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Abstract: We study Maxwell’s equations in time domain for an
anisotropic medium of a special type, characterized by the polariza-
tion independent velocity of the wave propagation. In particular, this
property is satisfied by all isotropic media. The analysis is based on
an invariant formulation of the system of electrodynamics as a Dirac
type first order system on a Riemannian 3—manifold. We study the
properties of this system in the first part of the paper. The second part
is devoted to the inverse problem of the identification of the Riemann-
ian manifold M and the corresponding system of equations from the
dynamic boundary data. These data are the boundary OM and the
admittance map Z7. Physically, this map corresponds to the measure-
ments of the tangential components of the electric and magnetic fields
on the boundary at a finite time interval [0, 7. It is shown that, for
sufficiently large 7' > 0, Z7 determines the Riemannian manifold and
the underlying electromagnetic parameters. Similar results are proven
in the case when the boundary data are given only on an open part
of the boundary. In domains of R?, we describe the group of transfor-
mations which preserve the admittance map Z7, providing a complete
characterization of the non-uniqueness of the underlying physical prob-
lem. In the isotropic case with M C R3, we prove that the boundary
data given on an open part of the boundary determine the domain M,
the permittivity ¢ and the permeability p uniquely.
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INTRODUCTION

In this paper we study direct and inverse boundary value problems
for Maxwell’s equations in Euclidean domains in R® and on compact
manifolds. In a bounded smooth domain M™ C R3, Maxwell’s equa-
tions for the electric and magnetic fields £ and H and the associated
electric displacement D and magnetic flux density B are

(1) curl E(z,t) = —By(x,t), (Maxwell-Faraday),

(2) curl H(z,t) = Dy(x,t), (Maxwell-Ampére).
1
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Under the assumption of a non-conducting, linear and non-chiral medium,
these are augmented with the constitutive relations

(3) D(z,t) = e(x)E(z,t), B(x,t)=p(r)H(x,t).

Here electric permittivity ¢ and magnetic permeability p are smooth
3 x 3 time-independent positive matrices.

The initial boundary value problem we mainly deal with in this paper
is (1)-(3) with the homogeneous initial data and a prescribed tangential
component of the electric field E, that is,

(4) E(I’, t)|t:0 = 07 H('Ia t)|t:0 = 07
(5) n X E|8M><R+ = f,

where n is the unit exterior normal vector to M. The inverse problem
associated with (1)-(5), which we are looking at, is the problem of
describing all possible electromagnetic parameters e(z) and u(x) having
the same impedance map

Z:nx E‘aMXR_,_ = n X H|8M><R+-

In this connection, the present work consists of two parts. In the
first part, we pursue further the invariant formulation of Maxwell’s
equations (1)—(3). In the invariant approach to Maxwell’s equations,
the domain M is considered as a 3—manifold and the vector fields F,
H, D, and B as differential forms. This alternative formulation has
several advantages both from the theoretical and practical points of
view. First, the invariance of the system and boundary measurements
with respect to the diffeomorphisms of M that preserve the part of
the boundary where these measurements are done is essential for the
inverse problem. Second, the formulation of electrodynamics in terms
of differential forms reflects the way in which these fields are actually
observed. For instance, flux quantities are expressed as 2—forms while
field quantities that correspond to forces are naturally written as 1—
forms. Therefore, the electromagnetic material paremeters e(z) and
p(x) should be interpreted as Hodge-type operators from 1-forms to 2-
forms thus defining two underlying Riemannian metrics g. and g, on M.
This point of view has been adopted in modern physics, see e.g. [18], as
well as in applications where the numerical treatment of the equations
is done using the Whitney elements. An extensive treatment of this
topic can be found in [11, 12|. For the original reference concerning the
Whitney elements, see [71].

The Hodge-type operators *. and x, generated by e(z) and pu(z)
may or may not be proportional. The former case, where they are
equal, up to some multiplicative scalar function, is the one addressed
in this paper, see discussion in Section 1.1. Wave velocity is then inde-
pendent of polarization, contrary to what happens in the latter case.
Wavefronts may look ellipsoidal from the point of view of the outside
observer who is using the vacuum natural metric. However, they are
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actually spherical with respect to the metric that makes both *, and
*,, scalar multiples of the associated Hodge operator defined by the
underlying travel time metric. This metric is responsible for the veloc-
ity of the electromagnetic wave propagation in the medium. In other
words, anisotropy is only apparent, genuine anisotropy only occurring
when Hodge operators *. and *, are not proportional. On the level
of the material parameters, ¢ and p are 3 x 3 matrices that represent
the action of the Hodge-operations in a given coordinate frame. In
these coordinate frame proportionality of the Hodge operators . and
*, means that

(6) p=a’e,

where « is a positive scalar function. In literature, the parameter «
is called the wave impedance, see e.g. |30, 31, 52]. When ¢ and p are
constant matrices, i.e. indendent of z, with o being a constant scalar
parameter, the corresponding material is known as affine isotropic 50,
51]. Clearly, for a general anisotropic € and p such a scalar function «
does not exist. In this paper we say that the material corresponding
to € and p has scalar wave impedance a(x) > 0 if (6) is satisfied.

Summarizing the above, we consider direct and inverse problems for
the most general subclass of Maxwell’s equations which is distinguished
by the fact that electromagnetic fields with different polarization prop-
agate with the same velocity which, of cause, may depend on the prop-
agation direction. This case is encountered in many physical situations.
For instance, in a curved spacetime with coordinates (z,t) € R3 x R
and a “time-independent” metric ds? = g;.(x)dz/dz* — dt*, Maxwell’s
equations with scalar permittivity and permeability correspond, in the
coordinate invariant form to Maxwell’s equations (1)—(3) with scalar
wave impedance, see [18, Sec. 14.1.c|] or |42, Sec. 90|. Clearly, all
isotropic media, i.e., with scalar € and p, have a scalar wave impedance.

The invariant approach leads us to formulate Maxwell’s equations
on 3—manifolds as a first order Dirac type system. From the operator
theoretic point of view, this formulation is based on an elliptization
procedure by extending Maxwell’s equations to the bundle of the ex-
terior differential forms over the manifold. This is a generalization of
the elliptization of Birman and Solomyak and Picard (see [2, 60]).

In the second part of the work, we consider an inverse boundary
value problem for Maxwell’s equations with scalar wave impedance.
In physical terms, the goal is to determine the material parameter
tensors € and yp in a bounded domain from field observations at the
boundary or a part of the boundary of that domain. It is possible to
prove unique identifiability in the invariant formulation and then use
this result to completely characterize the groups of transformations
between indistinguishable parameters € and y in the case M C R3. In
particular, when € and p are scalar functions, this result implies the
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uniqueness of the determination of €, u, and M from data on a part of
boundary not assuming an a priori knowledge of M.

As inverse problems of electrodynamics have a great significance in
physics and applications, they have been studied starting from the 30’s,
see e.g. [43, 63|, where the one-dimensional case was considered. How-
ever, results concerning the multidimensional inverse problems in elec-
trodynamics are relatively recent. The first breakthrough achieved in
[65, 14, 57, 58] was based on the use of the complex geometrical optics.
These papers were devoted to the identifiability of isotropic material
parameters € and p from the fixed-frequency data collected on OM,
namely, the stationary admittance map. Under some mild geometric
assumptions it was shown there that these data determine isotropic €
and p and also isotropic conductivity, o, uniquely. These works were
based on the ideas previously developed in [68, 53, 54| to tackle the
scalar Calderén problem, introduced in [13]. Other approaches to the
isotropic inverse problem for Maxwell’s equations work directly in the
time domain, see [8, 61]. Regarding the case o = 0 which is considered
in this paper, the result obtained in [61] proves the identifiability of
¢ and p from the time-dependent data collected on the whole OM in
the case when M, considered as a Riemannian manifold with metric
dI?* = ep|dz|?, is simple geodesic. We remind the reader that a Rie-
mannian manifold with boundary is called simple geodesic if any two
points z,y € M can be connected by a unique geodesic. Constructions
of [8] make it possible to find the product, eu of unknown parameters
€, . Moreover, the results of [8] are of a local nature making it possible
to find this product only in some collar neighbourhood of M. The
time-dependent inverse problem for isotropic Maxwell’s equations was
also considered in [10] which used the time Fourier transform to reduce
the problem to the one in the frequency domain so that to apply the
results of [57, 58].

Much less is known in the anisotropic case, where the material pa-
rameters are matrix valued functions. The case of anisotropic € = p
was considered in [6] where it was shown that the time-dependent ad-
mittance map known on M makes it possible to recover € = p locally,
i.e., in some collar neighbourhood of OM. In spite of a very little
knowledge, it is, however, clear from the study of the scalar anisotropic
problems that, instead of uniqueness, one obtains uniqueness only up
to a group of transformations, involving proper coordinate changes,
see e.g. [49, 66, 7, 33, 26, 48, 47]. A similar result for Maxwell’s equa-
tions was conjectured in [67], based on the analysis of the linearized
inverse problem. Therefore, it is natural to split the study of this
problem into two steps. First, to formulate and solve the correspond-
ing coordinate-invariant inverse problem, i.e., an inverse problem on
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a manifold. Second, to analyse the properties resulting from an em-
bedding of the manifold into R3. For a systematic development of this
approach, see [27].

In recent years, inverse problems with data on a part of the boundary
have attracted much interest, see [20, 26, 32, 22, 48]. Part of the motiva-
tion come from the physical setting when only a part of the boundary is
accessible. However, as far as we know, there are currently no results
on identifiability of the shape of the domain M and/or the material
parameters €, 4 on it from inverse data collected on an arbitrary open
subset, I' C OM.

A fruitful approach to the scalar inverse problems, including those
with data on a part of the boundary, turned out to be the boundary con-
trol method, originated in [5] for the isotropic acoustic wave equation.
In the anisotropic context, it has been developed for the Laplacian
on Riemannian manifolds [7] and for general anisotropic self-adjoint
[34, 35] and certain non-selfadjoint inverse problems [37].

The current article pursues the study of inverse problems for Maxwell’s
equations significantly further dealing with the global reconstruction of
the shape of the domain or, more general, 3—manifold M, metric tensor
g and scalar wave impedance «, the latter two being equivalent to the
reconstruction of € and p. Being based on the boundary control, the
method developed here combines ideas of the articles [38] and [39] with
those of [57] and [58]. What is more, to be able to study anisotropic
Maxwell’s equations, we introduce two essential new ideas. First, we
characterize the subspaces controlled from the boundary by duality,
thus avoiding the difficulties arising from the complicated topology
of the domains of influence but still providing necessary information
about the structure of achievable sets, see e.g. Theorem 1.16 in section
1.5. This makes our approach much different from that in |6, 8| also
based on the boundary control method. Indeed, the method of [6, §]
requires local controllability in the domains of influence which is no
more valid for large times, see e.g. [9] thus making the constructions
of [6, 8] inappropriate outside a collar neighbourhood of OM. Second,
we develop a method of focused waves which enables us to recover the
pointwise values of electromagnetic waves on the manifold and, there-
fore, reconstruct not only the metric g, as in [8], but also the impedance
a.

The main results of this paper can be summarized as follows.

(1) The knowledge of the complete dynamical boundary data over
a sufficiently large finite period of time determines uniquely
the compact manifold endowed with the travel time metric as
well as the scalar wave impedance (Theorem 2.1). This is valid
also when measurements are made on a part of the boundary
(Theorem 2.15). The necessary time of observation is double of
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the time required to fill the manifold from the observed part of
the boundary.

(2) For the corresponding anisotropic inverse boundary value prob-
lem with scalar wave impedance for bounded domains in R?,
the non-uniqueness is completely characterized by describing
the class of possible transformations between material tensors
that are indistinguishable from the observed part of the bound-
ary (Theorem 2.19).

(3) For the corresponding isotropic inverse boundary value problem
for bounded domains in R3, the shape of the domain and the
material parameters inside it are uniquely determined from the
measurements done on a part of the boundary (Theorem 2.21).

Some of the results of the paper have been announced in |40, 41].

1. MAXWELL’S EQUATIONS ON A MANIFOLD

This chapter is devoted to Maxwell’s equations on a compact oriented
3—manifold with boundary. We concentrate on the properties of these
equations important for the inverse problem considered in Chapter 2.

We start with the formulation of Maxwell’s equations for the 1- and
2-forms. These equations are augmented to a complete Maxwell system
on the full bundle of exterior differential forms over a 3-dimensional
Riemannian manifold. This allows us to define and analyze properties
of an elliptic operator related to Maxwell’s equations and to study
the corresponding initial boundary value problem. Crucial results of
Sections 1.3 and 1.4 are the Blagovestchenskii formula, Theorem 1.10,
enabling us to evaluate the inner products of electromagnetic waves in
terms of the admittance map Z, also defined in Section 1.3, and the
unique continuation result for Maxwell’s equations with Cauchy data
on the lateral boundary. Building on these results, we obtain local and
global controllability for electromagnetic waves generated by boundary
sources and define, in a usual manner, spaces of generalized sources.

1.1. Invariant definition of Maxwell’s equations. To define Max-
well’s equations invariantly, consider a smooth compact oriented con-
nected Riemannian 3-manifold M, OM # (), with a metric go, that we
call the background metric. Clearly, in physical applications we take
M C R3 with gy being the Euclidean metric. Analogously to (1) and
(2), Maxwell’s equations on the manifold M are equations of the form

(7) curl B(x,t) = —By(x, t),
(8) curl H(z,t) = Dy(x,t).

Here E, H, D, B € I'M, the space of C*°-smooth vector fields on M.
They are related by the constitutive relations,

9) D(z,t) = e(x)E(x,t), B(x,t) = pu(x)H(x,t),
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where € and p are C*°-smooth positive-definite (1, 1)-tensor fields on
M. We remind that, for X € I'M,
(10) (curl X)* = %0dX®, divX = — % d %o X’

Here, d is the exterior differential, * is the fiberwise duality between
1-forms and vector fields

XelM - X ecQ'M, X°(Y)=gl(X,Y),

with Q' M and, generally, Q*M standing for the bundle of the differ-
ential k—forms on M. We define the 1-forms £ = E” and H = H’ and
the 2-forms B = %, B’ and D = %,D°, where % is the Hodge operator
with respect to the metric gy, acting fiberwise,

%o 1 QFM — Q3 F M.

Then we can write Maxwell’s equations (7)—(8) in terms of differential
forms as

(11) d€ = —B;, dH =Dy,

where we used the identity %o = id valid in the 3—dimensional case.
Consider now the constitutive relations (9). Starting with equation

D = €eFE, we will next construct a metric g. such that the Hodge-

operator with respect to this metric, denoted by *., would satisfy the

identity

(12) D = xo(eE)” = *.£.

For such metric, in local coordinates (x!, 22 2?%), the middle term of

(12) yields

0(€E) = /8098 €jpa0.ii€5 EF da? A dx? = \/goejpaeh B daP A da?,

where ej,, is the totally antisymmetric permutation index and g, =
det(go,;). Likewise, the right-hand side reads

E = \/ggijequgo,ikEkd:cp A dx?,
so evidently equality (12) is valid if we set
\/QZ ?Qo,z‘k = \/g_OGf-

By taking the determinants of the both sides we find that \/gc =
v/8odet(e). Thus we see that for the metric tensor

(13) ge = detl( )gék g
identity (12) is valid. In the same fashion, we see that for the metric
g = det(p)~tgéF s, we have
B =x(uH)" = %,/H.
Thus the constitutive relations take the form
(14) D(z,t) = xL(x,t), Bz, t) =x*,H(x,t).
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In general, the metrics g, and g. can be very different from each
other. In this article, we consider a particular case where the metrics
g, and g, are equal up to a scalar factor.

Definition 1.1. We say that a material has a scalar wave impedance,
iof the metrics corresponding to the tensors € and p satisfy
(15) g = a4gzj, or equivalently x. = o *x, : Q' M — Q*M,

where the wave impedance o = a(x) is a smooth positive function on
M.

Note that, in terms of (1,1)-tensors ¢ and p, (15) is equivalent to
p= a’e.

This allows us to introduce a new metric, g on M by
(16) g7 = %g? = a’g)].
As we see later, this metric defines the velocity of the electromagnetic
wave propagation and we call it the travel-time metric. In other words,
in this case of the scalar wave impedance the electromagnetic wave
probagation has only one wave velocity to each direction, i.e., the vave
velocity does not depend on polarization.

Next we consider the waves that satisfy the initial conditions

(17) B(z,t)|=0 =0, D(x,t)]4=0 = 0.

Operating with divergence to the Maxwell equations, this implies that
div B(z,t) =0, divD(z,t)=0, fort>0, z€ M.

In terms of differential forms these read as

(18) dD =0, d€=0.

In the further considerations, we will use only the pair (£, 5) and, as
an auxiliary tool, we will consider a more general system of equations

than the physical Maxwell equations. To reflect this we will denote
(€, B) by a pair (w!,w?), where

(19) W= M, Ww=BecQ*M.

Then equations (11), (14), and (18) imply

(20) Wi = dow?,  Sew' =0,

(21) w} = —dw', dw®=0.

where 0, : QM — Q3 %M is the a—codifferential, given by
(22) Saw® = (—1)% % cxdé * wh,

and x is the Hodge operator with respect to the travel-time metric,
g. These equations are called Mazwell’s equations for forms in the
divergence free case on a Riemannian manifold with a scalar wave
impedance, (M, g, a).
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To extend the above equations to the full bundle of exterior differen-
tial forms QM = Q°M x Q'M x Q2M x Q3M, we introduce auxiliary
forms, w® € Q"M and w? € Q>*M, which vanish in the electromagnetic
theory, by

W) = dwt, WP =—duw’
Since w® = 0 and w? = 0 in electromagnetics, we can modify equations
(20) and (21) to read
(23) wi = —dwy + 6ow?, Wi = —dw?
(24) wi = —dw' + J,w?, W) = Saw',
or, in the matrix form,

(25) wy + Mw = 0,

where w = (W% w!, W% wW3) € QM, and the operator M (without pre-
scribing its domain at this point, i.e., defined as a differential expres-
sion) is given as

0 5. 0 0
d 0 -6, 0
(26) M=14v a4 o _s.

0 0 d 0

Equations (25), (26) are called the complete Mazwell system. We note
that not all the solutions of (25) correspond to the physical electro-
magnetic waves in the absence of internal sources but only those with
w" =0 and w? = 0 (cf. Lemma 1.6). For similar extensions, see |2, 60)].

Note that, identifying QM with Q°M ¢ Q*M & Q*M & Q3M, the
complete Maxwell operator can be written as

(27) M=d—§6,,

i.e., it becomes a Dirac-type operator on M.
An important property of M is that

M? = —diag(A2, AL A2 A2) = —A,,
where the operator AX acts on the k—forms as
(28) Al = dby + 0ad = AL + Q¥ (z, D).

Here A} is the Laplace-Beltrami operator in the metric g and Q*(z, D)
is a first order perturbation. Hence, if w satisfies equation (25), it
satisfies also the wave equation

(29) (0} + Ay)w = (0 — M) (0; + M)w = 0.

This formula legitimates the notion of the travel time metric and makes
it clear that in the Maxwell system with scalar wave impedance, the
electromagnetic waves of different polarization propagate with the same
speed determined by the metric g. On the other hand, as follows from
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|24, 25] (see also |16]), when ¢ and p are not proportional, waves with
different polarization propagate with different velocity.

We end this section with a representation of the energy of electric
and magnetic fields in terms of the corresponding differential forms,
setting

1 1 1
E(E) = §/MQO(EE7E)dVo=§/ —wh A xwl,

M
1 11,
E(B) = B MQO(MH7H>d‘/0:§ Maw N W™,

where dVj is the volume form of (M, gy). These formulae serve as
a motivation for our definition of the inner products in the following
section.

1.2. The Maxwell operator. In this section we establish a number
of notational conventions and definitions concerning differential forms
used in this paper.

We define the L?>—inner products for the k—forms in Q*M as

1
(wk,nk)Lz :/ —WP At WE ke QF M,
uQ

and denote by L?(Q*M) the completion of Q¥M in the corresponding
norm. We also define
L*(M) = L*(Q°M) x L*(Q*M) x L*(Q*M) x L*(Q*M),
with the Sobolev spaces H*(M), H§(M), s € R, given as
H (M) = H*(Q°M) x H*(Q' M) x H¥(Q*M) x H*(Q*M),
Hi(M) = H3(Q°M) x HS(QU' M) x HE(Q*M) x H5(Q*M).
Here, H*(2*M) is the Sobolev space of the k—forms and Hg(QFM) is
the closure in H*(Q2* M) of the set of the k—forms in Q* M, which vanish
near OM.
Clearly, a natural domain of the exterior derivative, d in L*(QFM) is
H(d,Q"M) = {w* € L*(Q"M) | dw* € L*(Q*' M)},
and a natural domain of ¢, is
H (80, O M) = {w" € L* (M) | 6ow* € L* (M)} .

In the sequel, we drop the sub-index « from the codifferential.
The operators d and ¢ are adjoint, i.e., for the Cg°—forms w*, n**+1,

(dw®, ) 2 = (W, 071 2

To extend this formula to less regular forms, let us fix some notations.
For w® € Q*M, we define its tangential and normal boundary compo-
nents on JM as

twh = "Wk nwf =it (at kW),
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respectively, where i* : Q¥ M — QFOM is the pull-back of the natural
imbedding ¢ : OM — M. With these notations, Stokes’ formula for
forms can be written as

(30) (dw®, ") 2 = (WF, 60" 2 = (b0, ™),
where, for w* € QFM and n*+1 € QF 1M,

(tw”, npF ) = / tw® A npFtt,
oM

There are well defined extensions of the boundary trace operators t
and n to H(d,Q*M) and H(5,Q*M). The following result is due to
Paquet [59]:

Proposition 1.2. The operators t and n can be extended to continuous
surjective maps

t: H(d, QM) — HY?(d, QFoM),

n: H(6, QM) — HV2(d, Q> FoM),

where the space H~Y2(d, Q*OM) is the space of the k-forms w* on OM
satisfying

Wb e HTV2QFOM),  duw* e H7Y2(QM1oM).
Formula (30) is instrumental for characterizing the spaces of forms
with vanishing boundary data. Introducing ﬁ](d, QFM) = Ker (t) and

H (6, Q1M = Ker (n) and applying Stokes’ formula, one can prove
in standard way the following lemma.

Lemma 1.3. The adjoint of the operator
d: L*(Q"M) > H(d,Q*M) — L*(QFM)

is the operator § : L*(Q*1M) D [%(5, QFFLM) — L2(QFM) and vice
versa. Similarly, the adjoint of

§ o L2(QFTIM) D H(5, QM) — L*(QFM)
is the operator d : LX(Q"M) > H(d, Q*M) — LA(QF+1M).
When there is no risk of confusion we will write for brevity H(d) =
H(d,Q*M) and similarly, mutatis mutandis for the other spaces.

For later references, we point out that Stokes’ formula for the com-
plete Maxwell system can be written as

(1) (o Moe + (Mn,w)s = {tw, ) + (67, nw),
where w € H with

(32) H = H(d) x [H(d) N H©®)| x [H(d) N H(S)] x H(5),
n € H (M), tw = (tw° tw!, tw?), nw = (nw?, nw? nw'), and

(tw,nn) = (t’, nn") + (tw', ny?) + (tw* nn’).
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With these notations, we give the following definition of the Maxwell
operators with electric boundary condition.

Definition 1.4. The Mazwell operator with electric boundary condi-
tion, M., is an operator in L*(M), with

D(Me) = Hu = H(d) x [H(d) N H()] x [H(d) N H(S)] x H(©).
and Mew, w € D(M,) is given by the differential expression (26).

In terms of physics, the electric boundary condition is associated with
electrically perfectly conducting boundaries, i.e., n x E =0, n- B =0,
where n is the exterior normal vector at the boundary. In terms of
differential forms, this means simply that tE£* = tw! = 0 and t o B’ =
tw? = 0. Although not used in the sequel, the Maxwell operator with
magnetic boundary condition, M,,, is given by (26) with the domain

D(My) = Hy := H(d) x [H(d) N H(8)] x [H(d) N H(8)] x H(5).
Consider the intersections of spaces in the definition of D(M,) and
D(M,y,). Let
HLQFM) = {0 € HY(Q"M) | tw* =0},
HL(QFM) = {w* € HY(Q"M) | nw* = 0}.
It is a direct consequence of Gaffney’s inequality (see [64]) that

H(d, Q5 M) N H (6, QM) = HN(QFM),
H(d, QCM) 0 H(8, QM) = HL(QFM).

The following lemma is a straightforward application of Lemma 1.3
and the classical Hodge-Weyl decomposition [64].

Lemma 1.5. The electric Mazwell operator has the following proper-
ties:

(i) The operator M, is skew-adjoint. .
(i1) The operator M., defines an elliptic differential operator in M™.

(iii) Ker (M) = {(0,w!,w? w?) € H. | dw! =0, dw! =0, dw® =
0, dw? =0, dw®=0}.

(iv) Ran (M,) = LX(Q°M) x (6H(5,Q2M) + dH(d, Q°M)) x
x (SH(8,Q3M) + dH (d, Q'M)) x dH (d, Q2M).

By the skew-adjointness, it is possible to define weak solutions to
initial boundary-value problems needed later.
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1.3. Initial-boundary value problem. In the sequel, we denote the
forms w(z,t) by w(t) or w when there is no danger of misunderstanding.
By a weak solution to the initial boundary value problem

(33) 0w + Mw = p € L, (R, L*(M)),
tw| e =0, w(0) =w € L7

we mean the form w(t) € C(R,L?(M)) defined as

(34) w(t) =U(t)wo + /0 Ut — s)p(s)ds,

where U(t) = exp(—tM,) is the unitary operator in L? generated by
M.. Similarly, we define weak solutions with initial data at ¢t = T,
T € R. Assuming p € C(R,L?), the solution has more regularity,
w € C(R,L?) N CYR,H'), where H' denotes the dual of H.

The following result gives a sufficient condition for a weak solution
of the complete system to be also a solution of Maxwell’s equations.

Lemma 1.6. Assume that the initial data wg is of the form wy =
(0,wd,wd, 0), where dwy = 0, dwg = 0, and p = 0. Then the weak
solution w(t) of form (84) satisfies also Mazwell’s equations (20), (21),
ie., w0 =0 and w? = 0.

Proof: As seen from (29), w°(t) satisfies the wave equation

AW +wp =0,
with the Dirichlet boundary condition tw® = 0. The initial data for w°
is
W'(0)=w) =0, w)(0)=dw

Hence, w°(t) = 0 for all ¢ € R.

Similarly, w?(t) satisfies the wave equation with the initial data

WA 0) =w) =0, w(0)= —dwz}tzo = —dwi = 0.
As for the boundary condition, we observe that
tow? = tw? — tdw' = Otw? — dtw' =0,

1}15:0 = dwy = 0.

i.e., the Neumann data for the function *w?® vanish at OM. Thus,
w3(t) = 0. 0

Assume that w(t) is a smooth solution of the complete system (33).
The complete Cauchy data of w(t) consist of

(tw(z,t),nw(z,t)), (z,t) € OM x R.

The Cauchy data for the solutions w(t) of Maxwell’s equations have a
particular structure. Indeed, by taking the tangential trace of equation
(24), we obtain tw? = —dtw'. Further, by integrating,

(35)  tw’(w,t) = tw?(z,0) — /Ot d(tw'(z,t))dt', x € dM.
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Similarly, by taking the normal trace of equation (23), we find that
nw; = dnw?, so by integrating

t
(36) nw'(z,t) =nw'(x,0) —i—/ d(nw?(z,t))dt’, x € IM.
0

In this work, we consider mainly the case w(0) = 0, when the lateral
Cauchy data for the original problem of electrodynamics is simply

(37) tw = (0,f— /0 df (¢)dt'),

(38) nw = (0,9, /O dg(t')dt"),

where f and g are functions of ¢ with values in Q'9M. The following
theorem implies that solutions of Maxwell’s equations are solutions of
the complete Maxwell system and gives sufficient conditions for the
converse result.

Theorem 1.7. If w(t) € C(R,H) N CY(R, L?) satisfies the equation

(39) W+ Mw=0, t>0,
with w(0) = 0, and W°(t) = 0, W3(t) = 0, then tw, nw are of the form
(37)-(38).

Conversely, if tw, nw are of the form (37)-(38) for 0 <t < T, and
w(t) satisfies (39), with w(0) = 0, then w(t) is a solution of Mazwell’s
equations (20), (21), , i.e., W°(t) =0, w3(t) = 0.

Proof: The first part of the theorem follows from the above con-
siderations if we show that w(t) is sufficiently regular. For w? €
C(R, H(6,922M)), by Proposition 1.2, nw? € C(R, H~'/2(Q'0M)) with
dnw? € C(R, H~Y2(Q20M)). As dw}(t) = déw?(t) = 0, it holds also
that

nw! € C(R, HY*(Q20M)),
implying (38). To prove (37), we use the Maxwell duality: Consider
the forms
7P = (=1)" x aW".
Then n = (n° n',n% n?) satisfies the complete system dual to the
Maxwell system, 7, + Mvn = 0, where M is the Maxwell operator
with metric g and scalar impedance a~!. Then formula (38) for the
solution 1 implies (37) for w.
To prove the converse, we observe that the equations,

(40) 0w (t) — 6wt (t) =0, Ow'(t) + dw'(t) — sw?(t) =0

imply that
wh () + 6dw’(t) = 0.
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In addition, w°(0) = 0, w?(0) = 0, and from (37), tw’(¢t) = 0. Thus,
w? =0 for 0 <t <T. By the Maxwell duality described earlier, this
implies also that w?(t) = 0. 0

The following definition, where R is a right inverse to the mapping
t, fixes the solutions of the forward problem used in this work.

Definition 1.8. Let h = (h° k', h?) € C>([0,T], Q0OM). The solution
w(t) of the initial boundary value problem

wt—l—./\/lw:O, t>0,
w(0) =wy € L} (M), tw=h,

s given by
t
w(t) = Rh(t) + Ult)wo — / U(t — $)(MRA(s) + Rhy(s))ds.
0
When wy = 0 and h is a smooth boundary source of form (37),

h=1(0,f,— /Ot df (t)dt'), fe€C]o,T[,QoM),

w(t) is called the solution of Mazwell’s equations in M x [0, T] with the
boundary condition tw! = f and the initial condition w(0) = 0.

To emphasize the dependence of w(t) on f above, we write occasion-
ally

(41) w(t) = w!(t) = (0, (W), (&), 0).
We note that f could be chosen from a wider class, e.g. from
HY2(0M x [0,T)).

We use the notation é’oo([(), T, Q2'OM) for the space of C*> functions
0,7] — Q'OM vanishing near ¢ = 0. Theorem 1.7 motivates the
following definition.

Definition 1.9. The admittance map, Z* is defined as

ZT . (eo([0,T], Q1OM) — C([0, T), Q'OM),
tw'|anrx o) — DW?|anrx o],

where w(t) is the solution of Mazwell’s equations (20), (21), in M x
0, T] with w(0) = 0.

Note that in the classical terminology of the electric and magnetic
fields, ZT7 maps the tangential electric field n x E|3MX[07T] to the tan-
gential magnetic field n X H|srrx(0,17-

The following result, which relates the boundary data and the energy
of the electromagnetic field, is crucial for boundary control. It is a
version of the Blagovestchenskii formula (see |4] for the scalar case).
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Theorem 1.10. (1) ForanyT > 0and f, h € (.300([0,2T], QloM),
the knowledge of the admittance map Z** allows us to evaluate
the inner products

(W (), W ()2, j=1,2, 0<st<T.

(2) For any T > 0 and f € éw([O,T],Ql(aM)), ZT determines
the energy of the field w' at t =T, defined as

£7(w!) = Sl D) a + g W DI
Proof: 1. Let w(t) = w/(t) and n(s) = w"(s) with Fi(s,t) =
(@I (8). ()2, j = 1.2 By (25),

(42) (02 = ) F(s,t) = (wii(s), 0’ ()12 — (' (s), mih(1)) 12

= —((dd +8d)w (), 7’ (1)) 12 + (' (s), (d0 + o) ()2 = V' (s, 1).
We apply Maxwell’s equations (20), (21) and the commutation rela-
tions,
(43) tdw’ = dtw’, ndw’ =t «* *da *w! = dta *w! = dnw’,

where j € {1,2}, and d, in the right-hand side, is the exterior derivative
on OM. A straightforward applications of Stokes’ formula (30), yields

b (s,t) = (nw(s), tn' (1)) — (tw'(s), (1)),

b (s, 1) = (nw?(s), tn; (1)) — (tw,(s), nn*(1)).
As Z?T determines b'(s,t) and b?(s,t) for t,s < 2T and
(44)  FI(0,t) = Fi(s,0) =0, F’(0,t) = F/(s,0) =0,

the function F7(s,t) can be found from the wave equation (42) for
s+t < 2T.

2. Again, by differentiating and using Maxwell’s equations and
Stokes’ formula, we obtain

0" (Wl) = —(tw' (), nw(t)) = —(f (1), 2" f(1)).
As E%w’) = 0, the energy is readily obtained for t < T O

1.4. Unique continuation results. For further applications to in-
verse problems, in this section we consider the unique continuation of
the Holmgren-John type for Maxwell’s equations. We start with an
extension of differential forms outside the manifold M. Let I' C M
be open and M be an extension of M across I', i.e., M C M, I C Mt
and OM \ ' C OM. Let g, @ be smooth continuations of g and « to
M. In this case, we say that the manifold (M, g, a) is an extension of
(M, g,a) across T.

Let w” be a k-form on M and &* its extension by zero to M. It follows
from Stokes’ formula (30) that for w* € H(d, Q*M) with tw*|, =0, we
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have & € H(d,2"M). Similarly, if ¥ € H(6,Q*M) and nw*|, = 0,

then @ € H(5,QFM). These yield the following result.

Proposition 1.11. Let w(t) € CY(R,L*)NC(R, H) with tw|r«po,r = 0
and nw|ry,m = 0, be a solution of the complete Mazwell system (25)
in M x [0,T]. Let @ be its extension by zero across I' C OM. Then

w(t) satisfies the complete Mazwell system (25) in M x [0, T].

We are particularly interested in the solutions of Maxwell’s equa-
tions. The following result extends Proposition 1.11 to this case.

Lemma 1.12. Letw(t) € CY(R,L*)NC(R, H) be a solution of Mazwell’s
equations (20), (21) in M x [0,T], i.e., W°(t) = 0,w3(t) = 0. In
addition, let tw'|rxjor) = 0, nw?|rxpr = 0, and w(0) = 0. Then

w(t) € CHR,L*(M)) N C(R,H(M)) is a solution of Mazwell’s equa-
tions (20-21) in M x [0,T].

Proof: The above conditions together with Theorem 1.7 imply that

t t
tw = (0, tw', —/ dtw'dt') =0, nw = (0,nw2,/ dnw?dt’) = 0
0 0
in ' x [0,7]. Therefore, by Proposition 1.11, w(t) satisfies (25) in
M x [0,T]. Clearly, also @°(t) = 0, @3(¢t) = 0 in M x [0,7T], and
w(0) = 0.
O
When we deal with a general solution to Maxwell’s equations (20)—
(21), which may not satisfy zero initial conditions, and try to extend
them by zero across I', the arguments of Lemma 1.12 fail. Indeed, if
w(0) # 0, then (36) show that nw? = 0 is not sufficient for nw! = 0.
However, by differentiating with respect to ¢, the parasite term nw!(0)
vanishes. This is the motivation why Theorem 1.13 below deals with
the time derivatives of the weak solutions.
Let, again, I' C dM be open and 7" > 0. Denote by K(I',T) the
double cone of influence with the base on the slice t =T,

K{I,T)={(z,t) e M x[0,2T] | 7(x,T) < T — |T —t|},

where 7(z,y) is the distance function on (M, g) (see Figure 1).
We prove the following unique continuation result for the time deriva-
tives of the fields.

Theorem 1.13. Let w(t) be a weak solution (34) of the initial boundary
value problem (33). Assume that wy = (0,w), wd,0), dw} =0, dwi = 0,
and p = 0. If nw? =0 on T'x]0, 2T, then w, = 0 in K(T,T).

Proof: When w(t) € C?%(]0,2T[,L?) N C*(]0,2T[,H), then n(t) =
wi(t) € C1(]0,2T[,L?) N C°(]0,2T[,H) also satisfies Maxwell’s equa-
tions (20), (21). Let M be the extension of M across I’ and 7 be the ex-
tension of 7 by zero. In follows for (35) and (36) that tn? = —dtw! = 0
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FiGURE 1. Left: The double cone of influence. Right:

For T large enough, the double cone contains a slice
{T/2} x M.

and nn! = dnw? = 0 in T'x]0, 2T[. Therefore, by Proposition 1.11,
7(t) € C'(10,2T[, L2(M)) 0 C°(J0, 2T [, H(M)),

is a solution of the complete system and obviously, also a solution of
Maxwell’s equations (20), (21) in M x]0, 277].

By the unique continuation for sufficiently smooth solutions (see [17]
and Remark 1.14 below), we have that, for any o > 0, 77 = 0 in the
double cone

{(z,t), € Mt e R|F(z, M\ M) <T — o — |T —t|}.

Thus, n=01in K(I', 7).
When w(t) € C°(]0,2T[,L?) is a weak solution, we use Friedrich’s
mollifier in ¢,

:’l/}o_*w ():(1/U)w(t/0) for o > 0,

where ¢ € C§°(| ), [¥(s)ds = 1. Then w,(t) satisfies the condi-
tions of the theorem Wlth I'x]0, 27| replaced by I'x|o, 2T — o[. As
2

10
Mw, = (=0;Yw, € C*(J0,2T — o, L*(M)), for any j >0,

we have, in particular, that w,(t) € C*(]o,2T — o[,L?) N C*(Jo, 2T —
o[,H). By the above, ,w,(t) = 0in K,(I',T), where

K,(T,T) = {(z,t) | 7, M\ M) < T — 0 — |T — t|}.

As Oyw,(t) — Oww(t) in the distribution sense, the result follows. O

g,

Remark 1.14. The article [17], based on results of Tataru [69, 70] deals
with scalar € and . However, due to the polarization independence of
the wave velocity, it is, in principle, possible to generalize it to the scalar
impedance case. Another way to prove the desired unique continuation
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for the sufficiently smooth solutions of equation (29) is to use the simpli-
fied version of Tataru’s construction, given in [27, sec. 2.5]. There, the
unique continuation result is based on local Carleman estimates for the
solutions of the scalar wave equation, uy —a;;(z)0;0;u+A;(z, D)u = 0,
where A;(z, D) is a first-order differential operator. These estimates
utilized a function ¢(z, t) that is pseudoconvex with respect to the met-
ric a;;, and absorbed the perturbation due to A;(z, D) into the main
terms of the Carleman estimates. By (28) and (29), the operator M?
is, in local coordinates, a principally diagonal operator with the same
second order differential operator, ¢“/9;0;, acting on all components of
w(t). Asin [27], one can treat the first-order terms as a perturbation
and obtain a desired Carleman estimate. In this manner, the construc-
tions in |27] can be word-by-word generalized to the considered case of
Maxwell’s equations with scalar wave impedance.

Remark 1.15. It is clear from the above arguments that if w(t) is a

weak solution of the initial boundary value problem (33) and w(t) €
C>(]0,2T[,L*(M)), then

w(t) € C=(10,2T[,D™(M.)), w(t) € C(M™ x]0,2T),
where we used the notation D*(M,) = (|-, D(M).

1.5. Controllability results. In this section we derive controllabil-
ity results for Maxwell’s equations. We divide these results into local
results, i.e., controllability at short times and global results, where the
time of control is long enough so that the controlled electromagnetic
waves fill the whole manifold. Both types of results are based on the
unique continuation of Theorem 1.13.

Let w/(t), f € O (R, Q'OM) be a solution of Maxwell’s equations
in the sense of Definition 1.8 with the initial condition w/(0) = 0.
Let @ be the weak solution of (33) given by (34) with p = 0 and
O(T) = wy = (0,w},ws, 0). Similar considerations to those in the proof
of Theorem 1.10, show that

(45) (! (T), wo)ia = — / (b (1), 05 (1),

which we will refer to as the control identity.

1.5.1. Local controllability. In this section, we study the differential
1—forms in M generated by boundary sources active for short periods
of time. Instead of a complete characterization of these forms, we show
that they form a sufficiently large subspace in L?(Q'M). The difficulty
that prevents a complete characterization of this subspace lies in the
topology of the domains of influence, which can be very complicated.



20 YAROSLAV KURYLEV, MATTI LASSAS, AND ERKKI SOMERSALO

Let I' C OM be open and T > 0. The domain of influence, M(I", T,
is defined as

(46) M(T,T) = {z € M|r(z,T) < T},
M, T)x{T} = K(I,T)n {t = T}.

Let Cg°(]0, T[,Q'T) C C5°(]0,T[,Q2'OM) consists of the forms sup-
ported in I' x [0, 7] and
47 X, 7T) = clp{(W)H(T) | f € C(0,T[,Q'T)}.
Furthermore, let

H(5, M(T,T)) ={w* € H(5,2*M) | supp (w*) € M(T',T)}.

For S C M, we define Hj(Q"S) C Hy(Q2" M) consisting of the k—forms
with support in S.

Theorem 1.16. For any open I' C OM and T > 0,
(48) GH(Q*M(D,T)) € X(I,T) C clgz (6H (6, M(T,T))).

Proof: The rightmost inclusion being an immediate corollary of (20),
we concentrate on the leftmost one.
Let wj € L*(Q'M) satisfy

(49)  (wg, (WHX(T)),. =0, forall feC(j0,T[QT).
By the Hodge decomposition (see [64]) in L?(Q'M), we have
(50) wy = By + g,

where dw} = 0, t&o) = 0 and n2 € H(6,Q2>M). Thus, (49) is equivalent
to

(51) (5, (w)(T)) » = 0.

Let w(t) be the weak solution to (33) with p = 0 and the initial data
at t = T given by &(T) = (0,6n2,0,0). By the control identity (45),
the orthogonality (49) and the particular form of the boundary data
for solutions of Maxwell’s equations (37), (38), we see that

o:A<mﬂwmmww3£<WMwnmﬁ@»=A<ﬁmf@»

i.e., nw? = 0 on I'x]0, T'[. Since
BT+ ) = (0,5(T — 1), ~T — 1),0),

also nw? = 0 on I'x|T,2T[. Since 6w?(t) = 0, we see by using Propo-
sition 1.2 that no? € C°(R, H~'/2(Q'0M)). Hence

no® =0 on I'x]0,2TT.

Therefore, by Theorem 1.13, 8;,0? = 0 in K (T, T'), In particular, dén3 =
—0w*(T) =01in M(T,T). In other words, if wi € X(I',T)*, then the
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term 72 in the decomposition (50) satisfies donz = 0 in M(T',T). For
any v? € H}(Q*M(T',T)), we have therefore

(57/27 Wé)L2 = (VZ’ d57l§)L2 =0,
and thus 6% € (X (', T)4)*. This is equivalent to the leftmost inclu-
sion in (48). O

Remark 1.17. Later in this work, we deal mainly with the time deriva-
tives of the electromagnetic fields. Since w/(t) = w?/(t), we see by
using

(32)  X(I,T) C clea{(W{ (1)) | f € C=(0,T], Q'OM)}

and (20), that the inclusions (48) remain valid when X (I', T") is replaced
with the right-hand side of (52).

1.5.2. Global controllability. This section is devoted to the study of
controllability results when the control times are large enough so that

the waves fill the whole manifold.
For I' € OM and T > 0, we define

(53) Y(D,T) = {{(T) | f € G0, T[,2'T)},

where Q'I" is the set of the 1-forms in Q'OM supported on I' and
abbreviate Y (OM,T) = Y(T'). Our objective is to characterize Y (I, T)
for T large enough. In the following theorem, we use the notation

(54)  radpr (M) = max 7(x,T), rad (M) = radgy (M).
[AS
Theorem 1.18. For an open non-empty I' C OM and T > Ty >
2radp(M), we have cliznY (I, T) =Y, where
(55) Y = {0} x 0H(8) x dH(d) x {0}.

Proof: Let w(t) = w/(t) be the solution, in the sense of Definition
1.8, of the initial boundary-value problem with f € C°([0, Ty], Q'T).
Since f = 0 for T > Ty, we have tw!(T) = 0, and consequently, for
wi(T) = —Muw(T),

wi(T) = (0,060(T), —dw'(T),0) € {0} x §H(8) x dH(d) x {0}.
To prove the converse, we will show that Y (I',7) is dense in {0} x
SH(5) x dH(d) x {0}. To this end, let wo € {0} x 6H (6) x dH(d) x {0}
and wy L Y/(I',T), i.e.,
(56)  (wioron(T)rs = (whwh(T) g2 + (Wl (1)) 12 = 0,
for any f € C5°([0, Tp), Q'T).

Let w be the weak solution of the problem

i MB=0, to=0, HT)=uwo
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Observe that wy satisfies dwl = 0 and dw? = 0, so that & satisfies
Maxwell’s equations (20), (21). Consider the function F' : R — R,
F(t) = (w(t),w(t))12. By Maxwell’s equations,

F@t) = (@), wu(t))r2 + (@(t), wi(t))r2
= —(@',0dw") e — (@* dow?) 2 + (d@', dw') 2 + (002, w?) e,
and further, by Stokes’ formula (30),
Fy(t) = —(t' (), ndw' (1)) — (n&*(t), tow*(t)).
However, tw = 0 and dw? = w}. Thus,

Fy(t) = —(n@?(t), twy (1)) = —(n@*(1), fi(t))-

On the other hand, since w(0) = 0, the orthogonality condition (56)
implies that F'(0) = F(T) =0, i.e.,

/0 (nﬁQ(t),ft(t»dt:—/o F,(t)dt = 0.

Since f € C5°(]0,T[,Q'T) is arbitrary, this implies that no? = 0
in I'x]0,7[. Thus, by Theorem 1.13, @; = 0 in the double cone
K(I',T/2). Since Ty > 2radp(M), this double cone contains a cylinder
of the form C = Mx|T/2 — s,T/2 + s with some s > 0. (See Figure

1).

As Wy, satisfies Maxwell’s equations with the homogeneous boundary
condition tw; = 0, this implies that w; = 0 in M x R. Therefore,
w(t) = wy + twe, where w; and wy do not depend on ¢. Again, by
Maxwell’s equations,

Wy = C~L)t = /\/lwl + tMUJQ.

Therefore, wy = Mw; and Mwy = 0. But then Stokes’ formula implies
that

(wz,wz)m = (WQaMwl)LQ = _(MW2>W1)L2 =0,
i.e., wy = 0 and Mw; = 0. Furthermore, by the choice of wy,
wy = w(T) = wy = (0, =602, dv*,0) = My,

with v € {0} x [}(d) x H(J) x {0}. By a further application of Stokes’
formula,

(whwl)L? = (wlvMV>L2 = —(Mwh V)L2 =0,

i.e., w; = 0 and, therefore, wy = 0. O



INVERSE PROBLEMS FOR MAXWELL’S EQUATIONS 23

1.6. Generalized sources. So far, we dealt only with smooth bound-
ary sources and the corresponding fields. Later, we need more general
sources which are described in this section.

Let W7 be the wave operator,

W C(10, Ty, Q'OM) — Y, f— w/(T),

where T' > Ty > 2rad (M). Let || - || be a quasinorm on the space of
boundary sources defined via W7,

(57) 11l = W7 fllee.

By the energy conservation, this norm is independent of 7" > Tj and
by Theorem 1.10, if the admittance map Z7 is given, we can evaluate
£l for f € Cg=(10, Tu[, '0M).

Using the standard procedure in PDE-control, e.g. [62, 44], there is
a Hilbert space of generalized boundary sources with the norm defined
by (57). Indeed, we first introduce the space F ([0, Tp]),

F([0,To]) = C5°(10, T, Q'0M) [ ~,
where [ ~ g iff W7 f = W"g, and then complete it with respect to the
norm (57) to obtain F([0,Ty]). By Theorem 1.18, W7 is an isometry

between F([0,Ty]) and Y for any T > Ty > 2rad (M). The elements
of F([0,Ty]) are equivalence classes of Cauchy sequences (f;)52; and

we denote them by [ = (f5)32,- (This is a slight abuse of notations,
as (fj)52, is a representative of the equivalence class ]?) To put it in
another way, for any wy € Y, there is a sequence (f;)52, with f; €
Cse(]0, Ty[, Q1OM), defining a generalized source f € F([0,Ty]), and
for the corresponding wave

(58) w! (t) == lim w!’(t), fort>Ty,
j—o0
we have w! (T') = wo. Since in this work T is considered as a fixed
parameter, we denote F ([0, Tp]) for brevity as F.
We say that h € F is a generalized time derivative of f € F, if for
T = TOa
Flro) - FO) 5

g

(59) lim

o—0+

=0,

and write h = ]Df, or simply h= atf. We also need spaces with s gen-
eralized derivatives, 7* = D(D*), with s € Z,, and F> =, F*.

As in Remark 1.15, if ]?G F,
(60)  wf € () (C*([Ty, o0, D(MI)) N Ran (M,)).
§=0

so that w] (T) € Hy (M™) for T > Ty,

loc
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We need also the dual of the space D(M?). Since H§ C D(M3), we
have (D(M?)) ¢ H™*. Similarly, Hy® C (D(M:?)). These facts will
be used later to construct focusing sequences.

1.7. Continuation of the boundary data. Theorems 1.10 and 1.18
make it possible to continue boundary data, originally given for t < T
to larger times ¢ > T, when T is large enough, by using essentially
the same ideas as in the scalar case, [27, 38| (see also [10] for another
continuation method).

Lemma 1.19. The admittance map Z*, given for T > 2rad(M),
uniquely determines Zt for any t > 0.

Proof: Let 2¢e = T —2rad(M). For f € C5°([0,T], Q'0M), Theorem
1.18 guarantees that there is a sequence f,, € C5°([e, T], Q'OM) with

(
(61)  lim wf"(T) = wl(T) in L2(Q*M) x L*(Q2M),

or, equivalently, in terms of the energy of a field,

(62) lim EM(w) =0, gn = 0(f — fn).
By using Theorem 1.10 one can verify, for an arbitrary sequence (f,,)>° ,

whether the convergence condition (62) is valid or not. Moreover, con-

dition (62) is valid for some sequence (f,,)°,. Thus, when the map Z7

is given, one can find a sequence (f,,)>° , that satisfies condition (62).
From the definition (34) of a weak solution, (61) implies that

(63) nh_)l’IOlo no; (an>2‘8M><]T,oo[ = no; (wf>2 |8M><}T=OO['

Let hy(z,t) = fo(z,t +¢) € C([0,T — €]). Since the function Z7h,,
determines nd,(w'™)?|gar )7 71c, We see that Z7 determines the form
n(w’)?|onrxjrr1e- lterating this procedure, we construct Z' for any
t> 0. O

In the sequel, we need Z7 with various values T' > 2rad(M). Taking
into account Lemma 1.19, we denote simply by Z the admittance map
known for all ¢.

Remark 1.20. The controllability results, Theorem 1.16 together with
the Blachovestchenskii formula, Theorem 1.10, make it is possible to
verify from the knowledge of Z7 whether the condition 7' > 2rad(M)
holds or not. Indeed, T' < 2rad(M) if and only if, for any £ > 0,

M(OM, (T — €)/2) # M(M,T/2).

This is equivalent to the fact that there are f,, € C§°(OM x]0,7/2]),
n =1,2,... such that (w/)*(T/2) form a Cauchy sequence in L*(M),
have norm one and converge to a function that is orthogonal to all
(W((T —€)/2), h € C(OM x]0, (T —€)/2[). When Z7 is given, this
can be verified for all f,, and h.
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2. INVERSE PROBLEM

This chapter is devoted to the inverse problem of electrodynamics.
Building on the properties of Maxwell’s equations obtained in Chapter
1, we prove the following uniqueness result.

Theorem 2.1. The boundary OM and the admittance map Z*, T >
2rad(M), uniquely determine the manifold M, the travel-time metric
g, and the scalar wave impedance .

The proof of this theorem consists of several steps. The first is to
reconstruct the Riemannian manifold (M, g). Having (M, g), we then
identify those boundary sources which generate the electromagnetic
waves focusing in a fixed point in M at time 7" > 2rad(M). These
sources are instrumental in reconstructing the impedance . What is
more, in section 2.4 we prove a generalization of the main Theorem 2.1
for the case where the admittance map is given only on a part of the
boundary.

At the end, we return to R? to characterize group of transformations
of the parameters € and p leaving the boundary data intact.

2.1. Reconstruction of the manifold. In this section we determine
the manifold M and the travel time metric g from the admittance map
Z. The idea is to use a slicing procedure to control the supports of the
waves from the boundary in order to determine the set of the boundary
distance functions.

We start by fixing certain notations. Let Ty < T} < T satisfy

TO >2rad(]\/[), T1 ZTO—i—dlam(M), T2 22T1

Let I'; C OM be arbitrary open disjoint sets and 0 < 7,7 < 7,7 <
diam(M) be arbitrary times, 1 < j < J. We define a set S =

ST, 77,7, }/-1) € M as an intersection of slices,

J
(64) S =) (M(Ty, 7))\ M(Ty,7))).

j=1
(See Figure 2.) Our first goal is to find, in terms of Z, whether the
set S contains an open ball or not. To this end, we use the following
definition.

Definition 2.2. The set Q = Q({T';,7; 7,7 }7_,) C F> consists of the

generalized sources fsuch that the waves, w; = w{ , satisfy
(1) w/(Ty) € X(Tj, 7)), for all j, 1 < j < J,
(ii) wi(T1) =0,
(iii) wy(T1) = 0 in M(Ty,7;), for all j, 1 < j < J.

Observe that Maxwell’s equations for w; = wf , ]? € () imply that
wy = (0,0w?, —dw},0), so, in particular, at t = T}, we have wy(T}) =
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(0,0, dn',0), where n* = —w}(T}) has the support property supp(dn') C
S.

I

N\
I

FIGURE 2. The set S in the case when J = 2.

The central tool for the reconstruction of the manifold is the following
theorem.

Theorem 2.3. Let S and () be defined as above. Then:

(1) If S contains an open ball, then dim(Q) = oo,
(2) If S does not contain an open ball, then ¢Q = {0}.

The proof of Theorem 2.3 is given later.

Theorem 2.4. For any fe F° it 1s possible, given Z, to determine
whether f € Q) or not.

Proof: Let f = (fe)p2, be a generalized source. By Remark 1.17,
Condition (%) of the definition of @ is equivalent to the existence of a
sequence h = (he)p2ys he € C.'OO([O,T;'_], Q'T';), such that

(65) . @/ )H(T1) = (wi) ()l = 0.

By the linearity of the initial boundary value problem, we have
1(@f)N(T) = (@) (@I = (@) (T,
where the source gy, ¢ is
gre(t) = 0 (fult) — he(t + 77 = Th)) € C3°(]0, Ta[, Q'OM).

Using Lemma 1.10, we can evaluate the norm ||(w9¢)!(T})|| for various
(he) and thus verify condition (65).

In a similar fashion, Condition (ii) is valid for f, if
lim [[(@f)2(1)] =0,
which can also be verified via Z by Lemma 1.10.

Finally, consider Condition (i) for J?satisfying Conditions (i) and
(i1). Observe that

((9,5 +M)th = 0 in M X R+,
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where wy; = wg, and twy = 0 in OM X [T}, oo|. If Condition (%) holds,
then, by the finite propagation speed,
Wi = 0 in K_] = {(a:,t) e M x R+ ‘ T(SC,FJ) + |t—T1‘ < Tji},

i.e., wy vanishes in the double cone of influence of I'; x|T; =77, Ti+7; [,

forall j =1,...,J. Therefore, in each K, w; does not depend on time,
and, by Condition (%), w} = 0 in K. Hence,
(66) nw; = Zf =0on I;x]Ty — 75, Ty + 75 [.

Conversely, if condition (66) holds together with Conditions (i) and
(1), then w, satisfies

(O + M)wy=0in M x R,
with the boundary conditions
tw, =0, nw!=0in;x]Ty —7; Ty 475 |

because Ty — 7; > Tp, so that f: 0in ;x|Ty — 7,7, Ty + 7; [ Thus,
by Theorem 1.13, wy; = 0 in K and, in particular, Condition (%) is
valid. As (66) is given in terms of Z, this completes the proof. O

Proof of Theorem 2.3: Assume that there is an open ball B C S and

let ¢ € QM with supp(p) CC B. By Theorem 1.18, there is f € F
such that

(67) Wl (1)) = (0,5¢,0,0),

Clearly, p € D>(M.,), so that ]?E F.

Let us show that f € Q). Conditions (i)-(ii) are immediate from (67)
and Theorem 1.16. Finally, since

wt}t\(Tl) = _wa(Tl) = (07 07 dé@a 0)7 Supp(dég@) cC Ba

Condition (7) is also valid. This proves the first part of the theorem.
To prove the second part, assume that S does not contain an open

ball and, however, there is f € Q, f # 0. Let w(t) = wf( ). Then, by
Condltlons (i)- (zz)

(68) supp(wy(T1)) ﬂ M(T
implying, due to wy(T7) = —th(TI), that supp(wy(71)) € S*. On
the other hand, by Condition (%),

we(T1) =0 in U, M(T;,77)=5"

Thus, supp(wy(71)) € ST\ S~, which is nowhere dense in M. Since
wy(T7) is smooth, wy(T7) = 0, and, therefore,

(69) dw!(TY) = —wi(Ty) = 0.
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However, by Theorem 1.18,
wi(Ty) = 6n*, with n?> € H(5,Q2M).

Combining this equation with (69) and using tw;(7}) = 0, we obtain,
by Stokes’ formula (30), that
(wi (1), we (Th)) 2 = (0%, w0y (T1)) 12 = (0°, dwy (Th)) 2 = 0,
i.e., w}(T1) = 0. Also, by Condition (%), w?(T}) = 0. These imply that
f=0.
O

We are now ready to construct the set of the boundary distance func-
tions, r,, which are defined, for any x € M, as continuous functions on
oM,

ry:OM — Ry, ry(z) =7(z,2), z€IM.

They define the boundary distance map R : M — C(OM), R(x) = r,,

which is continuous and injective, [36, 27]. The set of all boundary
distance functions, i.e., the image of R,

R(M) = {r, € C(OM) | x € M},

can be endowed, in a natural way, with a differentiable structure and
a metric tensor g, so that (R(M),q) becomes isometric to (M, g), see
e.g. [36, 27]. Hence, in order to reconstruct M (or more precisely,
the isometry type of M), it suffices to determine the set R(M). The
following result is therefore crucial.

Theorem 2.5. For any h € C(OM), it is possible, given Z, to deter-
mine whether h € R(M) or not.

Proof: The proof is based on a discrete approximation process. First,
we observe that h € R(M) if and only if, for any finite subset {21,...,2,}
of OM, there is an x € M with

h(zj) =7(z,2), 1<j<J
Denote 7; = h(z;). By the continuity of the distance function, 7 :
M x OM — R, , the above condition is equivalent to the following one:

For any € > 0, there are open sets I'; C dM, z; € I'; with diam(I';) < ¢,
such that

(70) int(ﬂM(Fj,Tj—|—€)\M(Fj,Tj—6)) # (.

j=1
On the other hand, by Theorem 2.3, condition (70) is equivalent to
dim(Q({Fj, T +e,T — 5}3»]:1)) = 00,

a condition that can be verified in terms of Z by means of Theorem
2.4. d
As a consequence, we obtain the main result of this section.
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Corollary 2.6. The boundary OM and the admittance map,
Z:C®0OM x Ry) — C(OM x R.),

determine uniquely the manifold M and the travel time metric g.

Remark 2.7. The considerations of this section can be, in principle,
made constructive to provide a way to build the set of the boundary
distance functions R(M) and an isometric copy of (M,g) from OM
and the admittance map Z. Given a finite approximation of OM and
the admittance map Z and using e.q. finite elements, it is possible to
construct a finite metric space that is close to (M, g) in the Gromov-
Hausdorff sense (for the construction in the scalar case, see [29]). For
a numerical realization of a similar method for scalar equations, see
[23, Ch.4].

Having found (M, g), we proceed in the next section to the recon-
struction of the impedance a.

2.2. Focusmg sequence. In this section, We construct sequences of
sources, (fp) ° with the property that (w”)2(T}) = 0 and the sets

supp <( ok (T1)> converge, when p — oo, to a single point in M™,

i.e., the time derivative of the electric field focuses to a single point.
Let y € M™" and 0, denote the Dirac delta at y in the sense that

[ 28,00) Asota) = olu). for any 6 € G ().

Since the Riemannian manifold (), g) is already found, we can choose
Iy, COM, 0 <7, <7 <diam(M), j=1,...,J(p), so that

(71) Sp-i-l - Sp7 m Sp = {y}7 S - S({F]pa ];;7 ]—; ;](pl))
=1

Then, Q, = Q({Tjp, 7,75, ;](pl)}) are the spaces of the boundary

sources, which correspond, by Definition 2.2, to the sets 5.

Definition 2.8. Fory € M™ let Sy, p=1,2,..., be given by (71). A

sequence ( fp)p 1 with fp € @, 1s called a focusmg sequence of boundary
sources of the order s, s € Z, if there is a distribution form A, on M,
A, # 0, such that

(72) I}Lrgo(w{p(Tl), Mz = (Ay,n)rz, when n € D(My).

With a slight abuse of notations, we use the same notation for the
inner product in L? and for the dlstrlbutlon duality. We denote a
focusing sequence converging to y by fy ( j‘"p)p_1

The following theorem characterizes a class of the limit distributions
that can be produced by focusing sequences. This class is large enough
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for our further goal to solving the inverse problem. What is more, the
sequences from this class can be constructed via the admittance map.

Theorem 2.9. (1) Let y € M™ and (ﬁ,);‘;l be a sequence of bound-

ary Sources, J?p € @Qp- Guven the admittance map, Z, it is possible to

determine, for any s € Z,, whether (J?p) s a focusing sequence of the
order s or not.

(2) Let fy be a focusing sequence. Then supp(A,) = {y}.

(3) For s = 3, the limit distribution A, has the form

(73) Ay =(0,0(A(y)d,),0,0),

where A(y) € A*T; M.

(4) For any y € M™ and \(y) € A2T;M, there is a focusing sequence
o of the order s = 3, with (A,)" = d(A(y)d,).

Proof: 1. Take n € D(M?) and decompose it as 7 = 1, + 12, where
mEDMNY, n € DIME)NYE.
AsU(t) in (34) is unitary in D(M;), by Theorem 1.18 there is a bound-

ary source h € F*° such that 7, = wZ‘(Tl) Observe that (wt (T1),m2)12 =
0, so that (f,) is a focusing sequence if and only if there is a limit,

(74)  (Aymhe = lim (@ (T),w; (T)rz, when b € 7.

By Theorem 1.10, the existence of this limit can be verified in terms of
Z.

Conversely, assume that the limit (74) does exist for all h € F*.
Then, by the Principle of Uniform Boundedness, the functionals

ne (W{p<T1)a77)L27 pe Z+7
are uniformly bounded in the dual of (D(M?)). By the Banach-

e
Alaoglu theorem, there is a weak*-convergent subsequence,

sl ) = A e (D)

where A, is the sought after distribution for which (72) is valid.

2. Let f, = ( fp)p , be a focusing sequence. Since fp € (), Condition
(ii) of Definition 2.2 implies that A, = (0, A}, 0,0) and Conditions (i)-
(1), together with (71), yield

(75) supp(dA,) < lim inf supp(d(w{") (T3)) < (] S, = {v}-
p=1

As wl(Th) € Y, 6AL = lim, .o, 6(w{") (T1) = 0. Thus,
(76) supp(AaA,) C {y}.
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On the other hand, by Condition (7) of Definition 2.2,
. J(p)
WHNT) =0 in M\S;, Sp=()MT ).
j=1

By the definition (72) of a focusing sequence, A, = 0 in M \ S}. As
rad(M) < diam(M), we can always choose I';,, 7,7, so that M \ S is
non-empty. By the unique continuation principle for elliptic systems
(see e.g. [21]), it then follows from the support property (76) that
supp(A,) C {y}. Since A, is non-zero by assumption, supp(A4;) = {y}.

3. Let s = 3. By part 2. of the theorem, in local coordinates
the components of A, are finite sums of the derivatives of the delta-

distribution. Since A, € (D(M?))" € H=3(M), it follows that

3 3
(77) Ay =" dojg,da’ +Y o, da
ij=1 i=1
Substituting (77) into the identity dA} = 0, we obtain (73).

4. Let ¥, € C§°(S,), p = 1,2, ..., be 2-forms that converge to AJ,, in
H'75(Q*M). By the global control Theorem 1.18, there are boundary
sources ﬁ, such that w;”(T1) = (0, d%,,0,0). Then ]Z = (ﬁ,);‘;l is a
desired focusing sequence. O

As y runs over M intwe get a parameterized family of the focusing
sequences { f,},casme which defines a map y — A(y). However, the
admittance map does not provide a direct access to the values A(y).
Although this mapping is unknown, we have the following result.

Lemma 2.10. Given the admittance map Z, it is possible to determine
whether the map y — \(y) is a 2—form valued C*°—function in M™.

Proof: Let {A,},cyime be a family of distributions of form (73)

corresponding to a family {fy}y€ arine Of the focusing sequences. Assume
that y — A(y) is smooth, i.e., A\ € Q>M™, Then, for any generalized

source h = (h;) € F>°, we have

(Ay, ™ (T))e = (0Ad,, (W) (T1)r2 = (Ady, d(w™) ! (Th)) 12

= (A, (@)(T))e

By taking the limit ; — oo of the both sides and using notation
(\,m)y = *(A A xn) for the inner product of \,n € A*T;M, we ar-
rive at the identity

(78) (Ayy ™ (T1))r2 = —(A®), (W2(y, T1))y-

As (A, wﬁ(Tl))Lz =lim; . limpﬁoo(wf"’y (T1),w" (T}))y2, we can eval-
uate (78) in terms of Z by Theorem 1.10.
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Conversely, if (Ay,wﬁ(Tl))p € C°(M™) for any h € F>, then
AMy) € Q?(M™). Indeed, by Theorem 1.18, for any ¢ € Q'M with
supp(p) CC M™ there is a generalized boundary source h € F* with
wZ‘(Tl) = (0,0, —dy,0), and, by (78),

(79) (Ay, w"(T1))rz = (A(y), dip(y)), € C(M™).
As ¢ is arbitrary, condition (79) is equivalent to that A(y) is C°°—
smooth in M, O

Returning to (78), we conclude that a focusing sequence {ﬁ;} gives
rise to a functional on (wf 7)2(Ty)). Tt depends only on the value of

(wfj)Q(Tl)) at the point y and will be called the point evaluation func-
tional in the sequel. By the above result this functional is determined
up to an unknown factor A(y). Hence, by using three proper focusing

sequences, we can evaluate the 2—form (w/')? at any point in M™, up
to a linear transformation. The possibility to control the precise form
of this transformation is discussed in the next section.

Lemma 2.11. Let t > T and h € F. Given the admittance map Z,
it 18 possible to find the 2—forms

(80) K(y)(w(y,1)? yeM™
Here K(y) : N*T;M — A*T;M is a smooth section of End(A*T*M™)
having the mazximal rank.

Proof: Let U be a relatively open coordinate patch in M with 2—
forms & € Q°U, k = 1,2,3, linearly independent at any y € U. If
{fe(y)}yev, k = 1,2,3 are three families of focusing sequences with
the corresponding limiting 2-forms A\ (y), we define the endomorphism

Ky (y) by
3

81)  Ku@w(y) =Y (), w*0))y &), yeU.

k=1
As we can evaluate inner products (78) by using Theorem 1.10, it is
possible, for any given three families of focusing sequences { f;(v)}yev,

k =1,2,3and h, to construct K(y)(wtﬁ(y, t))*fory € U, t > T. Further
considerations are based on the result that we formulate separately for
future references.

Proposition 2.12. Let U C M™ be open and &, € Q?U, k = 1,2, 3,
linearly independent at each y € U. There are focusing sequences

{ﬁ(y)}yeU such that the corresponding endomorphism (81) is Ky (y) =
I,, y € U, the identity in N°T; M.

Proof: Let \i(y), k = 1,2, 3 form the dual basis of & (y), k = 1,2, 3,
(Ae(Y); &e(y))y = Ore-
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It is a consequence of Theorem 2.9 that there are focusing sequences
fr(y) giving rise to the 2-forms A (y), which shows the claim. O

End of the proof of Lemma 2.11: By the above proposition, there
are, for given linearly independent & (y), focusing sequences fx(y) so
that Ky(y) is of the maximal rank. Moreover, since Kyw?(y) can be
evaluated for any w? = (w?)?(T}), the maximality of the rank of Ky (y)
can be verified via Z.

Let U;, 7 =1,...,J, be a finite covering of M by coordinate patches
and K the corresponding local endomorphisms of form (81) in U; N
M As we can compute (81) for all h € F*, t > T and z € U, it
possible to verify that K;(y) = K,(y) for y € U; N U, for all j and /.
As by Proposition 2.12 there are families of the focusing sequences for
which this is true, we can construct the desired endomorphism. ]

2.3. Reconstruction of the wave impedance. So far, we have found

the waves (wl')2(t), t > Ty, up to a linear transformation K which, at
this stage, is unknown. Since the choice of the focusing sequences is
non-unique, we will choose them in such a manner that the endomor-
phism K becomes as simple as possible, i.e., K = ¢/, an identity up
to a constant multiplier. The first step in this direction is to consider
the polarization of the electric Green’s function, defined as the solution
of the following initial boundary value problem,

(O + M)Ge(z,y,t) = 0in M xRy,
(82) tGe(z,y,t) = 0in (x,t) € OM x R,
Ge(z,y,t)[i=0 = (0,6(Ad,),0,0).

Sometimes, we denote Go(z,y,t) = G.(z,y,t; A) to indicate the source

S AQTy*M . Assume that h = h, is a focusing sequence that produces
a wave focusing at y, the corresponding 2-form being A. Since the
boundary sources are off when ¢ > T, we must have

(83) Ge(z,y,t) = wzl(x, t+1T).

On the other hand, by Lemma 2.11, we can calculate the 2-forms
K(x)(wh)?(z,t + T1) for z € M™ and t > 0. Hence, we know the
electric Green’s function up to a linear transformation.

Let us denote by ® = ®*(z,y,t) the standard Green’s 2—form, satis-

fying
(02 + A))®(z,y,t) = 0in M x R,
(84) (z,y,t)|omxr, = 0,
(85) ®(z,y,0) =0, ®y(7,y,0) = A(y)d, (z),

where A(y) € A*T;yM and the boundary condition in (85) means that
all three components of ® vanish on OM x R,.
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Let G, = ée(x, y, 1) be defined as

(86)  G.= (0, — M)(0,5®,0,0) = (0,0,60, —d5d, 0).

As (02 + A,) = (8, + M)(0;, — M), G, satisfies the complete Maxwell
system and, by (85), the initial condition in (82). By the unit propa-
gation speed, G. = 0 near M x]0, 7(y, OM)], satisfying the boundary
condition in (82). Thus, Ge(z,y,t) = Ge(z,y,t) for t < 7(y, OM).

To further the study of G, we formulate the following result proved
in the Appendix.

Lemma 2.13. For every y € M™ there is an open neighborhood U C
M™ of y, a positive t,, and a mapping Q,(x) that is smooth with respect
to x € U, where Qy(x) : AZT;M — A>T M 1is bijective, such that

(87) O(z,y,t) = Qy(x)A(t* — 7*(x,y)) + r(z,y,1)

for (z,t) € Ux]0,t,[. Moreover, with some smooth Qb (x) : A°T; M —
N°T*M, p=1,2 and C'=smooth 2-form 7(x,y,t), the remainder can
be written as

(88)  rlwyt)= Y Qu@)AE — 7, y) + .y, t).

p=1,2
By (86), it follows from (87) that, for sufficiently small ¢,
(89) Ge = (0,Ge, G2, 0) + 11,
where
Gl = —2tx (dr? A QN8P (1 — 72),

G? = dr* Ax(dT* A *Qy)\)é(Q) (t* — 12),

and r; is a linear combination of a bounded function, the delta distri-
bution on 0B, (t) and its first derivative, B,(t) being the ball of radius
t centered in y. Using Lemma 2.11 and (83) together with (89), we
obtain the following result.

Lemma 2.14. Giwven the admittance map Z, it is possible to find the
distribution 2—form

K(2)G2(x,y,t) = K (2) (W) (2, t + T0),

where K € End(Q?*M™) and t > 0. Moreover, the leading singularity
of this form when 0 <t < t, determines the 2-form

(90) K(x) (de(fL‘, y) A x(dr*(z,y) A *Qy(x))\)), x € 0By(t).

The linear transformation K (z) of Lemma 2.11 depends on fi(z),
&k(x), k=1,2,3. Our next goal is to formulate conditions, in terms of
Z, on fi, & to make K isotropic, i.e.,

(91) K(z) =c(z)I, ce€C®M™), c(x)#0.
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To this end, observe that for A € A*T; M,
(92) tp, @ (AT A *(dT® A xQyN)) =0,

where t 5, ()w" is the tangential component of w* on 9B, (t). Physically,
condition (92) corresponds to the orthogonality of the polarization of
the magnetic flux density and the direction of the wave propagation.
(See Figure 3.) If K is isotropic, we have

(93) ta, () <K(d72 A x(dr? A *Qy)\))) =0.

w

— -

FI1GURE 3. Vector ¢ is the right polarization of the elec-
tromagnetic wave in the plane M x {t}. The recon-
structed polarization w has wrong direction, if the trans-
formation matrix K (z) is not isotropic.

Conversely, we show that condition (93) for all y € M™ and ¢ <
t, guarantees that K is isotropic. What is more, condition (93) is
verifiable from the knowledge of Z. Indeed, for A(y) € A*T;M and
t = 7(z,y), (93) means that K (dr* A (dr? A *Q,))) is normal to
T,0B,(t) C T, M, i.e, for vectors X, Y € T,0B,(t), we have

K(x) (dT2<£L’, y) A x(dr*(z,y) A *Qy(x))\(y)))(X, Y)=0.

Observe that, when A(y) runs through A*T* M, then *(Q,(x)A(y)) runs
through 7M. Now we may vary y and ¢ with a fixed x such that
7(x,y) = t, making 7,,0B,(t) run through the Grassmannian manifold
G32(T,M). The transformation K(z) is kept invariant in this varia-
tion. Hence, we deduce that K (x) keeps any 2-dimensional subspace
of A°T?* M invariant, so it must be isotropic as claimed.

Assume that the focusing sequences used for the point evaluation
functionals are chosen so that K(x) = c¢(z)l. For any generalized

source J?E F. we may thus evaluate

(@)@, Th) = e(@)(w!*(x, T1),

with yet unknown ¢(z). Since w satisfies Maxwell’s equations, we have

d@)? = de N (w!)? + cd(w])? = de A (W])2
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The global control Theorem 1.18 thus asserts that c¢(x) = ¢ is equiva-
lent to

(94) A (2, 1) = 0, forall f e F,

a condition that is verifiable from the knowledge of Z. Hence, the
focusing sequences used for point evaluation can be chosen such that
c(x) =co #0.

To proceed with the reconstruction of «, consider the inner product,
(95)

/M (e, T) A (@) (e, T) = 2 /M W (2. T0) A +(@P) (2, Th),

which can be found via Z. On the other hand, by Theorem 1.10, Z
determines the energy inner product,

1 1 7
5] Sl T AP T,
By choosing a boundary source h = /};j such that h = (/i;])j';l is a
focusing sequence and by comparing the above inner products at the
limit j — oo, we recover the value c3a(z) at any point x € M.
Finally, we notice e.g. by considering the energy integrals that the
admittance map has the scaling property Z(M&Cga) = C 2 Z(M,g,a)s
with evident notations. Therefore, given Z and (g,c2a) already re-
constructed, it is also possible to determine ¢, and hence a. This
completes the proof of Theorem 2.1. O

2.4. Data given on a part of the boundary. In this section, we
generalize the proof of Theorem 2.1 for the case when data is given
on a non-empty open subset I' C OM. In this case, instead of the

complete admittance map Z7 we are given the local admittance map
ZI' defined by

ZEf = Z" flesor,  f e C™([0,T],QT),
where Q'T" is the space of the 1-forms f € Q'9M supported on T.

Denote Z = Z7 with T = oo and recall that radp(M) is the geodesic
radius of M with respect to I, see (54).

Theorem 2.15. Given T, the local admittance map ZL, T > 2radr(M),
uniquely determines the manifold M, the metric g, and the scalar wave
impedance .

Proof. Here we use notations of section 1.6. By Theorem 1.18 we
have that the set Fr = C5°(]0, Ty[, Q'T') /~ with T > Ty > 2radr(M)
is a dense subset of F. Thus we can identify Fp with F. This makes
it possible to use, when the data is given on a part of the boundary,
all the results about generalized sources obtained in section 1.6 for the
whole boundary. In particular, we can define sets 75 C Fr that can
be identified with F*.
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Exactly as in section 1.4 we can show that the local admittance map
ZI T > 2radp(M), determine the map Z% for all ¢ > 0, i.e., the map
Zr.

Our first aim is to reconstruct (M, g) near I'. For this, let 6. : I' — R
be

0:(2) = sup{s > 0: 7(72,(s),T) = s}
and
Mr={7.(s)eM : zeT, 0<s<6.(2)},

where 7, ,(s) is the geodesic starting from z € OM in the normal
direction.

Lemma 2.16. Given I, the local admittance map Zr determines the
function 0 : I' — R, the Riemannian manifold (Mr, g), and the wave
impedance o on Mrp.

Proof: Let z € I'. Using notations of section 2.1 we see that s < 6_(z)
if and only if S = M(T',,s)\ M(T', s — €) has a non-empty interior for
all open I, C T containing z and ¢ > 0. In turn, S = (M(T[,,s) \
M(T,,0))N(M(T,s)\M(T', s—e)) is of form (64). Thus, using Theorem
2.4 with Zr instead of Z, we can find out whether S has a non-empty
interior or not. Thus we can find 6_.(z).

At this stage, we can proceed in a similar manner to the proof of
Theorem 2.5 to find functions Rr(Mr) = {r.|r : = € Mr}. To do
this, we just use the procedure presented in the proof of Theorem 2.5
but consider only those functions h € C'(I') that have a unique global
minimum, say zo € I, with h(zy) < 0.(z). After construction of this
set, we see as in |27, Sect. 4.4] that the set Rp(Mr) determines the
Riemannian manifold (Mr, g).

Reconstruction of o in Mr follows the same route as with data given
on the whole boundary by restricting our attention to the focusing
sequences corresponding to points y € Mr and using an identification
of F¢ with F*. O

In the next step we will show that we can find the admittance map
on the boundary of an arbitrary ball B C Mr. We will denote by Zyp
the local admittance map defined by using the manifold M \ B instead
of M and OB instead of I'. For similar arguments in the scalar case,
see [28|.

Proposition 2.17. Given (Mr, g, «) and the map Zr for (M, g, ), we
can find the local admittance map Zyp for (M \ B, g, a).

Proof. First we observe that (Mr, g, «) and Zr determine the values
of the electric Green’s function G?(x,y,t; \) for any z,y € Mp, t > 0,
and \ € AZT;M . This result is proven in section 2.3 in the case when
the admittance map is given on the whole boundary and the proof can
be directly extended to the considered case.
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Consider now the initial boundary value problem
(96) O+ Mn=r, inMxRy, tn|,, o =0 n0)=0
where k = (0,003,0,0) with g € éoo(R+, ?B) and denote its solution

by n = ng = (0,17%,1?,0). Writing n? in terms of the electric Green’s
function we obtain

00 = [ [ G-t P v

where dV, is the Riemannian volume measure on (M, g). Using equa-
tion (96) we also find

(98) V= [ (O, ) + 08w, 1)

We continue the proof with the following lemma;

Lemma 2.18. Let w = (0,w!,w? 0) € éoo(R+,QM) be a solution of
Mazwell’s equations (23) and (24) in (M \ B) x R, which satisfies the
electric boundary condition tw = 0 on OM x R and initial condition
w(0) = 0. Then there is 3 € C(R, Q*B) such that the solution ng of
initial boundary value problem (96) coincides with wy in (M \ B) x R,

Proof. Let & = (0,&0',0%0) € C°’°°(]R+, QM) be an arbitrary
smooth continuation of w into B x R,. Let
p=(0,p",p%0), p'=—0dd', p*=—do’.
Then p =wy in (M \ B) x Ry, and p satisfies Maxwell’s equations
pt —0p? = 6da, o' = -0} + 60,
P2 +dpt = dda®, a® = —&f — do?,

in M x R,. Then n = (0,p' — §a?, p?,0) satisfies the initial bound-
ary value problem (96) with 3 = da' — a? supported in B x R,. In
particular, wy = ng in (M \ B) x R,. O

To complete the proof of Proposition 2.17 we start with an arbitrary

g e C.’OO(]KL, ?B) and find, using formulae (97), (98), the wave ns(x, t)
for © € Mr. Let w(z,t) be now defined as

t t/
99)  WO(z,t) =0, w(z,t) = / / o (e, ) de"dt’
0 0
t t!
wQ(x,t)z// ng(x, ¢") dt"dt',  wi(x,t) = 0.
0 0

Then w(t) is the solution of the initial-boundary value problem,
wi+ Mw=0 in(M\B)xR;, w(0)=0,

t
tlonri, = 0, tlomer, = (0, fo, — / dfy).
0
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where

t t °
(100) fs= / / tng(x,t") dt"dt’ € (R, Q'OB).
0 Jo

Using again formulae (97), (98), we see that (Mr, g, a) together with
Zr determine the map

t .
(16})— nw’|opxr, = / / nn;(x,t") dt"dt’ € C*(Ry, Q'0B)
0 Jo

for any f3 of form (100). As according to Lemma 2.18. the map 3 — f;

is a surjective map from C."X’(RJF, 0?B) onto C."X’(RJF, Q'0B), the map
(101) determines Zy5. This proves Proposition 2.17. O

Having found Z35 we construct the Riemannian manifold Msp C
M \ B, metric g on Mpyp and impedance « on Mpyp. Here Myp is
defined in a similar way as M changing M to M \ B and I' to 0B.
Combining this with the previous results, we find the part Mr U Myp
of M as well as the metric g and the wave impedance « on it. Iter-
ating this procedure, we reconstruct, in a finite number of steps, the
whole manifold (M, g, ). For details, see [27, Sect 4.4.9]. This proves
Theorem 2.15. O

2.5. Inverse problem for Maxwell’s equations in R3. In this sec-
tion, the uniqueness results for Maxwell’s equations on a manifold
are used to characterize the non-uniqueness of inverse problems for
Maxwell’s equations (1)-(2) in a bounded domain of M C R? with the
Euclidean metric (go);; = 6;;-

Let M; C R® j = 1,2, be two bounded smooth closed domains
with a common part I' of their boundaries, I' C OM; N OM;. Let
¢; and pj, j = 1,2 be the permittivity and permeability matrices
in M;, respectively, with u; = a?ej, a; > 0 being the correspond-
ing scalar wave impedances. Assume that the local admittance maps
Zr j for (M;, €, ;) coincide. By Theorem 2.15, both (M, €, 11) and
(M, €9, pi2) correspond to the same abstract manifold (M, g, &) which
is unlquely determined by Zr ; with the part I correspondlng to a part

' C M. This 1mp11es that there are embeddings Fj : M — M; C R?

of the manifold M in the Euclidean space such that the metric tensors
and the scalar wave impedances satisfy ¢ = (F})*g; and o = (F})*«;
and Fi|z = F5|z. Recall that g; are determined by expression (16) with
¢j and p; in place of €, n. The embeddings Fj induce a diffeomorphism

(102) ®=FokF ' M — M, & .=id

Consider two vector fields X; and Y; in M;, and denote X, = D® X7,
Y, = D®Y). The electric energy inner product for the corresponding



40 YAROSLAV KURYLEV, MATTI LASSAS, AND ERKKI SOMERSALO

1-forms w!, n' € Q' M is invariant, i.e., we have

1
/ go(X1,e1Y1)dVy = /N —w' Axnpt = / 9o( X2, €Y5)dVj.
M, M@ M,

On the other hand, as Xy = D® X; and Y, = DPY],

/QO(XQ,QYQ)GWOZ/ 9o(X1, P exY7)dVp,
Mo

My
where

1
(103) P*ey =

det D®
Since X; and Y; are arbitrary, we must have ¢; = ®*¢;,. Similar rea-
soning shows that p; = ®*ps.

Thus we have proven the following result.

Theorem 2.19. Let M, M, C R? be bounded smooth domains and
I' € OM; N OM, be open and non-empty. Let Zr, and Zry be the
local admittance maps corresponding to (My,er, py) and (M, e, ps),
respectively. Then Zp, = Zr if and only if there is a diffeomorphism
O : My — My, | =id and e, = ey, j11 = P pio.

Remark 2.20. It follows from (103) that ¢ and px do not transform
like tensors of type (1,1). This is due to the special role played by the
underlying Euclidean metric g§ = 6%, which is not changed by the
diffeomorphisms ®. These transformations were observed also in the
study of the Calder6n inverse conductivity problem. It is shown in [66]
that, for Q C R?, boundary measurements determine the anisotropic
conductivity up to the same group of transformations as described in
Theorem 2.19. For n > 3, a similar result is conjectured, based on the
analysis of the linearized inverse problem, see [67]. The Calderén prob-
lem is closely related to the inverse problem for Maxwell’s equations,
as the low-frequency limit of Z is related to the Dirichlet-to-Neumann
map for the conductivity equation [46].

(D®)T (€5 0 @) DO.

When € and p are isotropic, we obtain the following uniqueness re-
sult.

Theorem 2.21. Let M C R? be a bounded smooth domain, I C OM
be open and non-empty, € and ju be smooth positive functions on M and
Zr be a local admittance map for (M, e, p). Then I' and Zr determine
(M, €, u) uniquely.

Note that the knowledge of M is not a priori assumed in the above
theorem.

Proof. Assume that for (M, €1, 1) and (Mo, €9, p2) such that T' C
OM; N OM, we have Zr; = Zrs. Then there is a diffeomorphism
® . M; — M, satisfying CID}F = 1id and ¢ = ®*ey, p; = P*uy. Since
€1 and €, are isotropic, it follows from the Liouville theorem that & is
conformal. Since @’F = id, it follows that ® is identity. O
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2.6. Outlook. There are several direction to which the present work
can be extended.

1. A natural inverse problem is the inverse boundary spectral prob-
lem for the electric Maxwell operator M,.. The problem is to determine
the metric ¢ and wave impedance «, or, in other words, £ and p from
the non-zero eigenvalues \; of M, and the normal components of the
corresponding eigenforms on M. This problem was studied in, e.g.
[45], for the scalar Maxwell’s equations. For the considered anisotropic
case, this requires significant modifications of the method developed in
this paper and will be published elsewhere.

2. With the uniqueness of the inverse problem in hand, the next
issue is to study stability of the inverse problem and develop stable
reconstruction algorithms. A general approach to these questions, in
the scalar case, is introduced in [29], in terms of certain geometrical a
priori bounds on (M, g), with sharp results on conditional stability in
[1]. Adding a priori analytical bounds on «, we intend to analyse these
questions for Maxwell’s equations in an anisotropic medium.

Appendix: The WKB approximation. Denote by ®(z,y,t) =
®,(x,y,t) the Green’s 2-form, i.e., the solution of
(104) (02 + A%)®y(2) =0 in M x Ry,

Pr(2)|i=0 =0, 9PA(7)]t=0 = Ay (x), PaA(z)|orrxr, =0,
where A € A*T M. Let By(p), p < 7(y,0M) be a domain of normal
coordinates centered at y, so that
(105) g7 (0) = 6%, 9,97(0) = 0.

Rewriting equations (104), componentwise, in these coordinates and
using the unit propagation speed, we can, instead of (104), consider
the fundamental solution, ®(z,y,t), t < p,

(106) {(6} — g70;0;) + B'0; + C} ® =0, in Mx]0,p],
q)‘tzo =0, 825@‘15:0 = [Q(l'),

where [ is the 3 x 3 identity matrix and B*(x), C(x) are smooth 3 x 3
matrices.

Following [15, 3|, which deal with the scalar case, we search for the
solution to (106) in the WKB form:

(107) ®(x,t) ~ Go(2) 8(t* — %) + ) Gul) (2 =751/ (€ = 1)L,

>1

where 7(x,y) = |x|. Substitution of (107) into equation (106) gives rise
to a recurrent system of transport equations. The principal one is the
equation for G,

dGy

4Td—(73) + {(gij(rf) 8i8j7'2 —6)1+ Bi(va\) 8i72} Go(1Z) =0,
T
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where T = x/7. To satisfy the initial conditions in (106), we require
that Go(0) = (2r)~'I. By (105), g79,0;7%| _,—6 = 0. Also, 9;7%| _ =
0. Therefore,

% {(g¥(r%) 9,0,7% — 6) I + B'(17) &2}

is a smooth function of (7,7), so that Gy(x) is a smooth 3 X 3 matrix-
function of (7,7), for 7 > 0. Moreover, it can be shown that Gy(x) is
also smooth at x = 0.

For Gy, ¢ > 1, we obtain transport equations

478+ {40 = 6+ g7(0)00,7°()) T+ B ()07} G

T

= [g”&@][ — Bzﬁl - C} Ggfl,
with G,(0) = 0. If we write G, = Gy [}, we obtain for F} the equations

47’% + 4¢ Fg = Go_l [g”@,ﬁjl — B’@, — C} Gg_l,
T

with F;(0) = 0. Solving the above equations, we find

Fy(z) = irz/ Gy'(s2) {[970:0;1 — B'0; — C] Gy} (sz) s ds,

0
which are smooth functions of z. As (106) is a hyperbolic system, the
right-hand side of (107) is the asymptotics, with respect to smoothness,
of ®(z,y,t), when t < p.

Clearly, the asymptotic expansion (107) implies decomposition (87),
(88).
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