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Abstract. A novel approach to the X-ray tomography problem with sparse projection data
is proposed. Non-negativity of the X-ray attenuation coefficient is enforced by modelling it as
max{Φ(x), 0} where Φ is a smooth function. The function Φ is computed as the equilibrium so-
lution of a nonlinear evolution equation analogous to the equations used in level set methods. The
reconstruction algorithm is applied to (a) simulated full and limited angle projection data of the
Shepp-Logan phantom with sparse angular sampling and (b) measured limited angle projection data
of in vitro dental specimens. The results are significantly better than those given by traditional
backprojection-based approaches, and similar in quality (but faster to compute) compared to Alge-
braic Reconstruction Technique (ART).
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1. Introduction. In medical X-ray tomography, the inner structure of a patient
is reconstructed from a collection of projection images. The widely used Computerized
Tomography (CT) imaging uses an extensive set of projections acquired from all
around the body. Reconstruction from such complete data is by now well understood,
most popular method being filtered back-projection (FBP).

However, there are many clinical applications where three-dimensional informa-
tion is helpful but a complete projection data set is not available. For example in
mammography and intraoral dental imaging the X-ray detector is in fixed position
behind the tissue and the X-ray source moves with respect to the detector. In these
cases the projections can be taken only from a view angle significantly less than 180◦,
leading to a limited angle tomography problem. In some applications, such as surgical
imaging, projections are available from all around the body but the radiation dose
to the patient is minimized by keeping the number of projections small. In addition
the projections are typically truncated to detector size, leading to a local tomography
problem. We refer to above types of incomplete data as sparse projection data.

Sparse projection data does not contain sufficient information to completely de-
scribe the tissue, and thus successful reconstruction requires some form of regulariza-
tion or a priori information. It is well known that traditional reconstruction methods,
such as FBP, are not well suited for sparse projection data [31, 24]. More promising
approaches include algebraic reconstruction (variants of ART) [1, 8, 29], tomosynthe-
sis [11], total variation methods [19, 28, 10, 9], Bayesian inversion [17, 34, 37, 19, 32],
variational methods [20] and deformable models [16, 5, 13, 47, 23].

We introduce a novel variant of the level set method, where the X-ray attenuation
coefficient is modelled as the function max{Φ(x), 0} with Φ a smooth function. Thus
we make use of the natural a priori information that the X-ray attenuation coefficient
is always non-negative (the intensity of X-rays does not increase inside tissue).
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We assume that the attenuation coefficient v ∈ L2(Ω) for a bounded subset Ω ⊂
R

2 and use the following linear model for the direct problem:

m = Av + ε, (1.1)

where A is a linear operator on L2(Ω) with appropriate target space and ε is mea-
surement noise. To reconstruct v approximately from m, we solve numerically the
evolution equation

∂tφ(x, t) = −A∗(A(f(φ(x, t))) −m) + β∆φ(x, t), (1.2)
(ν · ∇ − r)φ(x, t)|∂Ω = 0,

with a suitable initial condition φ(0) = φ0 and r ≥ 0, β > 0. Here ν is the interior
normal vector of the boundary. The cutoff function f : R → R is given by

f(s) =

{
s, s > 0,
0, s ≤ 0.

(1.3)

We denote

Φ(x) := lim
t→∞φ(x, t), (1.4)

and consider the function

w(x) = f(Φ(x)) (1.5)

as the reconstructed attenuation coefficient.
The main difference between traditional level set methods [26, 35, 12, 33, 27, 40,

45] and our algorithm is that we represent the attenuation coefficient as f(Φ), as
opposed to the traditional form H(Φ) with H the Heaviside function. Using f means
that the attenuation coefficient is represented by the smooth level set function itself
in the regions bounded by zero level sets; in classical level set methods the attenu-
ation coefficient would be constant in those regions. In our experiments related to
dental radiology, using f produces high quality reconstructions whereas using H and
piecewise constant representation leads to unacceptable quality.

In addition to computational results we provide proofs of some aspects of our
method. In Theorem 4.1 we show that the solution of the evolution equation (1.2)
exists when the measurement equation (1.1) comes from one of the two most popu-
lar models for X-ray tomography: the pencil beam model or the Radon transform.
Further, by Theorem 4.2 we know that the limit (1.4) exists when β is large enough
and r > 0. While the proofs of the theorems rest on rather standard theory of non-
linear evolution equations, the novelty of our results lies in the combination of good
reconstructions from measured data and theoretical justification for the proposed al-
gorithm. The proofs rely essentially on the use of f instead of H .

Let us review earlier level set studies relevant here. There are some approaches
avoiding the Heaviside function but retaining the piecewise constant representation
[22, 39]. Feng, Karl and Castañon [13] show tomographic reconstructions with smooth
variation from simulated noisy limited-view Radon transformed data. Yu and Fessler
[47] use pixel-based representation inside components defined by level sets and an
alternating minimization algorithm (our method recovers simultaneously the level
sets and the interior). Villegas et al. [42] use Heaviside function and level sets for
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piecewise smooth geological inversion. A rigorous existence and uniqueness proof for
the solution is given by Nguyen and Hoppe [25] in the context of amorphous surface
growth.

This paper is organized as follows. In Section 2 we discuss the pencil beam model
and the Radon transform. Equation (1.2) is derived in Section 3, and the solution is
shown to converge to a non-negative reconstruction of the attenuation coefficient in
Section 4. Reconstructions from sparse projection data, both simulated and measured
(in vitro), are presented in Section 5. We conclude our results in Section 6.

2. X-ray measurement models. In medical X-ray imaging, an X-ray source
is placed on one side of target tissue. Radiation passes through the tissue and the
attenuated signal is detected on the other side, see the left illustration in Figure 2.1.

We model a two-dimensional slice through the target tissue by a rectangle Ω ⊂ R
2

and a nonnegative attenuation coefficient v : Ω → [0,∞). The tissue is contained in
a subset Ω1 ⊂ Ω, and v(x) ≡ 0 for x ∈ Ω \ Ω1. This leads to the linear model∫

L

v(x) dx = log I0 − log I1, (2.1)

where L is the line of the X-ray, I0 is the initial intensity of the X-ray beam when
entering Ω and I1 is the attenuated intensity at the detector.

Below we present two popular ways to organize and interpret collections of mea-
sured line integrals (2.1) in the form (1.1): the Radon transform and the pencil beam
model. We neglect scattering phenomena and effects of non-monochromatic radiation,
or beam hardening.

2.1. Radon transform. We define the operator A appearing in (1.1) by

A : L2(Ω) → L2(D), (Av)(θ, s) =
∫

L(θ,s)

v(x) dx,

where L(θ, s) = {x ∈ R
2 : x1 cos θ + x2 sin θ = s}. We allow models of limited-angle

and local tomography by taking

D = {(θ, s) : θ ∈ [θ0, θ1], s ∈ [s0(θ), s1(θ)]},
where 0 ≤ θ0 < θ1 ≤ 2π and −∞ ≤ s0(θ) < s1(θ) ≤ ∞. Further, we assume that
ε ∈ L2(D). We remark that A is a compact operator, see [24].

2.2. Pencil beam model. Suppose we take N1 projection images with a digital
detector consisting of N2 pixels. Then our data consists of integrals of v over N :=
N1N2 different lines L in (2.1). Accordingly, the linear operator in (1.1) is defined as

A : L2(Ω) → R
N ,

the measurement is a vector m ∈ R
N , and noise is modelled by a Gaussian zero-

centered random vector ε taking values in R
N .

We remark that raw data in X-ray tomography consist of photon counts I1 that
obey Poisson statistics. However, a large number of photons is usually counted, and
in addition, the projection data m represents the logarithm of the count data. It has
been shown in [7, 37] that statistics of such data can be reasonably well approximated
with the additive Gaussian noise model.

The pencil beam model needs to be discretized for practical computations. A
square containing the domain Ω is divided into a lattice of disjoint pixels Ωi with
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Fig. 2.1. Left: Typical measurement in X-ray transmission tomography. Right: In the discrete
pencil beam model the domain Ω is divided into pixels.

i = 1, . . . ,M . The attenuation map v is approximated by a constant value within
each pixel:

v(x) ≈
M∑

i=1

viχi(x), (2.2)

where χi is the characteristic function of Ωi. Using (2.2), the integral (2.1) can be
approximated by weighted sum of pixel values:∫

L

v(x)dx ≈
M∑
i=1

vi µ(Ωi ∩ L), (2.3)

where µ(Ωi ∩L) the length of the line segment Ωi ∩L. See Figure 2.1 for an illustra-
tion. For discussion on different discretizations for the attenuation function v(x) and
approximations for the line integrals, see [18].

Further, according to (2.2), the attenuation map can be identified with the co-
efficient vector v = (v1, v2, . . . , vM )T ∈ R

M . Thus the discrete approximation to the
operator A can be expressed as a N ×M matrix with CN

√
M nonzero entries.

We mention that computation of discrete Radon transform can be done very
effectively using algorithms given in [3] or in a matrix-free fashion utilizing graphic
processing hardware, see e.g. [46].

3. The evolution equation.

3.1. Classical level set method for inverse obstacle problems. Consider
a physical parameter of the form σ = σ0 + cχΩ1 , where σ0(x) is known background,
c is a constant, and the characteristic function χΩ1(x) causes a discontinuity at the
boundary ∂Ω1. In inverse obstacle problems one aims to recover the set Ω1 from
indirect measurements of σ. For instance, the parameter σ may be sound speed
or electrical impedance, and one may measure scattered waves or voltage-to-current
boundary maps, respectively.

In the classical level set approach the obstacle is represented as H(Φ) where H
is the Heaviside function and Φ is smooth. The boundary ∂Ω1 of the obstacle is



X-RAY TOMOGRAPHY USING EVOLUTION EQUATIONS 5

given by the zero level set of Φ. The measurement is typically written in the form
m = A(H(Φ)) =: Q(Φ).

In the classical level set method the function Φ is found as the limit

Φ(x) := lim
t→∞φ(x, t),

where φ is the solution of the evolution equation

φt = −θ(φ,∇xφ)[(DQ|φ)∗(Q(φ) −m)]. (3.1)

Here θ is a non-negative function and (DQ|φ)ρ is the Gateaux derivative of Q at the
point φ in direction ρ ∈ C∞

0 (Ω) defined by

(DQ|φ)ρ = lim
s→0+

Q(φ+ sρ) −Q(φ)
s

, (3.2)

and (DQ|φ)∗ is the adjoint operator of DQ|φ.
The intuition behind this approach is the following. Define a cost functional

F0(u) =
1
2
‖A(H(u)) −m‖2

L2(D) (3.3)

and compute

lim
s→0+

∂

∂s
F0(u+ sρ) =

∫
Ω

(DQ|u)ρ (Q(u) −m) dx =
∫

Ω

ρ (DQ|u)∗(Q(u) −m)dx.

Then we have formally

∂tF0(φ) = lim
s→0+

∂

∂s
F0(φ+ sφt) = −

∫
Ω

θ(φ,∇xφ)
[
(DQ|φ)∗(Q(φ) −m)

]2
dx ≤ 0,

and thus limt→∞ F0(φ(x, t)) = F0(Φ) is expected to be small.
We refer the reader to [12] and references therein for more details on solving

inverse obstacle problems with classical level set methods.

3.2. Motivation for the new method. Consider the linear measurement (1.1)
in the case that the X-ray attenuation coefficient v is smooth and differs from zero
only inside a subset Ω1 ⊂ Ω. Now the operator A∗A arising from the Radon transform
or pencil beam model is nonlocal, and mathematical justification of the classical level
set approach described in Section 3.1 seems difficult. Also, our numerical experiments
suggest that the classical level set method does not give satisfactory reconstructions
when applied to the tomographic data available to us.

We want to design an algorithm that
(i) constructs an approximation Ω2 for the subset Ω1, and
(ii) with given approximation Ω2 produces a reconstruction w that solves the

Tikhonov regularization problem

w = argmin
u

{
1
2
‖A(u) −m‖2

L2(D) +
β

2
‖∇u‖2

L2(Ω)

}
,

where β > 0 is a parameter and the minimum is taken over all u satisfying

u|Ω\Ω2 ≡ 0, (3.4)

u|Ω2 ∈ H1
0 (Ω2) = {g ∈ L2(Ω2) : ∇g ∈ L2(Ω2), g|∂Ω2 = 0}. (3.5)

However, goal (ii) depends on goal (i). One possibility to overcome this problem
would be to iteratively alternate between (i) and (ii) similarly to [47], but we follow
another route.
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3.3. Formulation of the new method. We approximate the X-ray attenua-
tion coefficient v by w = f(Φ) where f is given by (1.3) and Φ is smooth. Note that
(3.4) is achieved naturally with ∂Ω2 given by the zero level set of Φ. The measurement
of X-ray projection images is now modeled by m = A(f(Φ)).

In the new method the function Φ is found as the limit Φ(x) := limt→∞ φ(x, t),
where φ is the solution of the evolution equation

∂tφ = −(A∗(A(f(φ)) −m)) − β∆φ, (3.6)
∂νφ− rφ|∂Ω = 0,
φ(x, 0) = φ0(x),

with ν the interior normal of ∂Ω, β > 0 a regularization parameter, and r ≥ 0.
Compare (3.6) to (3.1) with the choice θ ≡ 1.

The function w in goals (i) and (ii) of Section 3.2 satisfies

β∆w −A∗(A(w) −m) = 0 in Ω2. (3.7)

The solution of evolution equation (3.6) converges to the solution of (3.7) and si-
multaneously produces a useful approximation Ω2 for Ω1. Note that since the result
of the evolution is non-negative, it follows from (3.7) that w in goals (i) and (ii) is
non-negative as well.

How did we come up with such a formulation? Tikhonov regularization leads to
the cost functional

F (u) =
1
2
‖A(f(u)) −m‖2

L2(D) +
β

2
‖∇u‖2

L2(Ω). (3.8)

Computing the derivative ∂tF (u) similarly to Section 3.1 suggests the evolution

∂tφ = −H(φ)(A∗(A(f(φ)) −m)) − β∆φ. (3.9)

However, (3.9) is numerically unstable. Outside the level set Ω2(t) := {x |φ(x, t) = 0}
the evolution is driven by the term −β∆φ alone, pushing φ typically towards constant
value zero in Ω \ Ω2. This in turn creates spurious and unstable components of the
level set Ω2.

Thus we drop the Heaviside function in (3.9) and arrive at (3.6). Numerical tests
show that evolution (3.6) is numerically stable and gives much better reconstructions
than (3.9).

4. Existence proof for the new method. In the following theorem we show
that equation (3.6) has a strong L2(Ω) solution. We remark that similar analysis
fails for the classical level set approach because using H instead of f leads to a heat
equation with very singular source terms.

Theorem 4.1. Let A : L2(Ω) → L2(D) and m ∈ L2(D), where D is either a
subset of R

2 equipped with the Lebesgue measure, or D = {1, 2, . . . , N} equipped with
the counting measure. Assume φ0 ∈ W 1,2(Ω), r ≥ 0, and β > 0.

Then the evolution equation

∂tφ = −A∗(A(f(φ)) −m) + β∆φ, in Ω × R+, (4.1)
(∂ν − r)φ|∂Ω = 0, (4.2)

φ(x, 0) = φ0(x), (4.3)
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has a solution φ ∈ W 1([0, T ];L2(Ω)) ∩ L2([0, T ];H1(Ω)) for any T > 0.
Remark. The assumptions of Theorem 4.1 are satisfied when A is the Radon

transform (including limited angle and local tomography cases). Further, R
N can be

identified with the space L2(D) when D = {1, 2, . . . , N} equipped with the counting
measure. This way we see that Theorem 4.1 covers the pencil beam model as well.

Proof. We consider first the equation on a finite time interval [0, T ]. We denote

B(φ) = A∗A(f(φ)), g = A∗m.

Let ψ(x, t) = e−ηtφ(x, t), η ≥ 0. Since f(sa) = sf(a) for s > 0, equation (4.3) is
equivalent to

∂tψ = [−ηψ −A∗A(f(ψ)) + β∆ψ] + g, (4.4)
ψ(x, 0) = φ0,

(∂ν − r)ψ|∂Ω = 0, (4.5)

for t ∈ [0, T ]. Next we consider this equation.
Let V = W 1,2(Ω) be the Sobolev space and V ′ its dual. Then V is separable and

reflexive and the embedding V → L2(Ω) is compact. In the following, ∆ is always the
Laplacian defined with Robin boundary condition (∂ν − r)φ|∂Ω = 0. This operator
has a continuous extension ∆ : V → V ′. Let λ0 ≥ 0 be the smallest Robin eigenvalue
of −∆ in Ω.

We choose the value of η such that for some ε1, ε2 > 0

‖A∗A‖L(L2(Ω)) ≤ η + (β − ε2)λ0 − ε1.

First, since ‖f(u)‖L2(Ω) ≤ ‖u‖L2(Ω) and A∗A : L2(Ω) → L2(Ω) is continuous, we
observe that the operator u → β∆u + B(u) is hemicontinuous V → V ′, that is, for
any u, v ∈ V the map

s → 〈β∆(u + sv) +B(u+ sv), v〉
is continuous from R to R. Also, it satisfies an estimate

‖β∆(u) +B(u)‖V ′ ≤ c3‖u‖V . (4.6)

Because of the choice of η, we have that

〈ηu +B(u), u〉 ≥ (ε1 − (β − ε2)λ0)‖u‖2
L2(Ω). (4.7)

Since ∆ is defined with Robin boundary conditions, we see that

〈(−∆u), u〉 ≥ λ0‖u‖2
L2(Ω).

Using (4.7) we see that

〈−β∆u+B(u) + ηu, u〉 ≥ 〈(−ε2∆u), u〉 + 〈(ε2 − β)∆u +B(u) + ηu, u〉
≥ ε2‖∇u‖2

L2(Ω) + ε1‖u‖2
L2(Ω) (4.8)

≥ min(ε1, ε2) ‖u‖2
V .

Since |f(s1)−f(s2)| ≤ |s1−s2| and A∗A : L2(Ω) → L2(Ω) is continuous, we have

|〈B(u1) −B(u2), u1 − u2〉| ≤ ‖A∗A‖L(L2(Ω)) ‖u1 − u2‖2
L2(Ω), (4.9)

〈(η − β∆)(u1 − u2), u1 − u2〉 ≥ (η +Rλ0)‖u1 − u2‖2
L2(Ω). (4.10)
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Thus the operator Au = −β∆u+B(u) + ηu is hemicontinuous and satisfies

〈A(u1) −A(u2), u1 − u2〉 ≥ (η + βλ0 − ‖A∗A‖L(L2(Ω)))‖u1 − u2‖2
L2(Ω) (4.11)

≥ ε1‖u1 − u2‖2
L2(Ω).

This means by definition that A is a strictly monotone operator.
Thus we have shown that A( · ) is a hemicontinuous and satisfies (4.6), (4.8), and

(4.11). Hence all assumptions of existence theorem [36, Prop. III.4.1] concerning
quasilinear parabolic equations are valid (see also [36, Lemma II.2.1]) and we see that
(4.3) has a unique solution in weak sense on any time interval [0, T ] and thus on
t ∈ R+, that is, ψ ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ), ∂tψ ∈ L2(0, T ;V ′) and for any
u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) with u(T ) = 0 we have

−
∫ T

0

〈∂tψ(t), u(t)〉V ′×V dt+
∫ T

0

〈A(ψ(t)), u(t)〉V ′×V dt

=
∫ T

0

〈g(t), u(t)〉L2(Ω)×L2(Ω) dt+ 〈φ0, v(0)〉L2(Ω)×L2(Ω).

Next we show that ψ is a strong solution. Observe that ψ(t) is a weak solution
of the linear equation

∂tψ(t) + ηψ − β∆ψ(t) = g̃(t), ψ(0) = φ0, (∂ν − r)ψ|x∈∂M = 0, (4.12)

where g̃ = B(ψ(t)) + g ∈ C([0, T ];L2(Ω)). Using (4.12) we see by [36, Prop. III.4.2]
that ψ ∈ L∞(0, T ;V ), ∂tψ ∈ L2(0, T ;L2(Ω)), and in L2(Ω) we have

∂tψ(t) = −ηψ(t) + β∆ψ(t) + g̃(t) = A(ψ(t)) + g(t), for a.e. t ∈ [0, T ].

Next we show that the limit limt→∞ φ(x, t) exists for r > 0 and large β.
Theorem 4.2. Let A and m be as in Theorem 4.1. Let φ be the solution of

equation (4.1) with r > 0. Then there is β0 > 0 depending on Ω and A such that if
β > β0 then the limit

Φ(x) := lim
t→∞φ(x, t)

exists in the topology of L2(Ω) and Φ is a solution of the equation

A∗A(f(Φ)) − β∆Φ = A∗m, in Ω, (4.13)
(∂ν − r)Φ|∂Ω = 0.

Proof. Recall that Au = −β∆u + B(u) + ηu. Since A : V → V ′ is strictly
monotone, hemicontinuous, and satisfies (4.6) and (4.8), it follows from [36, Thm.
II.2.1, Lemma II.2.1] that the equation

A(Φ) = g, Φ ∈ V, (4.14)

has a unique solution.
Denote S1(u) = 〈A(u+ Φ)−A(Φ), u〉. Then S1(u−Φ) = 〈A(u) −m,u−Φ〉. By

(4.8) we see that

−S1(u− Φ) ≥ min(ε1, ε2)‖u− Φ‖2
V . (4.15)



X-RAY TOMOGRAPHY USING EVOLUTION EQUATIONS 9

Now for a.e. t ∈ R+ we have for the solution ψ(t) of (4.12)

∂t(‖ψ(t) − Φ‖2
L2(Ω)) = 2〈∂tψ(t), ψ(t) − Φ〉

= 2〈−A(ψ(t)) + g, ψ(t) − Φ〉
= −2S1(ψ(t) − Φ),

and, denoting ε3 = min(ε1, ε2), we see that

∂t(‖ψ(t) − Φ‖2
L2(Ω)) ≤ −ε3‖ψ(t) − Φ‖2

L2(Ω).

Thus s(t) = ‖ψ(t) − Φ‖2
L2(Ω) satisfies s(t) ≤ s(0) exp(−ε3|t− t1|) implying that

‖ψ(t) − Φ‖L2(Ω) ≤ ‖ψ(0) − Φ‖L2(Ω) exp(−ε1|t− t1|).
Finally, when β is large enough, we can choose η = 0. Then φ(t) = ψ(t) and the claim
follows.

5. Computational results. We test the proposed method with simulated and
measured projection data. The first test case is a simulated example of full angle
and limited angle tomography with sparse projection data from the classical Shepp-
Logan phantom. With the full angle data we study the effect of angular sampling
on reconstruction quality. Results with FBP and ART are given as references. For
details on FBP, see [18, 24], and for details on ART, see [1, 8, 29].

The second test case is limited angle tomography with data measured from a
tooth specimen, and the third test case uses intraoral projection data from a dry
skull. In these cases, reconstructions with the traditional tomosynthetic method are
shown as reference. Tomosynthesis, or unfiltered backprojection, is widely used for
dental imaging with few projections, see [43, 15, 44].

We use two-dimensional (2D) discrete pencil beam model in all computations. We
discretize the evolution equation (4.3) using a finite difference scheme where φ(x, tk)
is approximated with the piecewise constant function

φ(x, tk) ≈
M∑
i=1

φi(tk)χi(x), (5.1)

and central differencing is used for the computation of the partial derivatives. Homo-
geneous Neumann boundary condition ∇φ · ν = 0 is used at the exterior boundary
∂Ω. For temporal discretization we employ explicit Euler method. Three-dimensional
(3D) reconstructions are formed as stacks of reconstructed 2D slices.

The computations are carried out using MatLab 7.1 on a modern desktop com-
puter (3.2GHz Pentium 4 processor with 4GB random access memory).

5.1. Full and limited angle tomography with sparse angular sampling.
We simulate projection data using the Shepp-Logan phantom of size 256× 256 shown
in Figure 5.1. Using the conventional parallel beam CT imaging geometry, 37 one-
dimensional projections from a total view angle of 180◦ (with 5◦ steps) are generated.
The number of line integrals in each projection is 180, leading to total number of data
N = 37 × 180 = 6660. Additive Gaussian noise with standard deviation 3% of the
maximum value of the generated projections is added to the data, leading to signal
to noise ratio of 25 dB.

We divide the domain Ω ⊂ R
2 into M = 180 × 180 = 32400 regular pixels. The

smoothing parameter in the evolution equation is taken to be λ = 0.1. Table 5.1
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Table 5.1

Measurement parameters, relative L2-errors and computation times of the reconstructions given
in Figure 5.1.

Number Angular Error of Error of Error of
of projections step size N FBP ART new method

37 5◦ 6660 60.7 % 44.4 % 48.8 %
19 10◦ 3420 85.9 % 52.4 % 54.3 %
13 15◦ 2340 107.4 % 58.1 % 57.7 %
10 20◦ 1800 127.0 % 62.1 % 60.5 %

Number Computation Computation Computation
of projections time of FBP time of ART time of new method

37 0.2 s 523.1 s 49.6 s
19 0.1 s 145.1 s 29.4 s
13 0.1 s 57.8 s 22.0 s
10 0.1 s 26.1 s 17.5 s

Table 5.2

Measurement parameters, relative L2-errors and computation times of the limited angle recon-
structions given in Figure 5.2. The data consisted of 21 projections from a total opening angle of
100◦ (number of data N = 3780)

FBP ART new method

Error 90.3 % 65.6 % 61.6 %
Computation time 0.1 s 59.0 s 27.8 s

shows the numbers of data we use. Figure 5.1 shows the full angle data in sinogram
form and reconstructions from the respective data. The number of projections is from
top to bottom 37, 19, 13 and 10, respectively. In FBP reconstructions we reduce the
effects of noise by applying Ram-Lak filter multiplied by Hamming window to the
filtering in the frequency domain and use the nearest neighbor interpolation in the
backprojection process. In the ART reconstructions, the iteration is terminated once
the least squares residual reaches the expected level of the measurement noise. Table
5.1 contains the computation times and the relative L2-errors of the reconstructions
shown in Figure 5.1.

Figure 5.2 shows the results from the limited angle data which consisted of 21
projections with total opening angle of 100◦ (5◦ step). The relative L2-errors and
computation times of the reconstructions are tabulated in Table 5.2.

5.2. Sparse limited angle data from a tooth specimen. We acquire pro-
jection images using full-angle cone beam CT geometry, so full-angle reconstructions
are available as ground truth for the limited angle reconstructions.

We use a commercial intraoral X-ray detector Sigma and a dental X-ray source
Focus1. The detector is based on charge coupled device (CCD) technology. The size
of the imaging area is 34mm× 26mm and the resolution is 872× 664 pixels with pixel

1Sigma and Focus are registered trademarks of PaloDEx Group
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Fig. 5.1. Simulated sparse full-angle projection data from the Shepp-Logan phantom. First
column from the left: The Shepp-Logan phantom. Second column: Data in sinogram form. In all
cases the total view angle is 180◦. The number of projections from top to bottom are 37 (5◦ step), 19
(10◦), 13 (15◦) and 10 (20◦), respectively. The missing parts of the sinograms are denoted by black.
Third column: reconstructions with FBP. Fourth column: reconstructions with ART. Fifth column:
reconstructions with the proposed method. See Table 5.1 for relative errors of the reconstructions
and the computation times.

size 0.039mm× 0.039mm. Signal to noise ratio in our experiments is 34 dB.
In the experimental setup, the detector and the X-ray source are attached into

fixed positions such that the source direction is normal to the detector array. The dis-
tance from the focal spot to the detector is 840mm. The tooth specimen is placed on
a rotating platform so that projections from different angles can be obtained. The dis-
tance from the center of rotation to the detector is 56mm. Projection angles are read
from a millimeter scale paper attached to the rotating platform. The measurement
setup is illustrated in Figure 5.3.

We take 23 projection images from a total view-angle of 187◦ (with 8.5◦ steps)
and transform them into projection data of the form (2.1). We use two angular
samplings: 23 projections from a total view angle of 187◦, and 10 projections from
a total view angle of 76◦. The size of the data vector m for each 2D problem is
N = 664 × 23 = 15272 in the full angle case and N = 664 × 10 = 6640 in the limited
angle case. Figure 5.4 shows one of the projection radiographs and one 2D slice of
the projection data in sinogram form.

We divide the 26mm×26mm square domain Ω ⊂ R
2 into M = 166×166 = 27556

regular pixels, leading to pixel size of ∼ 0.16mm×0.16mm. The smoothing parameter
in the evolution equation is λ = 0.1. Results are shown in Figures 5.5 and 5.6.
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Fig. 5.2. Simulated limited angle projection data from the Shepp-Logan phantom. First column
from the left: The Shepp-Logan phantom. Second column: Data in sinogram form. The data
consisted of 21 projections with 5◦ step, leading to a total opening angle of 100◦. The missing parts
of the sinogram are denoted by black. Third column: reconstruction with FBP. Fourth column:
reconstruction with ART. Fifth column: reconstruction with the proposed method. See Table 5.2 for
relative errors of the reconstructions and the computation times.

X−ray source

CCD detector

Tooth

Fig. 5.3. Left: The experimental setup. The X-ray source is on the left and the detector
is attached to the camera stand on the right. The tooth phantom is positioned on the rotating
platform. Right: Illustration of the projection geometry. Circles denote the source locations for the
full-angle data (23 projections from total view-angle of 187◦). The projections used in limited angle
computations (10 projections from view-angle of 76◦) are denoted by black dots within the circles.
For clarity, the location and alignment of the detector with respect to the source is depicted only for
one source location.

Fig. 5.4. Left: Projection radiograph of the tooth specimen. Note that the radiograph is shown
with inverted color map. Middle: One 2D slice of the (transformed) projection data in sinogram
form. The projections are collected from a total view angle of 187◦ (23 projections with 8.5◦ steps).
Right: The part of data used in the limited angle reconstructions (10 projections from a total view
angle of 76◦). The missing part of the sinogram is denoted by black.

5.3. Sparse intraoral data from a dry skull. We model intraoral X-ray imag-
ing by placing the detector in a fixed position inside the mouth of a dry skull right
behind the teeth. A metal reference ball is attached in front of the teeth with distance
of 14mm from the detector for calibration. We move the X-ray source on an approx-
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Fig. 5.5. Left column: reconstructed slices from full-angle data consisting of 23 projection
images from a total view-angle of 187◦. Center column: backprojected reconstructions from limited
angle data (10 projections from a total view-angle of 76◦). Right column: reconstructions with the
proposed method from the same limited angle data. Relative L2 errors from top to bottom: 29%,
30% and 40%.

imately circular arc with distance of ∼ 590mm from the detector. A photograph and
schematic illustration of the experimental setup is shown in Figure 5.7.

We take seven projection images with approximately equal angular steps from a
total view angle of 60◦. This represents roughly the maximum view angle that can be
used in practice. Projection angles are estimated based on the shift of the reference
ball in the images. Figure 5.8 shows one projection radiograph from this data set and
one slice of the data in sinogram form. Note that the sinogram is truncated from the
upper side (i.e, it does not go to zero in the upper side). Thus, in addition of being
a limited angle case, the problem contains features of a local tomography problem
[38, 30].

The number of data for each 2D problem is N = 872× 7 = 6104 and the smooth-
ness parameter in the evolution equation is λ = 0.1. The domain Ω ⊂ R

2 is a
61mm× 25mm rectangle divided into M = 393× 160 = 62880 regular pixels with size
∼ 0.16mm× 0.16mm. The results for the dry skull case are shown in Figure 5.9.

6. Conclusion. We introduce a novel reconstruction method for tomographic
problems. Our approach is inspired by level set methods. The algorithm is given in
the form of a nonlinear evolution equation, for which we prove existence of solutions
and convergence to a limit function considered as the reconstruction.

Reconstructions computed from simulated full-angle and limited angle data show
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Fig. 5.6. Vertical slices from 3D reconstructions obtained as stacks of 2D reconstructions. Left
column: reconstruction from full-angle data consisting of 23 projection images from a total view-
angle of 187◦. Center column: backprojected reconstruction from limited angle data (10 projections
from a total view-angle of 76◦). Right column: reconstruction with the proposed method from the
same limited angle data.

Dental arc

Intraoral detector

X−ray source positions

Fig. 5.7. Left: Geometry for intraoral measurements. The detector is in fixed position inside
the patient’s mouth. The source locations are denoted by black dots (7 projections from a total
view-angle of 60◦). Right: Experimental setup.

that the proposed method clearly decreases the reconstruction error compared to FBP,
and the reconstruction errors compared to ART are similar. The computation times
of the new method are significantly smaller than those of ART.

Further, we perform realistic experiments involving specimens of dental tissue.
The new method gives excellent results in all test cases as judged by visual inspection.
Diagnostically crucial information, such as the position of tooth roots, is more clearly
visible in the reconstructions using the new method than in tomosynthetic slices.
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Fig. 5.8. Left: Intraoral projection radiograph of the head phantom. The location of the image
of the metal ball used to estimate the projection angles is indicated. Right: One 2D slice of data in
sinogram form. The projections are collected from a total view angle of 60◦. The black parts denote
the missing parts of the sinogram.

Fig. 5.9. Approximate 3D reconstruction from limited angle projection data from the dry skull.
The 3D reconstruction was obtained as stack of 2D reconstructions. The data consists of seven
intraoral projection images collected from total view angle of 60◦. Left column: vertical slices from
a backprojected reconstruction. Right column: respective slices with the proposed method.

The new method is easy to implement, and the most computational effort goes to
linear projection and backprojection operations (for which there are highly optimized
hardware implementations available).

One drawback of the proposed method is that the reconstruction f(Φ) is always
a continuous function although the target tissue is known to have jumps in the atten-
uation coefficient.
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[37] S. Siltanen, V. Kolehmainen, S. Järvepää, J. P. Kaipio, P. Koistinen, M. Lassas, J. Pirt-
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