite.

In order to treat the integral (6.22) we first note that by elementary geometry
one has |z — y| > |z||z° — 3°|/2, where 2° = z/|z| (and similarly for y) stands for
the corresponding unit vector. According to (6.17) we see that the integral (6.22) is
bounded from above by

(6.23) 21 /F 1) = TR 1 ) )

Using again the change of variables as before with respect to both z and 2’ we obtain
that (6.23) is dominated by the expression

2576 [ () = )] s wn)dH ),
HxH

where H = {(wy,ws) € S : |wy|, |we| > b}. The last written integral is readily seen
to be finite by an application of the Fubini theorem. [

We return to our main theme and use (6.18) to write vs(k) as a Fourier-transform
(6.24) vs(k) = Ss(k), k>0,
where the function Sj is compactly supported inside (7p,7}), and for a fixed te

[Ty, T1] and t € [to(t),t1(t)] one has
Ss(t) == /F q5(21)as(22) (|21 — 2a]) /7 L(z1, 20) [V A(21, 22) [ dH? (21, 20).

Above L(z1, z2) is a smooth cutoff of the function |z;|~!/2|2,—y| that vanishes outside
D x D. Hence L € C§°(RY).

Case 1: Kk =0. We claim that (6.14) (with x = 0) follows as soon as we verify that
for each t € [Tp, 71| there is a finite constant M = M (¢) < oo such that

(6.25) E|Ss(t)]> < M forallé € (0,1) andt € [to(t),t:(t)].

Namely, by compacness we may then cover [Ty, 7| by intervals associated to only
finitely many values ¢ € [Ty, T1], and it follows that E|S;(t)]> < M’ for any t €
[Ty, T1], whence

E ||Ss]| 72 < M'(Ty — T1) < oo.

The desired inequality (6.14) will be a consequence of Parseval’s formula.
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Let us fix t € [Ty, T1] and let t € [to(t),t1(t)]. It remains to estimate I |Ss(¢)|%. In
fact, by using the well-known Wick formulae for the expectation of n-fold products
of centered Gaussian variables we obtain

E (qs(21)as(22)a5(21)45(23)) =
Cs(21,22)Cs(21, 25) + Cs(21, 21)Cs(22, 25) + Cs(21, 25)Cs(22, 21)

and thus, in the new coordinates associated
BISOF = [ (= =) 21V AG, 2 o)
FtXFt

(|21 = 20) T2 IL(21, ) VA(2y, 2)|
(Cs(21, 22)C5(21, 25) + Cs(21, 21) Cs(22, 25) + Ci (21, 23) Cs(22, 1))
CdHP (21, 20) dHP (2, 24).
From Proposition 3.2 it is immediate that for any given a > 0 there is a finite
constant ¢, such that |Cs(z1, 22)| < cu|21 — 22| for any § € (0,1) and (z1,29) €
D x D. By (6.15) we obtain for any ¢ € [t1,t5] the estimate
(6.26) sup E|[S5(t)[?

4€(0,1)
< c/ R(z1, 20, 24, 25)T (21, 20, 21, 25) dH? (21, 22)dH? (2], 25),
Iy xI'y

where
R(Zh 22, Zia Zé) - |Zl - 22|_1/2|Zi - Zé|_1/2

and

T(21, 22,21, 29) = Z (|r1 — ral|rs — ra]) ™%
{r1,ra,r3,ra}={21,22,21,25}
In this last formula we sum over all permutations of the four-element set. It is now
clear by symmetry, Lemma 6.2, and an application of Hélder’s inequality on (6.26)
that the integral (6.26) is finite for all ¢ € [t;,¢2] as soon as a is chosen small enough.
Thus we have established (6.25).

Case 2: K € (0,1/2). In this case the realizations are Holder continuous with prob-
ability one and the covariance operator also has a Hélder continuous kernel according
to Proposition 3.2. Hence we denote S(t) = Sy(t), i.e. we leave out the mollifica-
tion. For positive values of x we claim that (6.13) follows if we establish for each
t € [Ty, Ty] the estimate

(6.27) E|S(t) — SH)> < M|t —¢'|"T1/2 forall t,t' € [ty (), t2(1)].
Namely, then Fubini’s theorem yields that

t1 t1 _ 1|2
el I5W) = S 4y 4y < o0
to to |t_t

|1+23
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for s < (2k + 1)/4. Especially, since k < 1/2, this holds if s = 5 According to the
Besov characterization of the homogeneous Sobolev norm H;’ homog this means that
S[to t1] S Hhomog
that Sto 1] € Hh
(6.13).

The verification of the estimate (6.27) leads to computations that are more cum-
bersome than in the case 1. Let us first fix ¢,¢' € [to, t1]. By applying the change of
variables (6.19) and introducing the abbreviation z;(u) = z;(u, w1, ws) we obtain

Agaln, as in the beginning of Case 1, we deduce by compactness

o Q(R) almost surely, and by taking Fourier transforms this yields

S(u) = /Fq(zl(u))q(zg(u))Uu(wl,wz)Tu(wl,wg)dH3(w1,wg) for w € [to, 1]

with U, (w1, ws) := (|21(u) — z2(u)|)~/? and
Tu(wi,ws) = L(21(u), z2(w)) Hy (wr, wa) ([VA(21 (u), 22(w))]) "

We next analyze the impact of the different factors in this integrand to the second
moment of S(t)—S(t’). Let us observe first that 7} is uniformly bounded and satisfies
the estimate |T;(wq, wq) — Ty (wy,ws)| < c|t — t'|. Hence, if we apply the Minkowski
inequality after replacing in the definition of S(¢') the factor Ty (w1, wq) by T} (w1, we),
it follows that

1S() = Sz < 19:(8) = S1(t) 220y +
(6.28) +C\t—t!/ lg(z1.()q(z2(t) | 2| U (w1, wa) | dH (wr, wo)
< [15:(%) t)lz2() + Clt — '

since the last written integral is obviously finite (cf. Case 1.) Above

S1(w) ::/FQ(Zl(u>)Q(ZQ(U)>Uu(U)1,'U)Q)T('U)l,U}2>dH3(Zl,ZQ),

where T'(wy,ws) := T;(wy, ws) (remember that ¢t are fixed).

In order to perform a similar operation with respect to the term U, (w;,ws)
we make use of homogeneity. What comes to |z1(u) — z(u)|~'/? we recall that
(z1(u), 22(u)) = (Ayw1, Ayws), where the scalar factor A\, depends on (wq,w,), is
uniformly bounded from above and below and stays uniformly Lipschitz in u. Ac-
cordingly,

[21(8) = 22(0)] 717 = 21 (t) = 22(0) 2] = ()72 = )™ |y — o7V
< Oltl - t2||w1 - w2|_1/2.

Since [, [lg(z1(t'))q(z2(')|| 2 () lwi — wa| ~/2dH? (w1, ws) < co we obtain as in (6.28)
the estimate

(6.29) 151.(8) = Sy (#)ll 2@ < [152(8) = Sa(t)l2(@) + Clt — 1],
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where
Sa(u) 12/FQ(Zl(u))Q(Zz(U))U(whwz)T(’whwz)dH?’(th),

and U(wy,ws) := Uy(wy,wy). Let us denote R(wy,ws) := U(wy,wq)T (wy,ws). In
order to finally estimate [|Sy(t) — Sa(t')||L2() We write the difference So(t) — Sa(t')
as a double integral with the result

182(t) = S2(t') |72
= / G(wl,wg,Ul,UQ)R(wl,wg)R(Ul,'UQ)dH3(w1,UJ2)dH3(U1,U2),
AxA

where

(6.30)  G(wy,ws,v1,vq)

Cq(21, 22)Cqur, uz) + Cglz1, 1) Cyuz, 22) 4+ Cq(21, u2)Cy(ur, 22)
— 20y (21, 25)Cy(ur, uz) — 20y (21, u1)Cy(uz, 25) — 2C, (21, u2)Cy(ur, 25)
+ Cyl21, 2)Cqul, uy) + Co(21, uy)Cyluy, 23) + Colzy, up)Cqlul, 23).

Above we have denoted (uy,us) = Bi(vy,v2) and (u}, uh) = By(vy,vy) for (vy,vq) €
F, and similarly (z1, 20) = By(wy,ws) and (27, 25) = By (wy,ws) for (wy,wy) € F.
Recall that the covariance has the form

(6.31) Cy(21,22) = a(z1, 29)|21 — 2| + 1(21, 22),

where a is smooth and r Holder with exponent (1 —¢) for any £ > 0. Formula (6.30)
yields immediately that

(6.32) |G (w1, ws, v1,v9)| < ]t — >
Moreover, given ¢ > 0 it is easily checked that
|21 — 20| — |2} — 2| < e(k)0"FY2 for |z — 25| > 20 and |(21, 22) — (2}, 2)| < 6/2.

A fortiori, by the bi-Lipschitz property of (¢, w;,ws) — B;(wi,ws) an analoguous
estimate follows for the covariance C,: there is a constant c¢3 > 0 so that

(6.33) Cylz1, 22) = Cyl#4, 23)| < ' (1)3"F1/2
for [w; — wy| > 6 and |(wy, we) — (w], wy)| < c36.

Consider the set
1
P = {(w,wq,v1,v9) € F X F @ |w; —v;] < 5\/|t — t'| for some i,j € {1,2}}

N{(wy, we,v1,v9) € F' X F & Jwy —wy| < /|t —t]or |vg —va] < V/|t—1]}.
According to formulae (6.30) and (6.33) we have for |t — ¢/| < ¢4 that
(6.34)  |G(wy, wa, vy, v2)| < [t — "2 A (wy, wa, v1,05) € (F X F)\ P.
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Observe that |R(vy, v2)| < clv;—vs|71/2. By invoking crude estimates for the measure
of the set P and applying Holder inequality on the function (wy, ws, uy, us) — |wy —
wa| Y2 Uy — ug| /2 we easily obtain in view of Lemma 6.4 that

(6.35) / R(wy, wy) R(vy, v9) dH? (wy, wy)dH? (v1, vy)
P
< c/ lwy — wa| 72|y — va| T2 AHE (wy, wo)dHE (v, v5)
P
<t —t|V2

By dividing integration in (6.30) over the sets P N (F x F) and (F x F)\ P, the
estimates (6.32), (6.34) and (6.35) yield (together with the finiteness of the integral
S B(w1, w2) R(vy, v2) dH? (wy, wa)dH?(vy,v2)) that

152(t) = Sa(t)[720y < e (Jt = E'P5[t — /|2 4 [t = #/]"1/2) < |t — ¢/,

Together with the chain of our previous inequalities this yields (6.27) and hence
finishes the proof of Theorem 6.1. [J

6.2. The convergence of the Born series. In this subsection we verify that the
Born-series converges to the solution (if & is large enough) and that the higher order
terms decay in an appropriate way.

Theorem 6.5. (i) There is a (random) index ky = ko(w) such that ky < oo
almost surely and, if k > ko then the Born series (5.1) converges for any x,y € U
to the solution u(x,y, k).

(i) For any ¢ > 0 and k > ko there erist ¢ = c(e,w), finite almost surely, such
that

o0

Z sup |un (z,y, k)| < ck=/2*e,
z,ycU

n=3
Proof. It is enough to consider the hardest case x = 0, since for positive x all the
estimates below clearly hold true — actually many estimates become better in that
case. We start from the expression u,(x,y, k) = (K]®x(- — y))(z). By Lemma 6.2
(i) and Lemma 6.3 we may estimate that

Hun<'>yv k)||L°°(U) < ||Kk’ 7;[_57121?_»[{8,217”(1)/6(' - y)’
(636) < anlJrQSfl/pk(nfl)(71+2(s+171/p))k71/2+s'

Hs,2p_,Loo||Kk’ Hs:2p

Here the constant ¢ = ¢(w) is independent of y and thus the desired estimate follows.
Let us denote s — 1 + % =¢ and 2(s + 1 — 1%) = €9, whence we can take ¢; > 0
and € > 0 arbitrarily small. With these choices (6.36) yields that

Hun<-’ -’ k)HLOO(UXU) S an1/2+61*n(1762)
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and consequently

ad 1
o 3,.-5/24(e1+3e2) 1+
;Hun(a :k)HLW(UXU) <c’k e 1 — cke2—1"

This proves (ii) as soon as we choose kg large enough so that ck5>~' < 1/2.

To obtain (i), observe that an iteration of the Lippmann-Schwinger equation yields
the n:th remainder term in the form (Kj)""'u, which converges to zero by the
operator norm estimate for K used in (6.36). O

7. EXISTENCE OF THE MEASUREMENT: CONVERGENCE OF THE ERGODIC
AVERAGES

Now we are ready to analyze the measurement m(x,y,w).

Theorem 7.1. For x,y € U the limit (2.2) exist almost surely and equals

K
(7.1) lim —— K2 g (2, y, b, w) [*dk = R(x,y)

where R(x,y) is the smooth function on U x U given in Proposition 5.1.

Before giving the proof we first describe the philosophy behind Theorem 7.1. Let
us write

(7.2) us(z,y, k) = wi(z,y, k) + ur(z,y, k),

where u, = (b + uz + ug + ug + ...) stands for the remainder term (recall that
u; = w1 + b). The results of the previous section will yield that the contribution
of u, is negligible in the measurement, whence it remains to understand the mean
behaviour of |u;|?. The analytic estimates of Section 5 show that the expectation
E k*uy(z,y, k)|* tends to a limit as k — co. In addition, the same estimates verify
that the terms k3w, (x,y, k1) and k3u,(z,y, k2) become asymptotically independent
as ko grows towards infinity (see the figure below). This makes it plausible that one
could recover limy_.o, E |k (2,9, k)|* as a suitable ergodic average, in view of the
strong law of large numbers, and this turns out to be true.
We record an elementary lemma.

Lemma 7.2. Let X and Y be zero-mean Gaussian random variables. Then
E(X?-EX})(Y?-EY?)=2EXY)%

Proof. By scaling one may obviously assume that EX2? = EY? = 1. Denote

EXY = cosa € [—1,1]. Then (X,Y) and (X, cos(a)X + sin(a)Y”) have the same

distribution, where Y’ is an independent copy of X. The result follows now by a

straightforward computation. [J

Let us recall an ergodic theorem suitable for our purposes. The following is
obtained e.g. as an immediate corollary of [14].
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‘ul(aja Y, ka (“‘JO)lk2

SN T

L (N

Almost uncorrelated

Theorem 7.3. Let X;, t > 0 be a real valued stochastic process with continuous
paths. Assume that for some positive constants c,e > 0 the condition

‘EXtXt+T" S C(l + 7")78
holds for all t,r > 0. Then almost surely

1 K

The ergodicity of the term u; (recall (5.4)) verified in the following proposition.

Proposition 7.4. For any x,y € U we have almost surely
K

1
(7.3) lim w1 K2R (2, y, k) Pdk = R(x,y).

K—oo K — 1

Proof. According to Lemma 5.1 we have limy,_., E (k"% |u;(z,y, k)|*) = R(z,y).
Hence it is clear that the claim follows as soon as we show that
(7.4) I;Enoo %1 IK Y(z,y,k)dk =0,
where Y (x,y, k) = k2% (|uy(z, y, k)|? — E |t (x,y, k)|*). Since
Y(z,y,k) =k* (Reti(z,y,k))* — E(Ret(z,y,k))*)+
+(Im @y (,y, k))* — E (Im @y (2,y, k))*)) .
we may combine Corollary 5.3 together with Lemma 7.2 to obtain

E‘Y(xa Y, kl)Y(x> Y, kz)'

c
< —7
T 1+ |k — ka)?
for any ky, ko > 1. Statement (7.4) now follows immediately from Theorem 7.3. [J

We are ready for
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Proof of Theorem 7.1. By denoting u,(x,y, k) = b(z, y, k)+us(z,y, k)+ug(z,y, k)
we may decompose

US(.T,:(/, k) = ﬂl(x7y7 k) + b(l’,y, k) + u2(x,y, k) + UR($7Z/7 k)

According to Lemma 5.2 and Theorem 6.5 we have a.s. limy_ ., k*™(b(x,y, k) +
ug(x,y,k)) = 0. Together with Theorem 6.1 this yields that almost surely

1 K
(75) I%I_IPOO ﬁ ) k4+2ﬂ|ur($, Y, ]f)‘2 dk = 0.
The desired statements now follow directly by combining (7.5) and Proposition 7.4,
as the obtained cross term may be estimated with the aid of the Cauchy-Schwartz
inequality in the space [1, K| equipped with the weight (K —1)"'dk. O

8. CONCLUSION: PROOF OF THEOREM 2.3

The results obtained so far (Theorem 7.1 from the previous section) prove directly
parts (i) and (ii) of our main result, Theorem 2.3: the measurement (2.2) is almost
surely well defined for any x,y € U.

It remains to prove part (iii) of the Theorem, which deals with the recovery of u
from the measurements. Observe that in our case mg(z,z) = R(x,x) for any = € U,
and, by the formula (5.8) in Section 5, we have that

1 1
(8.1) R(xz,x) = SETER 3 /D P Z|2u(z) dz.

Especially, the function = — R(z,z) is continuous. Hence, by performing measure-
ments in a dense set of points z € U, Theorem 7.1 shows that almost surely we can
recover R(x,z) for all x € U.

Thus, the relation (8.1) shows that we are left with a simple deconvolution prob-
lem: the values of the convolution

H(z) = (h+ p)(@), h(z) = ﬁ

are known in a open set U that has a positive distance to the support of 1 € C5°(R?),
and we are to show that this knowledge is enough to recover p. For that end, observe
first that A,(|z|7%") = 4p?|z|~%~2. Thus our data determines also the convolutions

1
CpAI;H(QJ) = /D mﬂ(Z) dz

for p > 1 and x € U. Let us denote

S(z,r) = /| PCLE!
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which corresponds to the Radon transform along circles. Fix any x € U. It follows
that we are able to recover the integrals

[ o

r2

where Q(t) = ?:o a;t?, p > 0. The support of the continuous function r — S(z,r)
lies in a finite interval [a, b] with a,b > 0, and obviously the functions of the form
Q(1/r?) are dense in C([a,b]). Thus the function S(x,r) is uniquely determined for
all » > 0.

The observation that we just made can be stated in another form: the data yields
the knowledge of integrals of 1 over all circles that are centered in the open set U.
This is a classical problem of integral geometry, of the Radon type, which can be
solved in a simple manner, cf. eg. [4] and the extensive list of references therein.
Namely, let g(z) = exp(—|z|*/2) for z € R?, and observe that knowing the integrals
over the above mentioned circles we may compute the convolution gx*u(z) for z € U.
However, g x p is clearly real analytic and the set U is open, whence we know ¢ * p
everywhere. As the Fourier transform of ¢ is smooth and non-zero all over R?, it
follows that we can recover ;. uniquely. This completes the proof of our main result.
OJ

Remark 1.  The proof of Theorem 2.3 goes through also without the assumption
E ¢ = 0. Namely, assume that Eq = p € C§°(D) and denote ¢y = ¢ — p. Then

(8.2) E (¢(21)q(22)) = E (qo(21)q0(22)) + p(21)p(22).

We briefly analyze how the above proof should be modified for this case. We have
again that ¢ € Hy“"(D) a.s. Thus the results for the direct scattering problem given
in Section 4 are valid without any change, and we see in particular that the higher
order Born terms uz + uy + ... do not contribute to the measurement (2.2).

When the term p(z1)p(z2) in formula (8.2) is added to the covariance operator in
formula (5.9), we see that this causes only a S| 5° perturbation for the symbol of
the covariance operator C,. Hence the proof of Proposition 5.1 remains unchanged.
With small modifications the considerations in Subsection 6.1 remain valid, too.
Finally, as the stationary phase method yields Eu;(x,y, k) = o(k~>°), we obtain
Theorem 2.3 by finishing the proof as in Sections 7 and 8.

Remark 2. The unique solvability results of Section 4 allow us to extend the
main result also to the case where x < 0 with |x| enough small. All the arguments
remain essentially the same, only the treatment of the second term needs minor
technical adjustment. Moreover, it should be pointed out that if x were assumed
to be unknown a priori, then Theorem 2.3 shows that (in principle) it would be
possible to first determine s from the above measurents.
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Remark 3. One may also consider as the measurement the average

1
Ii 442K 2
1m 7[( 1 /1 / k ]us(yc,:c,k,w)\ ¢(£L‘)dl‘dk

with ¢ € C§°(U). The main result can also be stated in terms of this kind of ‘distri-
butional measurements’. In this setup the proof of Theorem 2.3 remains essentially
unchanged. One should also note that the function R(z,z) is uniquely determined
from integrals [, R(x,x)p(x)dx against a countable and dense set of smooth test
functions ¢.

Remark 4. [t is interesting to compare the stability of the stochastical inverse
problem with the the deterministic one. In Theorem 2.3 the operator 7' is linear and
thus the reconstruction of u requires solving of a linear ill-posed inverse problem.
More precisely, by the observations in the present section, 7" corresponds to a Radon
transform over circles, which gives a pretty clear picture of the ill-posedness. This
is markedly different from the corresponding deterministic problems.

Remark 5. We mention that in the backscattering case y = z it is possible
to avoid the use of the pseudodifferential calculus in Section 5, although the proof
remains fairly technical. By this manner it is possible to relax somewhat the as-
sumption of smoothness of .
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