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Abstract We study the problem of gathering information about wind velocity
from continuous wave (CW) clear air Doppler radar measurements. The radar is
assumed to be a monostatic fixed frequency Doppler radar and the wind velocity
as well as the reflectivty are modeled as random fields with statistical parameters
depending on the altitude. We seek to reconstruct the hodograph curve of the
wind profile, i.e., the projection of the wind velocity profile to the ground plane.
We show that under certain assumptions of the wind field, the problem reduces
to a well known problem occurring in classical X-ray tomography. Numerical
simulations based on the use of X-ray inversion methods are presented.

1 Introduction

The Doppler radar is a widely used instrument in meteorological applications
and the literature on this topic is vast. In this work we are interested in clear air
Doppler radar used for wind profiling. The main references for our discussion
are e.g. [3, 4, 6]. It is well understood that, forgetting possible ambiguities,
the ranging resolution of the Doppler radar is roughly inversely proportional
to the bandwith of the radar (see e.g. [1, 8, 9]). On the other hand, due to
the regulations concerning the use of rf ranging devices, it would be desirable
to develop methods where the bandwidth is as narrow as possible, the device
ultimately operating on a single frequency. Of, course, one cannot hope to get
very detailed information of the weather conditions by using a fixed frequency
device. It is our aim in this work to analyze how much information the fixed
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frequency signal carries and to develop computational methods to extract this
information.

The paper is structured as follows: In Section 2, we derive a model for a single
frequency CW radar signal scattered from a continuous moving random tar-
get. In particular, by using appropriate simplifying assumptions of the random
structure of the target, we derive a formula the backscattered power spectrum.
In Section 3, we apply this scattering model to derive a tomography formula
for the recovery of of the hodograph curve of the wind profile. The inversion
formula turns out to be a version of the inverse Radon transform. In section 4,
the use of the reconstruction algorithm is demonstrated. In particular, we show
that the hodograph curve contains information about the inflection points of the
wind profile. Finally, in Section 5, a Monte Carlo simulation model is developed
to demonstrate that the inversion formula can indeed be used even when the
simplifying assumptions concerning the random structure of the target are not
satisfied.

2 Scattering model

Clear air radars are based on the fact that even when no precipitation or overcast
are present, the air contains enough micrometeors and turbulence to produce
backscattering of rf waves, see e.g. [3, 6]. Since these scatterers move along
with the wind, the Doppler effect gives information of the wind conditions.

In this section we derive the formulas describing the radar backscattering from
the turbulent atmosphere. The general references in this section concerning the
scattering of electromagnetic waves from a weak scatterer are [1, 3, 12]. The
wind velocity as well as the atmospheric reflectivity are considered as random
fields. In order to render the problem manageable, a number of simplifying
assumptions of the random structure of the atmosphere are done. The assump-
tions are that

1. The velocity field and reflectivity are mutually independent random fields,
2. The correlation length of the random fields is negligible,

3. The velocity field is Gaussian.

In addition, in the next section where the hodograph curve is discussed and the
tomography equation is derived, we further assume that

4. the atmospheric parameters depend on altitude only.

These assumptions are done here mostly for mathematical convenience. How-
ever, let us discuss them here briefly from the point of view of physics.



The assumption 1 is reasonable if we assume that most of the backscattering is
due to micrometeors whose density is not correlated to the wind speed. On the
other hand, large gradients in wind speed may cause more turbulence, suggesting
that at least some correlation could exist. Such correlation is likely to be local,
i.e., the wind speed and the relfectivity at the same point could be correlated. As
we see later in the Monte Carlo simulations, this assumption can be abandoned
but the forward model would become slightly more involved.

The assumption 2 means that individual scatterers are small and independent
of each others. The simulations indicate that from the practical point of view
this seems not to be a restrictive assumption.

One could use other probability distributions than the Gaussian ones in the
discussion below as one can readily verify. However, the assumption 3 leads to
a computationally nice closed form as the Gaussian probability density is com-
pletely determined by its first and second order statistics. Again, the simulation
model shows that this restriction plays no crucial role in practice.

Finally, for the tomography algorithm, the assumption 4 is crucial since we
are combining data from different look directions and our success to retrieve
the hodograph curve depends on the reduction of the integral descibing the
backscattered spectrum to a one dimensional integral with respect to the alti-
tude only.

Consider the problem of recovering information of a turbulent wind velocity
by using continuous wave monostatic Doppler radar operating at fixed angular
frequency. We model the wind velocity v by a vector-valued field, written in
Cartesian coordinates

v =v(r) = (v1(r),va(r), v3(r)) (1)

where r belongs to a layer D = {r = (z,y,2) € R® : 0< z < H} modelling the
atmosphere, the plane r3 = 0 corresponding to the ground level.

Assume that the monostatic radar is at the origin r = 0, sending a monochro-
matic time-harmonic signal so(t) = e ™o with angular frequency wg. The
signal scatters back from the turbulence and impurities of the atmosphere that
is modeled as a weakly scattering random structure. Assume that the scattering
takes place in the far field region where the wave is approximated by a spherical
wave. The received echo signal, after having mixed it down from wy to zero, is
approximated as

e(t) = / e){p(_i*'rt)g(ﬁ?o))\(r)dr, T = ;7 r = |r| 75 0. (2)
D

Here, k = wp/c is the wave number, A(r) is a complex reflectivity parameter at
point r and g(T,Ty) is the antenna directivity, To denoting the optical axis of the
antenna. Possible atmospheric attenuation of the signal is included in our model
to the reflectivity A. To transform the signal into the frequency domain, let W (t)



denote a windowing function of a short integration interval —T'/2 < t < T'/2.
Assuming that the atmospheric parameters do not alter significantly during this
period, the windowed Fourier transform of the echo signal gives

T2 T, T
e(w) = / GO (£)e(t)dt = /D IET0) 3 (1\op(w — 2kF - v)dr,  (3)

2
—T/2 r

where

T/2

or(w) = W (t)e™dt 4)

—T/2
is an approximation of the Dirac delta. We repeat this measurement N times.
During each interval of length 7', the wind parameters are taken as constants
with respect to time but they may change from sample to sample. By denoting
the parameter values during the n:th integration as v,, and \,, we get a sample
of the windowed Doppler spectra,

en(w) = /D w&b(r)(%(w — 2kt -v,)dr, 1<n<N. (5)

We consider the atmospheric parameters as random fields. Consequently, the
windowed spectra are also realizations of a random process e(w) and the average
power spectrum of this process is calculated as a sample average

P() = Ele()]” ~ Z en@). ©
By substituting the expression (3), we obtain

/ / ”0 ' ro)E(A(r)m5T(W—2k?‘V)m)drzl;;’

where v = v(r), v = v(r'). To simplify this expression, we assume that
the reflectivity A and the velocity field v are independent. By denoting the
correlation function of the reflectivity as

Ca(r,1r') = E(A(r)Ar')), (8)

we obtain

/ / 9(¥,To)g r rO)C,\(r,r')E<5T(W—2k?-V)m> drdr’.

22
o
To treat the velocity term, let us use the shorthand notation v = T - v(r),
v =7 -v(r'). Assume that v and v’ have a joint probability distribution
expressed by a probability density p(v,v'), i.e.,
P(veB,w eB) =/ / p(v,v'")dvdv', B,B' CR. (10)
B i



Observe that the function p depends actually on r and r’. With these notations,
we get

// r rO r rO)C/\(r;rl)Dv(w,rarI)drdrI’ (11)

2
r2p!

where
Dy(w,r,1") //5T (w — 2kv)dr(w — 2kv")p(v,v") dvdv'. (12)

To simplify this expression even further, assume that v(r), and thus v, is a
Gaussian field. Let the mean and covariance be

Eo(r) = vo(r), E((v(r) —vo(r)(v(r’) —vo(r'))) = Co(r,x').  (13)
Further, by writing

L =%(rr)= ( g:g:/:rg) g:g;’rll,?) ) (14)

and v = vo(r), vy = vo(r'), respectively, the joint probability distribution of v
and v’ is given by

1 1 v — v
, 1 — —=(v =y, PRI it 0 )) . 15
p(v,v") PSS exp( 2(1} v,V — vg) ( o — (15)

If we assume that d7 is a good approximation for the Dirac delta function (i.e.,
the integration interval T is sufficiently long), we have

‘D'U (w) r7 rl)

Q

/ / d(w — 2kv)d(w — 2kv")p(v,v")dvdv’

(55 52) )

Observe that the function w — D, (w,r,r’) is in fact a Gaussian function. In
particular, if we assume that C,(r,r') = 0 if r # r/, i.e., the correlation length
is negligible, and denote C,(r,r) = C,(r), we have

1 1 1
Dv ! — = -9 2
@rr) = SRvamem oF ( 82 (cv @~ 2kwo)

Cvtr') (w— 2kv(’))2)>. (17)

As a further simplification, we consider the case when also the correlation length
of X is zero. This is expressed by

Ca(r,r') = C(r)d3(r — 1'). (18)

+




With this approximation, the formula for the power spectrum reduces to

T,T))?
Pw) = /Dg(;TO)C,\(r)Dv(w,r,r)dr (19)
L1 [ g®BR)2Ca) 1 )
= wm A o (‘m@“‘%”@)dr

This formula will be used as a starting point in subsequent modelling.

3 Hodograph curve

In the previous section, we derived an approximate formula (19) for the power
spectrum, and the task is to estimate the average wind velocity as well as the
autocorrelations of the velocity and reflectivity. The only free parameter at our
disposal in formula (19) is the look direction Ty of the radar. It is clear that
without simplifying assumptions, the task is hopeless. However, it turns out
that in some cases, useful information can be extracted from this data. Let
us mention that the discussion here has a resemblance with so called vector
tomography, see [2, 10, 11].

To begin, we fix some notations. Let 8 denote the elevation angle of the radar,
B = w/2 corresponding to the zenith. By 6 we denote the azimuth angle of the
radar, § = 0 being the positive z—axis. With these notations,

To = cos 3 cosfe; + cos 3 sinfes + sin [fes. (20)

For later use, we write out the dependence of the power spectrum of the radar
look angles as P(w) = P(w, §,0).

In this section, we make the simplifying assumption that the atmospheric pa-
rameters depend on the altitude z only, and write

Ca(r) = cx(2), Cy(r) =cy(2), vo=vo(2). (21)

For further simplifications, assume that the radar has a narrow beam form so
that we can make the approximation

T-vo(2) ®To-vo(2) (22)

in the cone where g(T,Tp) is not negligible. On the other hand, by a geometric
argument, we see that denoting by T, the plane parallel to Earth’s surface at
the altitude z > 0, we have

T,




where K (8) is a geometric constant depending on the elevation angle and the
beam form of the radar. With these approximations, the formula of the power
spectrum (19) assumes the form

KB [ 1 1 R ,
P(w,B,6) = 87552) /0 ;Z*g; exp (—m(w—%ro vo(2)) )dz. (24)

By denoting the altitude-dependent variance as
0(2)? = 2k%cy(2) (25)
and defining a density function ®(z) as

K(B) _en(2)

®(z,0) = Wk 2 /o) (26)
the formula (24) reads as
P@.8.6) = [ 8(:08)Guto (0 = 20 vo()d, (27)

where G, ;) is a Gaussian function with variance o(z)?,

G () = ﬁ(z)exp (_20(1_2)2152) , (28)

Assume now that the average wind velocity vq is parallel to the Earth’s surface,
ie.,
vo(2) = vo(2)(€1 cos a(z) + € sina(z)). (29)

Here, vg(z) is the average speed profile and «(z) is the average wind direction
angle. Following [4], we define the hodograph curve corresponding to the average
wind velocity as a planar curve

z > (vo(2) cos az), vo(2) sina(z)) (30)

parametrized by the altitude. The knowledge of the hodograph curve (without
its parameterization) would give us the dependence of the speed profile to the
wind direction,

vo = vg(a). (31)

Observe that this function can be multi-valued. This knowledge is insufficient,
in general, to determine the velocity profile as a function of altitude, since it
carries no information of the parameterization with respect to the altitude.

To clarify the concept of a hodograph curve, consider Figure 1, where the spatial
curve depicts the the average velocity vector, i.e., the function

Z = (UO$(Z)7U0y7Z)7 (32)
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Figure 1: An average wind profile and its projection to the zy-plane, the hodo-
graph curve.

while the projection to the plane z = 0 is the corresponding hodograph curve.

The problem considered here is, how to reconstruct the hodograph curve by
monochromatic Doppler radar measurements. We show here that the above
model allows us to write the radar echo approximately as a Radon transform of
the hodograph density. Consequently, the hodograph density can be recovered
by standard tomographic methods.

Consider the following measurement. The elevation angle 8 > 0 is kept fixed,
and the azimuth angle 6 is varied from § = 0 to § = m. from this data, the goal
is to estimate the hodograph curve. Let us denote

8(0) = cosfe; +sinfes, (33)

nd
) p(z) = 2k cos Bug (z)(cos a(z)e; + sin a(z)eq). (34)

By suppressing the dependence of the fixed elevation angle, the power spectrum
reads

P(w,8) = /000 ®(2)Go(z)(w —8(0) - p(2))dz. (35)

We rewrite this integral in a slightly different form. Let us denote by dy the
Dirac delta function in R2. Then, we obtain

Pt) = [ 8G) [ oaa-pe)Gog (o~ 56) - )dadz. (30)



Consider first this function when the variance of the Gaussian G, goes to zero,
i.e., 0 = 0. The Gaussian function tends to the Dirac delta and P(w,0) —
Py(w,0), where

Pow0) = [ 8() [ dala-p(e)dw—30) -a)dadz. (37
0 R
This function can be written as
Rwo) = [ s@da), (38)
L(w,0)
where L(w, 6) is the line
L(w,0) ={q e R |5(d) - q = w}, (39)

and the density +y is given by the formula

Q) = / " 8()65(q - p(2))d. (40)

In other words, the ideal power spectrum FPy(w,6) is a Radon transform (or
X-ray transform) of a density y(q), and this density is non—zero only if q lies on
the hodograph curve. As a technical detail, we note that the density v is given
as

n
B(z;)
@) =) —2, (41)
i
where the point z; are the points of intersection of the curve p(z) and the line
L(w, ) (assumed to be finitely many) and

=60 pen|_, 1<i<n )

Evidently, the density v has singularities at inversion points where the derivative
of p(z) with respect to z vanishes.

Bj

It would be tempting to say that the limit ¢ — 0 corresponds to the case
when the wind speed has zero variance, i.e., ¢, — 0. However, the situation is
slightly more complicated since the density function ® depends on the variance
¢y through formula (26).

Let us denote the Radon transform as

ROEO= [ f@ita). (43)
L(w,0)

The Radon transform is fundamental object studied in X-ray tomography (see

e.g. [5, 7]) and it has an inverse transform given by formula

1
272

27 ® OF R d
RPN =5 [ [ Gorasonn e, aew. @)



Thus in the case where o(r) = 0, the hodograph curve can be recovered by
applying the inverse transform on the power spectrum Py to get

v(@) = (R™'Ry)(q). (45)

Based on this formula, it is natural to apply the inverse Radon transform on the
power spectrum also in the case ¢ # 0 and hope that some useful information
of the hodograph curve is obtained. Let us define

h(q) = (R™'P)(q). (46)

The question that we study is, how the function & is related to the density vy and
ultimately to the hodograph curve. Assume that the variance o is a non-zero
but constant with respect to the altitude. In this case, we observe that

P(w,0) = G, * Py(w, ), (47)

where the convolution * is understood with respect to the frequency w. To study

the density h in this case, we remind the reader of the well known connection

between the inverse Radon transform formula and Fourier analysis. By applying

the one-dimensional Fourier transform F; with respect to w on P, we obtain
oo

FLP(t,0) = / e~ P, 0)dw = G, (£)F1 Pyt 0) (48)

—0oQ

by the convolution theorem, where (A}(, is the Fourier transform of G,

@U(t) = / e G, (w)dw = em30 (49)

—0o0

On the other hand, by formula

Rf(w,0) = o f(@)d(w —q-5(8))dq (50)
it is evident that
FRf(460) = [ " (a)da = Faf(09), (51)

so the inverse radon transform can be written as
R™'F(q) = 75 ' Fuf(q), (52)

where it is understood that the inverse transform of the two-dimensional Fourier
transform F» is calculated by integrating with respect to the variable t = s over
R2. By this formula and the convolution theorem in R?, we find that

h(q) = H, xy(q), (53)

10



where the convolution is understood over R?> and the function H, is obtained
as

H,(q) = 75 '[Go (| - D](@- (54)
Explicitly, we have
I A
H,(q) = (%) /6 e dt = 271_026 20 . (55)

This means that in the case of constant variance, an application of the inverse
Radon transform gives a density that is not strictly supported on the hodograph
curve but rather a blurred density, the blurring function being a radial Gaussian
function whose width is proportional to the standard deviation of the velocity
profile above the hodograph curve.

To deal with the more general case when o # constant, we make the piecewise
constant approximation. Let us divide the atmosphere in layers at altitudes
0 =2 < 21 < ... < zg, where zg is the maximum altitude of practical
interest, and assume that

o(z) mojforzj_1 <z2<z2;,1<j<K. (56)

Then, the power spectrum (36) reads as

K
Pt = % |26 [ e p )G, 0~ 50) - avdad:
K

= ZGUJ, *Poj(w,e), (57)

j=1

where .
J
Py = [ #()a-p(2)iw - 8- a)dadz, (59
Zj—1
and the convolution is with respect to the Doppler frequency w. The same
argument as before gives now that by applying the inverse Radon transform on
P, we obtain

K
h(q) = (R7'P)(@) =Y H,, *v;(), (59)
i=1
where .
u@= [ )= p)d (60)

i.e., the portion of the hodograph curve that corresponds to the wind profile in
the j:th layer. This means that the reconstructed function h is again a blurred
image of the true hodograph curve with a variable blurring function.

11



4 Numerical results

In this section, we demonstrate with numerical simulations the reconstruction
method discussed in the previous sections. In this preliminary study, artificially
produced data is used as real data is not available to us.

The discussion is divided in two parts. In the first one, the data simulation
is based on the forward model for the power spectrum derived in Section 3.
Since the inversion method is based on the same formula, the results are overly
optimistic and should be understood as a demonstration of the method in the
most favorable conditions when all the assumptions of Section 2 concerning
the velocity fields are valid. In the second part, the data is generated using
a Monte Carlo simulation model. Here, we demonstrate that the inversion
scheme produces reasonable results even when the rather strong assumptions
are violated.

4.1 Simulation with the forward model

In our examples presented in this part of the study, the simulated data is based
on the formula

P(w,0) = / " 8(:)G, (w - 8(6) - pl2)dz, (61)

where the deviation o of the Gaussian G, is kept constant. In all our sim-
ulations, the elevation angle is § = 60°. The integration over the altitude z
is performed from an effective minimum value corresponding to the beginning
to the wave field, denoted by h, up to an effective maximum radar range H.
In our simulation, we have chosen h = 200m, H = 2500m. These figures are
reasonable ones for a radar functioning at the central frequency fo = 1GHz,
where fo = wg/2m, although considerable variations may occur depending upon
meteorological conditions [6].

The effective reflectivity contains the atmospheric attenuation effect. To model
the attenuation, we use Beer’s law, i.e., we assume that the attenuation factor
is of the form

®(z) ~ exp (—2 /OZ ,ua(z')dz'> , (62)

the function p, being the effective absorption coefficient accounting fo absoption
and scattering. In our simulation, we use pu, = constant. To make the model
more realistic, the function values ®(z;) at the points of integration are mul-
tiplied by a random component drawn from uniform distribution, ®(z;) ~ w,
u ~ U([0,1]). This randomness reflect our uncertainty of the reflectivity upon
the atmospheric conditions.

In the first example, the wind profile is assumed to form a spiral on the hodo-
graph plane, see Figure 1. Here, the wind speed is assumed to increase linearly

12
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Figure 2: A tomographic reconstruction of the hodograph curve corresponding
to the wind profile of Figure 1.

from zero to the maximum value 7.5 m/s such that the mean velocity vector is
parallel to the ground surface and turning a full circle. In this simulation, the
attenuation was ignored, i.e., uy = 0. The deviation parameter ¢ was constant
in this example, having the value ¢ = 10 s~!. Translated in terms of the ve-
locity, this corresponds to about 0.5 m/s standard deviation in the wind speed

parallel to the ground surface.

The Radon inversion was performed by using the standard Algebraic Recon-
struction Technique, ART (see [5] for a detailed discussion of the method). We
use the ART as a regularization scheme and perform only one full iteration
round to control the noise in the reconstruction. Figure 2 represents the re-
construction as a projected density plot and a three dimensional surfece plot.
The correct hodograph curve is plotted for comparison in the projected image.
We see that, in accordance to the previous discussion, the reconstructed curve
corresponds to a blurring of the original curve by a Gaussian kernel.

The second example demonstrates the effect of singular (or inflection) points of
the wind profile, i.e., those values of the altitude parameter z when

9 (40)-p(:)) =0, w—3(0)-p(z) =0. (63)

13
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Figure 3: The wind velocity profile as a function of altitude, the direction being
constant.

As formula (41) suggests, the hodograph curve becomes singular at these points,
and consequently the blurred curve should have high values at those points. This
fact contains implicit information of the altitude dependence of the profile and
could therefore turn useful in practice.

In this example, the average wind speed is parallel to a line in xy—plane with
values depicted in Figure 3.

In this example, the altitude attenuation is included such that p, = —log(0.75)/H,
i.e., the backscattered signal e has attenuated 75% of the initial value at maxi-
mum altitude. With otherwise the same parameter values as in the first example,
we reconstruct the hodograph curve by using the ART algorithm. In Figure 3,
the reconstruction is depicted. The effect of the singular points to the recon-
structed hodograph curve are clearly seen as high peak values as predicted by
the theory.

In the third example, we use a true wind profile as a starting point of the
simulation. The wind velocity at different altitudes are measured by a weather
balloon but the power spectrum is still a simulated one as before. Figure 4
depicts the corresponding hodograph curve as a solid line plotted on top of the
ART based reconstruction. In this figure, the standard deviation was ¢ = 10s~!.

4.2 Monte Carlo simulation model

To test the inversion model and its robustness, we generate the data in this
section using a Monte Carlo model based on an ensemble of single random

14
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Figure 4: Tomographic resonstruction of the hodograph curve obtained from
the profile in Figure 3.
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Figure 5: A true hodogrpah curve obtained from a weather balloon measurement
and a reconstruction based on the forward model simulation.
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scatterers. The starting point here is the formula for a single windowed Doppler
spectrum (5). We assume that the echo e, is due to small point scatterers at
various altitudes in the interval [h, H]. Thus, the approximate formula for a
single windowed Fourier spectrum becomes

M
T;,T ~
en(w) ~ Z g(]720))\(zj)57~(w — 2kr; - v;), (64)
j=1 Tj
where M is the sample size. Having produced a sample {e; (w), .. .,en(w)} of the

simulated echoes for each azimuth angle 8, the power spectra are then computed
as sample avarages according to formula (6). In formula (64), the scatterer
locations r; as well as the parameter values A(r;) and v; are random quantities
that are drawn from appropriate probability distributions as explained below.

First, we fix the average wind profile (vo(z), a(z)) as well as the wind speed and
wind direction variances, (0, (2)2,04(2)?).

The first step is to draw randomly the scatterer altitudes z;, 1 < j < M. The
scatterers are assumed to have uniform distribution in a given altitude interval
[h, H]. However, the radar beam widens out as ~ 22 with respect to the altitude,
so the radar sees more scatterers higher up. Therefore, the probability density
is

7(z) ~2%, h<z<H. (65)
Precisely, the probability distribution function is
B(z) = / T = TP L cm (66)
h H3 — h3’ - -

In practice, we draw independently random variables t; ~ U([0, 1]), the uniform
distribution, and set

zj=®"'(t;)=Ha+ (1 —a)t;)'/?, a= (%)3 : (67)

The next step is to produce the velocity vectors of the scatterers. To this end,
we define the velocity vectors

v; = vo(zj)(e1 cosa(z;) + exsina(z;)) + dv;, (68)
where the random perturbation dv; has normally distributed components,
6vj, ~N(0,0(2;)?), v=um,y,z. (69)

Observe that we allow the scatterers to have a non-zero vertical component,
too. Having computed the velocities, we draw randomly the reflectivities. By
using the Bayes formula for probability densities, i.e.,

(A, v) ~ (A [ v)m(v), (70)

16
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Figure 6: One sample of simulated velocities projected to the ground level
(left) and the reconstructed hodograph curve computed from the Monte Carlo
simulated data (right).

we can draw the quantities A; = A(z;) either independently of v; by setting
m(A | v) = w(\) or by correlating them with the already drawn velocities. In
the numerical tests, both options are tested.

Having these quantities computed, we can calculate the Fourier spectra of for-
mula (64). We add to each e,, additive independent noise to account for effects
that have not been modelled, such as relections from low-altitude perturbations,
ground clutter, birds and insects etc.

In the first test, we use the same mean wind profile is the one shown in Figure
1. The number of single scatterers is M = 1000 and the number of independent
spectra e, per azimuth angle # is N = 50. The wind speed standard devia-
tion o(z) is 5% of the mean velocity vg(2), and the reflectivities A; are drawn
independently of the velocities, following the law

Aj ~ Rayleigh(y;), v = exp(—paz;). (71)
Here, the absorption coefficient is chosen again as py, = 1/H.

In our simulation, the windowing function W was simply taken as a box-car
function with the time parameter chosen as T = 0.15s. With this choice, the
distance of the first sidelobes of the sinc—function from the mean frequency is
about 31 s~ !, which in terms of the Doppler shift correspond to 0.75 m/s velocity
in the radial direction. With these parameter values, the total measurement
time per azimuth direction would be NT = 10s.
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Figure 7: True wind profile and the corresponding hodograph curve.

In Figure 6, we have depicted the randomly drawn velocity values corresponding
to a single simulated backscattered echo (left). In the same figure (right), the
two dimensional projection of the reconstructed hodograph curve is shown.

As a final example, we consider the case where the wind speed and the reflectiv-
ities are not independent. In this example, the reflectivity A\; = A(z;) is drawn
from the conditional density of the form

Aj ~ (A | v;) = Rayleigh(|v;|v;), v = exp(—paz;)- (72)

This is a model where it is assumed that the increased wind velocity causes
increased turbulence and thus produces a stronger backscattering effect. The
other parameters are as in the previous example. Finally, normally distributed
random noise with standard deviation 3% of the maximum signal level was
added to each simulated acho e, signal before summing up to form the power
spectrum.

The true wind profile is shown in Figure 7. Again, a sample of 1000 scatterer
velocities as well as the reconstructed hodograph curve are displayed in Figure 8.
Here we see that the added noise contributes mostly to an elevated background
noise level in the reconstruction, while the hodograph information is still clearly
visible.

5 Discussion

Starting from a simplified stochastic scattering model, we have derived an ap-
proximation for the monochromatic monostatic radar echo from the atmosphere
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Figure 8: One sample of simulated velocities projected to the ground level
(left) and the reconstructed hodograph curve computed from the Monte Carlo
simulated data (right).

with variable windspeed. Keeping the elevation angle of the radar fixed and
scanning in the azimuth direction, we showed that the power spectrum is a
blurred Radon transform of the hodograph curve of the wind profile, i.e., the
projection of the wind vector to the ground surface. Also, we showed that by
applying the inverse Radon transform to this data we obtain a blurred image of
the hodograph curve, the blurring depending of the stochastic variances in the
wind speed and the reflectivity of the air layers. To test the feasibility of the
method to estimate the hodograph curve, we applied the suggested algorithm
to numerically simulated data. The Radon inversion was based on the standard
ART algorithm. Currently, the authors have not access to real CW radar data.

In this article, the question of retrieving altitude information from the hodo-
graph curve was left open. This information cannot be obtained reliably with
a non-ranging single frequency CW instrument. Some information can be ob-
tained by assuming attenuation models of the signal, but this sort of assumptions
are highly unreliable and their practical value requires further analysis. Another
idea of getting altitude information is to use several elevation angles combined
with the azimuthal scanning and attenuation modelling. These ideas are not
tested in this work.
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