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1 Introduction.

In these lectures we consider inverse boundary spectral problems for ellip-
tic operators on manifolds. This means the reconstruction of an unknown
manifold and an elliptic operator on it from the knowledge of the boundary
spectral data, i.e. the spectrum of the operator and normal derivatives of
the normalized eigenfunctions on the boundary. Before we formulate and
solve this problem in exact terms, we explain why the manifolds appear in
the study of the inverse problems.

Let us consider an elliptic second order differential operator a(z, D) in
Q Cc R" and ¢ : © — € be a diffeomorphism, that is, a change of coor-
dinates, satisfying ¢(z) = z near 0€). Then the operator a(z, D) in new
coordinates y = ¢(z) is the operator a(¢(y), (Dy)D). Since the boundary
spectral data of the operators a(z, D) and a(¢ '(y), (Dy)D) coincide, we
see that the boundary spectral data can not uniquely determine the operator
a(xz, D). However, both operators can be considered as the same operator on
a manifold represented in different coordinates. This example shows that it
is natural to start from an operator on a manifold and ask if the boundary
spectral data determine uniquely the manifold and the operator on it. A clas-
sical analog of reconstruction of the manifold structure is the reconstruction
of material parameters in travel time coordinates.
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2 Formulation of the problem.

Let M be a C*°-smooth compact m-dimensional manifold with boundary
OM. It means that M is a topological space which is covered finite number of
local coordinates (U, X;), 1l =1,...,L, M = UU,. The coordinate functions
X; = (z,...27) are homeomorphic maps from U; onto open subsets of
R™ (or RT for boundary coordinate sets), X;, X; : Uy — U C R™(RT}),
such that X; o X, ' are C* functions. Using local coordinates we define the
space L?(M), the Sobolev space H"(M) and the Sobolev space HY(M) with
vanishing traces in the standard way.

Now we can define an elliptic selfadjoint second order differential operator
A on a smooth differentiable manifold M. The differential expression a(zx, D)
of the operator is given in any local coordinates as

(a(z, D)f) (..., 2™) = —a*(z',...2™)0;0, f (',...,2™) +
+0 (zh, .., ™0 f(2t . 2™) +e(at, . ™) f(at . 2™,

where 0;f = %. Here and later we use the Einstein summation rule. The
local representations, which are called the local differential expressions, are
defined in such a manner that the value of a(z, D)f at any point x inde-

pendent of the choice of local coordinates (U, X) near z. In particular, it

means that coefficients a’*(z!, ..., ™) are transformed as components of 2—
contravariant tensor.
The differential expression a(z, D) is elliptic if the matrices [a/*](z!, ..., 2™)

in a local coordinates (and consequently in any local coordinates) are positive
definite,

m
a*pipe > ¢ pl.

j=1
The fact that [a;x] = [a/*]7! is positive definite matrix and a 2-covariant
tensor implies that we can consider it as a Riemannian metric tensor g;; = a;
on M. We call corresponding metric as the metric associated with operator
A. To define an operator on M we have to add a boundary condition on
OM. We define the operator A by

Au(z) = a(z, D)u(x), u € D(A) = H*(M)N Hy(M).

To define self-adjoint operators on M we need to fix a volume element dV'
on the manifold. In local coordinates (U, X) near x we have representation

dV = mdV, = m(z)g"/?(z)dz'dz?*- - - dz™,
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where g = det[g;x] and m is a positive function on M.
In the space L?(M,dV) we use the inner product

(u,v)z/Mu(x)de

and say that A is selfadjoint, if A = A* where the adjoint A* is defined with
respect to the inner product of L?(M,dV).

As example of a second order elliptic selfadjoint differential operator we
consider the Schrédinger operator .4, on the Riemannian manifold (M, g),

A, = -7y +4q, (1)
where A is the Beltrami-Laplace operator,
Agu — g—1/Zajgl/29ijaiu7

and ¢ is a smooth real valued function on M. The Schrédinger operator A,
is a second order elliptic differential operator on M which is selfadjoint in
L2(M,dVy), dV, = ¢"*(z)dz! - - - da™.

Let us return to the general elliptic selfadjoint second order differential
operators on the manifold M. An easy computation show that the selfadjoint
differential operators have a special form (see [14]).

Lemma 1 Let L*(M,dV) be a Hilbert space with volume element dV and A
be an operator with domain H*(M) N Hy(M). The operator A is selfadjoint
in L?(M,dV) if and only if the corresponding differential expression has the
form

a(z,D)f = —m g ?0mg"?g70; f + qf.
In this case, dV = mdV,.

The spectral properties of the selfadjoint operator A on M are given in
the following well known theorem.

Theorem 1 Let A be a selfadjoint second order differential operator with the
Dirichlet boundary condition. Then the eigenvalues of the operator form an
increasing sequence Ai, Aa..., Aj < Aj11, Aj = 00, when j — 0o, where the
etgenvalues are counted according to their multiplicities. For each eigenvalue
Aj there is an eigenfunction ¢; so that the collection of these eigenfunctions
{@;}32, form an orthonormal basis in L*(M,dV’).
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Any function f € L?(M) has a representation

F=Y i, {fYel,
j=1
which Fourier coefficients of f are f; = (f, ;) and || f||z2 = |[{f;}|l;2- By stan-
dard application of Garding inequality, we see that ¢; € D(A*) C H*(M)
for any s. Henceforth ¢; € C*°(M).

3 Gauge transformations.

In our investigation we consider all operators and the boundary data in such a
way that our considerations does not depend on the particular choice of scale
of measurements. For instance, if the change of the scale of measurements is
described by function x(z), k|ap = 1, that is, at point z € M the physical
quantity u(z) is replaced with x(z)u(x), this change of scale of measurements
should not change the observations done on the boundary. For this reason
we formulate all our considerations in such a way that they are invariant
in the gauge transformations u(z) — k(z)u(x). As we will see later, these
transformations play an important role in the study of the multidimensional
inverse problems.

Definition 1 Let k € C*°(M), k(z) > 0 for x € M. The gauge transforma-
tion generated by the function k is the transformation

St L*(M,dV) — L*(M,dV,)
where dV,, = k2(x)dV . It is defined by the formula
Siu(z) = k(z)u(z).

Each gauge transformation determines the corresponding gauge transforma-
tion A, of the operator A,

Au = kA(k ).

If A is an elliptic second order operator on M then operator A, is also
an elliptic second order differential operator defined in L?(M, dV,) with the
domain

D(A,) = H*(M) N H(M).
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Its differential expression is given by the formula
ax(z, D)u(z) = k7 (z)a(z, D) (k(z) " u(z)).
It is easy to verify the following properties of the gauge transformations.
Lemma 2 . Transformation S, is a unitary transformation, i.e.
| Skullz2@viy = llullz2(av)-

ii. Operator A, in L*(M,dV) is selfadjoint if and only if A is selfadjoint
in L2(M, dVy).

Gauge transformations S : L?(M) — L?*(M) form an Abelian group
G={S: : k€ C®(M), k> 0}
with respect of composition
Sky © Sky = Skrkg-

This group is action on the set of the second order elliptic differential oper-
ators

Se(A) = A, =k Ak L.
For any A
oA ={S.(A): Sc€gG}

is the orbit of the group G generated by A. If A is selfadjoint operator than
all operators A, € oA are selfadjoint.
Next we investigate what objects are invariant in the action of group G.
Firstly, the metric tensor ¢ = a% associated to the operator A is invari-
ant with respect to the gauge transformations,

gl = g,
K
Secondly, since S is unitary, the eigenvalues are invariant,
Ai(A) = A (Ag)- (2)
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On the other hand for the eigenvectors we have that

¢ = Skpj = Kp; (3)
where ¢; and ¢f are eigenfunctions of operators A and A, correspondingly.
An important fact related to the gauge transformations is that any orbit

oA of a selfadjoint operator A contains a unique Schrédinger operator. We
call this operator the Schrédinger operator corresponding to A.

Lemma 3 i. Let A be a selfadjoint second order elliptic differential oper-
ator in L>(M,dV). Then in the orbit o A there is a unique Schrodinger
operator —A, + q, that is, for a given A there is a unique Kk such that
A=k(=Ay+q)s ! and dV = k2dV,.

ii. A is a Schridinger operator if and only if dV = dV/,

Proof. It is clear from the definition of the Schrédinger operator that a
general elliptic selfadjoint second order operator A is a Schrédinger operator
if and only if m = 1. Using formulae describing the change of A in the
gauge transformation we see that the gauge transformation S,, k = m!/?
transforms A to the Schrédinger operator. &

4 Boundary spectral data and main results.

Next, let v be the unit inward normal vector field on OM.

Definition 2 Let {\,}22, and {¢,}52, be the eigenvalues (counted accord-
ing their multiplicities) and the orthonormal eigenfunctions of an elliptic sec-
ond order differential operator selfadjoint in L?>(M,dV). Then the boundary
spectral data of the operator A is the set

aM’ {)‘n}fboZI’ {anon'aM}?Lo:l’

where 0, is the normal derivative defined via duality 0,¢n |0 = (dn, V).

Formulae (2) and (3) imply that the boundary spectral data of the A,
are

6M, {)‘n}vozozla {6V(H(pn)|8M}zo:1 = {Koau%\aM}ZO:p

where ko = k|,,,- We say that these data are gauge equivalent to the the
boundary spectral data of the operator A. Our aim is to prove the following
theorem.



Theorem 2 Let A be a general second order differential operator on the
manifold M, selfadjoint in L>(M,dV). Then its gauge equivalent boundary
spectral data OM, { A}, {Ko Ovipnlon 13, determine Riemannian mani-
fold (M, g) and the orbit o A of the operator A.

It is obvious that operators A and A, with the function x satisfying
klgys = 1 have the same boundary spectral data. Therefore there is no
possibility to reconstruct the operator A uniquely. Thus the best that we
can hope to construct by using the gauge equivalent boundary spectral data
is the orbit oA of the operator A. To construct the orbit it is sufficient to
construct one particular operator in the orbit, for instance the Schrédinger
operator corresponding to A. To reconstruct the Schrodinger operator we
have to reconstruct first of all the manifold M and the Riemannian metric
on it. Before this, we explain what we mean by the reconstruction of a
Riemannian manifold (M, g). Since a manifold is by definition a collection
of coordinate patches our objective is to construct a representative in a class
of equivalence of Riemannian manifolds isometric to (M, g). In other words,
we consider all isometric Riemannian manifolds as the same manifold. After
reconstruction of the Riemannian manifold we reconstruct the potential ¢ on
the manifold.

It can be shown that by knowing gauge equivalent boundary spectral
data we can reconstruct metric g|,,, and kg = k|;,,;, where S, transforms
the operator A to the Schrodinger operator. For simplicity we do not present
these constructions and restrict ourself to the case of reconstruction of the
Schrodinger operator when we know the boundary spectral data and the
boundary as a Riemannian manifold (0M, gsar). For these omitted construc-
tions, we refer to [14]. We will prove the following result:

Theorem 3 Let A = A, be a Schridinger operator on the manifold M. Its
boundary spectral data (OM, gon), {Antor1, {0v@nlaonrtos, determine the
Riemannian manifold (M, g) and potential q uniquely.

Before we start to prove the theorem we discuss shortly the history of the
problem. The proof of the theorem is based a transformation of the problem
to an inverse problem for the wave equation and applying control theoretical
results for computing projections of waves. This approach is called usually
the boundary control method. It has its origin in the study of one dimen-
sional inverse problems considered by A. Blagovestchenskii (see e.g. [12])



who applied the fact that the inner products of waves can be computed from
the boundary data. The boundary control method was first time developed
to multidimensional inverse problems in domains of 2 C R™ by M. Beli-
shev (see [3]). He made the crucial observation that the control theoretical
results can be used to compute the projections of waves to subdomains of
Q. For further development of these results, see e.g. [6], [9], [10]. The
study of more general operators led to the observation of the gauge-invariant
nature of the problem. This was done by Y. Kurylev in the study of the
Schrodinger operator (see e.g. [15], [17], [18]). The further invariant nature
of the inverse problem was discovered by M. Belishev and Y. Kurylev who
introduced the problem on Riemannian manifold at 1992 (see [11], [16], [20]).
At 1995 D. Tataru extended the Holmgren-John unique continuation result
for non-analytic equations [26]. This breakthrough made the applications
of boundary control results possible for equations with non-analytic coeffi-
cients. We mention also that the analogous inverse problems are studied for
more general cases than which are considered here, e.g. for non-selfadjoint
systems, [1], [21], [22], for Maxwell system [5], [7] and operator pencils [23] or
when the data is given only on a part of the boundary [22] or with incomplete
data [13].

In these notes we consider the inverse problem by using the Gaussian
beam solutions. The Gaussian beams (or quasiphotons) are introduced by
V. Babich, V. Ulin, and J. Ralston (see [2], [24]) and they were applied for the
inverse problems first time in [8], [13]. An other main tool in these notes are
the boundary distance functions. These functions were introduced at 1995
by Y. Kurylev who observed that the set of the boundary distance functions
can in fact be identified with the original manifold [20]. The importance
of this observation was related to its geometrical nature; Instead of doing
constructions in boundary normal coordinates the manifold is constructed
as a global object and thus all difficulties related to non-regular coordinates
near cut locus were removed. In these notes we do our analysis in the same
manner by using geometrically invariant point of view when it is possible.
Some technical details of the constructions are omitted, and for these details
we refer for [14].



5 Spectral representation of waves.

We start with the reconstruction procedure the Riemannian manifold (M, g).
For this consider an initial boundary value problem for the wave equation
associated to the Schrodinger operator. Let

Ou—Aju+qu = 0, (z,t)€Mx][0,T],
=0,

u|8M><[0,T] =f, Uli—g Opul,_g =0,

where f € L*(OM x [0,T]). This initial boundary value problem has the
unique solution v = u/, u/ € C([0,T], L*(M)) N C'([0,T], H"'(M)). For
any t € [0,T] the solution u/(-,t) € L?(M) and, consequently, it can be
decomposed in the Fourier series

W (,0) = > ul (i)

Lemma 4 The Fourier coefficients ul (t), i = 1,2, ..., of the solution u/ (x, 1)
have the following representation

ul (t) = /0 /8 ; si(t — 1) f(s,1")0,i(s)dS,dt’, (4)

where

in /At .
ST A >0

. — inh\/i)\it

Proof. For a smooth function f

orul(t) = /M 02! (2, t)u(x)dV, = / (A, — g (2, )gs(2)dV,

M

= Nul(t)— [ F(5,0)0,0i(5)dS,.

oM

This ordinary differential equation for u/(t) can be solved with the initial
conditions

u! (0) = 9! (0) = 0,
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which are followed from initial conditions for u/. Thus we obtain the formula
for the Fourier coefficients u/(t). For f € L*(OM x [0,T]) claim follows by
approximation of f by smooth functions in L*(OM x [0,T]). ¢

We see from formula (4) that if the boundary function f, called the
boundary control, and the boundary spectral data are given, we can find
the Fourier coefficients of the solution u/(z,t). In particular, for any ¢ and #'
we can find the inner product of two different solutions generated by controls

f and h.
Corollary 1 Let f,h € Hy(OM x [0,T]). Then

(ul (), u(, 1)) = Y uf (t)uf (') (5)

where the Fourier coefficients u! (t) and u?(t) can be found by means of know-
ing f, h, and the inverse boundary spectral data by using formula (4).

6 Gaussian beams.

Here we describe a special class of solutions of the initial boundary value
problem for the wave equation on the Riemannian manifold related to the
Schrédinger operator,

Ofu — Agu + qu = 0.

We construct solutions which are known as Gaussian beam solutions or
quasiphotons. The name of quasiphoton reflects the fact that the solutions
of this type are concentrated at any time ¢ in a neighborhood of a point
x = xz(t). The path = = z(¢) is, in fact, a geodesic in the corresponding
Riemannian metric. The quasiphoton moves along this geodesic with unit
speed. Moreover, many properties of such solutions (the energy conservation
law, reflection from the boundary etc.) are analogous to the properties of
particles. The name of Gaussian beam reflects the fact that at any time ¢
the absolute value of the Gaussian beam coincide with a Gaussian function.

The construction of the Gaussian beams is divided into several steps.
Firstly, we construct a special asymptotic solution of the wave equation
which is called a formal Gaussian beam. Secondly, we chose a special bound-
ary data, so that the solution of the corresponding initial boundary value
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problem has an asymptotic expansion which coincides with a a formal Gaus-
sian beam. These solutions are called Gaussian beams.

Definition 3 A formal Gaussian beam of order N is a function UN (z,t) of
form

N

UY (2,1) = (we) ™" exp {—(i€) '0(z, )} ) un(z, 1) (ic)"

n=0

satisfying the following properties: The phase function 6(z,t) and the ampli-
tude functions u,(x,t), n =0,1,..., N, are smooth complex valued functions
of the variables x and t. The phase function 0(x,t) satisfies conditions

ImO(z(t),t) =0, (6)
Im0(z,t) > C(t)d(z,z(t))?, (7)

where d(-, ) is the distance function in the metric g, x(t) € M depends con-
tinuously on t, and C(t) is a continuous positive function. Finally, inequality

(0 — A+ qUY| < GV
is satisfied uniformly for (z,t) belonging to any compact set.

Our goal is to find the phase function # and amplitude functions u™, n =
0,..., N, such that UM (¢, z) is a formal Gaussian beam. We note that it will
turn out that the curve z(¢) has to be a geodesic. Because the Gaussian beam
exponentially decreasing respect of € outside an O(e'/?=?) neighborhood of
the point z = z(t), 0 < o < 1/6, it is enough to construct the Gaussian
beam in any small neighborhood of the point x = x(t). Because of this, we
start the construction on a local coordinate chart (U, X) around z(0). In U
we identify x with its local coordinates in R™. Moreover, in U x R we use
variables (y,t) where

y =1z — x(t).

Substitution of the asymptotic expansion of the Gaussian beam into the
wave equation yields

N+2

(0] — Ag+ q) UN () = (me) ™™/ (i) "2 exp {—(i€) "'0(z, )} Z vn (2, 1) (1)

n=0
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where v,, has the form
Un(xa t) = [(ate)Q - gjl(x)ajgale]un(xa t) - Lﬂunfl(xa t) + (at2 - Ag + Q)uan(ma t):

n=20,...,N+2, with u o(z,t) = u_1(x,t) = 0. Here Ly is a transport
operator

Lou = 20,00,u — 2¢7'9;00,u + ((0} — A,)0)u.

7 The Hamilton—Jacobi equation and trans-
port equations.
Next we study the equations for w,. We start with the following simple
lemma.
Lemma 5 Let 6(x,t) satisfy condition (6) and
lun (2, )| < Cd(z, z())*M*+2 ™ n=0,...,N+2.

Then there is a constant C', such that |(0? — Ay + q)UN| < C'eN=m/* uni-
formly on any compact interval of t.

Proof. Clearly
|vg (2, 1) exp {—ie ' 0(x, 1) }] < C|y[2N+2me=COWP /e < OreN+2-n,

¢

It follows from Lemma 5 that it is sufficient to construct UY, such that
corresponding v,, n = 0,..., N + 1, vanish to order 2(N +2 —n) at y = 0.
Later we consider v,, as function of ¢ and y. At this stage we do not prescribe
the value of N. For this reason, we construct # and u,, so that 6 satisfies (6)
and (7) and Taylor coefficients of v, vanishes to any arbitrary order at y = 0.
We use notation

v <0,

when 97v(y,t)|y=0 = 0 for any multi index a = (a, ..., ) at any time ¢.

We start our construction of a formal Gaussian beam by analyzing the
term vy. To satisfy this equation it is sufficient to find a phase function
6(z,t), such that

(0,0)* — ¢’ (2)0;00,0 = 0. (8)
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The equation is called the Hamilton—Jacobi equation for the phase 0(x,t).
Given 6 which satisfies the equation the other equations v, < 0, n =
1,..., N + 1 take the form of the transport equations

Loun < (0] — Ay + qQ)p_1,

n=0,...,N. The equations are solved successively, with known right hand
side in each step. In particular, the transport equation with n = 0 has the
form

EQ’U,O = 0.

Since we are interested in the Taylor expansion of v, it is natural to
represent the phase function # and amplitude functions u, as their Taylor
expansions with respect to y

bt = Yo=Y 2y

1>0 71>0
Un(z,1) = D un(t) =Y Ly
7>0 a0 T

Here we use the notation 6;(¢) and u,, (t) for the homogeneous terms of order
[ with respect to y.

Next we consider the geometrical implications of Hamilton system. To
simplify notations, we denote the coefficients of 6, by p;, so that

The coefficients of , are denoted by Hj;, so that

03(t) = SHalt)y'
where H () is a complex valued symmetric matrix, H; = H;;. For the real
transpose of H we use notation H¢, and for its adjoint the notation H*.
Before we continue the construction, we consider the behaviour of 6y(t),
p(t) and H(t) in the change of variables in the vicinity of z = x(¢). Obviously
6o(t) has the same value in this change of variables, which means that 6y(t) is
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a scalar function along the path x = z(¢). The components (p1(t),...,pm(t))
form a covariant vector field p(t) along the path x = z(¢). On the other
hand, the complex valued matrix function H(t) does not represent a tensor
field along the path. Indeed, a transformation of coordinates from z to Z
gives a transformation of H(t) to H(t), where

Hy(t) = Fn)2 ;ﬁft)) o1 a(jj(t)) 42 aii(;a(:?)ﬁ’ (t).

However, we see from the formula that I'm H (t) is a 2-covariant tensor along
the path x = z(¢). Although H(t) is not a tensor, nevertheless, there is a
symmetric tensor G(t) which is closely related to H (),

Gij(t) = Hij(t) — Tf(2(8))p(),

where Pfl are the Christoffel symbols of the metric tensor g. Clearly, Im H =
ImG@G.

One of the most important properties of a Gaussian beam is that the
corresponding path z = z(¢) form a geodesic. Next we show this.

Lemma 6 Let UN (z,t) be a formal Gaussian beam of order N corresponding
to wave equation. Then

i. Oo(t) =6y i.e. O(x(t),t) is constant.

ii. (z(t),p(t)) ( or (x(—t),p(—t))) is a bicharacteristic corresponding to
the Hamiltonian h(z,p) = (¢ (z)pip;)'/%.

We note ii. means that (z(t),p(t)) satisfy

de* b dpi _ Oh o)
dt  Op;’ dt  Oxi

with some initial conditions x|,_, = o, Pl,_y = Do

Proof. We proof of the lemma with an additional assumption that for
any t the instant frequency w(t),

ol _ doy

wlt) = = 0w sy = P gy — g 7O
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It is easy to prove that if the assumption is not satisfied then corresponding
Gaussian beam does not exist. On the other hand if the assumption is valid
for t =ty than it is valid for any t.

We analyze the terms of (8) of homogeneity 0 and 1 with respect to
y. These terms give rise to the following equations, which are considered
together

W (t) = ¢"'pip1 = 0, (10)

dp; dz” Og’" N
w(t) 2 (Hir + Hrl)ﬁ + o PiPr Tt 9"pj(Hir + Hy) = 0. (11)
Here the metric tensor ¢7' and its derivatives % are evaluated in the point

x = x(t). Consider the imaginary part of equation (11). In view of conditions
(6) and (7) for the phase function, we have

Imby(t)=0, Imp;(t)=0, j=1,...,m.
Hence, we obtain the following equation

Im(H, +Hy)n" =0, [=1,...,m, (12)

where n = (n',...,7n™) has the form

dz”
dt

By (7), Im H(t) must be positive defined. Hence equation (12) yields n = 0.
Since 7 form a vector and p is a covector we can consider the scalar (n, p),

+ gjrpj.

n" = —w(t)

T

dt

(n,p) =0"pr = —w——p, + ¢"pjpr = 0.

Equation (10) implies that

gr . d90 dx” . d90 dx" . d(90 jr
gpipr =W g TP | T W +wPr% =Y + 97 Pjpr-

Comparing the beginning and the end of the equation we see that

db,

20
Yt
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and, consequently, dfy/dt = 0. Without lost of generality we can take 0y(t) =
0. Thus statement i) is proven.

To analyze equation (10) we distinguish between the cases w > 0 and
w < 0. If w(t) >0, then

w(t) = (¢""pp) ' = h(z(t), p(1))-
Then equations n = 0 imply that
dx” oh
dt op,’

which coincide with the first m equations of Hamilton system of equations
(9). After this the last m equations of the Hamilton system are obtained
from real part of equations (11). &

Next we consider the geometrical nature of z(¢) and p(t). Since the
Hamiltonian is a positive homogeneous function of order 1 with respect to
p, we can assume that the initial data for po satisfies |po| = h(zo,p0) = 1.
The Hamilton system (9) yields that the Hamiltonian is constant along any
bicharacteristic,

= [¢"pip) *¢""p; = r=1,...,m,

Wz (t), p(t)) = h(wo, po) = 1,

and, consequently, [p(t)| = [po| = 1. In this case p(t) is the covariant repre-

sentation of the velocity vector % of the path z(t),
dz da? -
Iyp(t) = a " aw T gjl(x(t))l’j(t)-

Next, let v,, be a geodesic for which v,,(0) = = and 4,,(0) = v. The
following property of bicharacteristics is well known.

Lemma 7 Let (z(t),p(t)) be a bicharacteristic of the Hamiltonian h(zx,p) =
(g7 (x)p;p]'/? with initial data (zo,p0), |po| = 1. Then the path x(t) is a
geodesic Yz, vy, Where vo = Igpy, and t is the arclength along 7z, v, -

We call the geodesic v,, ., as the geodesic corresponding to the formal Gaus-
sian beam UM (x,t). Remark that the path x(f) remains to be a geodesic
with ¢ being arclength even if |py| = hy # 1. Indeed, Hamiltonian A is a
positive homogeneous function of the order 1 with respect to p

h(z, Ap) = Mh(z,p), A >0.

Henceforth, z(t) and p(t) are homogeneous functions with respect to hg of
the order 0 and 1, correspondingly.
In the following we always consider initial data (xg, pg), w(0) = |po| = 1.
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8 Riccati equation.

To obtain an equation for H(t) we analyze the term of homogeneity 2 with
respect to y in (0;0)% — ¢7'9,009,0 < 0. This gives us a matrix Riccati equation
for H(t) along the bicharacteristic (z(t), p(t)),

d
aH+D+ (BH+ HB'")+ HCH = 0. (13)

Matrices B, ', and D are m X m matrices with components given by the
second derivatives of the Hamiltonian A(z, p),

B =By, C=[C"]_, D=[Dilji,

Jl=1>
with
b 9xlop;’ Op;op’ * 9xigxt

where the derivatives are evaluated in the point (z,p) = (z(¢),p()), i. e. on
the bicharacteristic of Hamiltonian A(x, p).
We supplement the Riccati equation with initial condition

H|,_o = Ho, (14)
where
Hy=H., ImH,> 0. (15)
We remind that the last inequality is necessary to satisfy condition (7).

Lemma 8 . i. The initial value problem for Riccati equation (138) with
initial values (14-15) is uniquely solvable.

ii. Its solution H(t), t € R, satisfies the following conditions

H(t) = H'(t), ImH(t) > 0.
1e. For any Yy, Zy, such that

Hy = ZyYy ',
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the matriz H(t) is represented in the form

The matrices Z(t), Y (t) satisfy the linear initial value problem,

d
%Y(t) =B"Y+C-Z, Y|_, =Y,
d
%Z(t) =-D-Y—-B-Z, Z|,_,=Z,

and Y (t) is non-degenerate for all t € R,

detY (t) # 0.

(16)

The proof of the lemma is based upon the following conservation laws:

Lemma 9 Let Z(t), Y(t) solve initial value problem (16). Then

Z'OY (t) - YH)Z(t) = ZLYy — Y Zy = const,

Zr)Y () —Y*(t) Z(t) = Z;Yo — Yy Zy = const,

(17)

(18)

Proof. To proof the lemma it is enough to show that the derivatives on ¢
of the left hand sides of the equations are equal to zero. It can be proven
by direct differentiation of the left hand sides and using equations (16) and

symmetry properties of matrices B, C', and D,

B'=B*, C'=C*=(C, D'=D*=D.

Next we return to the proof of Lemma 8. We chose

ZOZHOa Yb:]a

where I is the identity matrix, so that Hy = Z;Y; '. Since system (16) is

linear, it has a unique solution Y (¢), Z(t).
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Firstly, we show that Y'(¢) is non-degenerate for all t € R. Assume on the
contrary that there is t; € R and a complex valued vector n € C™, n # 0,
such that

Y (to)n = 0.
Clearly, when (-,-) is the inner product in C",
(Y (to)n, Z(to)n) — (Z(to)n, Y (to)n) = 0. (19)

Hence

0= ((Z7(t0)Y (to) — Y™ (t0) Z(t0))n, ) = ((Z5Yo — Y5 Zo)n,m) =

= ((HS - H0)77a77) = —21(1’)’” H077a 77)

Because Im Hy > 0 this equation implies that » = 0. The contradiction
shows that Y'(¢) is non-degenerate.

Symmetry of H, (H = H") follows from the first conservation law for Z
and Y, and positive definiteness of H (Im H > 0) follows from the second
conservation law. &

Later we need the following result.

Lemma 10 For any Gaussian beam
det(Im H(t)) - |detY (t)|* = ¢ (20)
where ¢y 1s independent of t.

Proof. Due to differential equation for matrix function Y (¢)

%(ln (detY (1)) = tr (%t(t)y—l(t)) = tr(B'(t) + C(HH(D)),  (21)

we see that
|detY (t)| = |detY (0)| exp{/0 tr(B'(t) + C(t)Re H(7))d7}.

On the other hand,

dIm H(t)

d
7 (In (det(Im H(1)))) = tr ( dt

(m () ) =
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= —tr{(B(t) + Re H(t)C(t)) — Im H(t)(B'(t) + Ct)Re Ht))(Im H(t)) '} =

—tr(B(t) + Re H})CO(t)) — tr(BY(t) + C(t)Re H(t)) = —2tr(B(t) + C(t)Re H(t)),

where we use that C* = C, (Re H)" = ReH, and trA = trA®, tr(AB) =
tr(BA). Hence,

det(Im H(t)) = det(Im H(0)) exp{—2 /Ot tr(B(1) + C(T)Re H(T))dr}. (22)

Combining formulae (21) and (22) we obtain formula (20). O

Next, we give a new invariant geometrical interpretation of the Riccati
equation (13). Instead of the matrix function H(¢), which is not a tensor,
let us consider the tensor field G(¢). We see that this tensor field is also
symmetric and its imaginary part is positive definite,

G'(t) =G(t), ImG >0.

To formulate Lemma 8 in invariant terms, we consider the (1, 1)-tensor
field

é = IgG, é; = gikaj

Here we identify (1, 1)-tensors with linear operators in the tangent space, so
that G(t) is an operator in Ty V. Next we introduce the operators C'(t) and
R,y(t) in T:c(t)N- Let

5(0 =1- P’Y(t)a

where P, is a one-dimensional projector,

dr\ dz
P,y(t)’w = (’LU, E)g E, w e Tz(t)Na

dz
dt

The operator ]% is obtained from the curvature operator R.

where £% is the unit velocity vector of the geodesic 7.

~ dz\ dx
tlw=R — | = TryN.
R, (t)w (w, dt) o W€ o
Riccati equation (13) yields to the Riccati equation for G.
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Lemma 11 The (1,1) tensor G(t) satisfy the covariant Riccati equation

DG L GeG+ R, =0

dt
This Riccati equation is complex analog of the Riccati equation for the shape
operator in the distance coordinates [25].

After construction the first two Taylor coefficients of 6, we construct
the higher order terms by solving linear equations. The equations for the
homogeneous polynomials 6;, [ > 3, are obtained by considering the higher
order homogeneous polynomials in the equation

(00)? — ¢7'0;00,0 = (8,0) — h*(z,00) < 0.

The resulting differential equations for the homogeneous polynomials 6;, | >
3, are linear differential equations,

06, 00,
PN i~ F 1=3.4,...,
ot " Nigyg¥ =71
where the right-hand sides F; depend upon 6, j < I. The matrix N} = N}(t)
is an m X m matrix of the form
~ 0?h 0?h
Ni(t) = ——+
! 0x10p;  Op;Opy
Equations for 6(y,t) = >, _,0,(y)y” are ordinary differential equations
with respect to t. By considering y as a parameter in these equations, we
can define 6,(y,t) also for y € C™.
To simplify the analysis we introduce new coordinates (¢, ) of the form

t=t, §=Y"'(t)y.

Hy; = Bi(t) + C*(t)H,;(t) = [B' + CH\.

Let 0,(7,%) be the representation of the polynomial 6;(y,t). Then equa-

tions for 6; take the form

- ~
—0,=F, [1=3,4,.... 23
ot ' ! (23)
These equations with initial data
05, =8 = 6w (24)

determine 6;(,1) for any . Thus we find 6;(y,t) for any ¢. Next we show
that @ can be solved uniquely by giving an appropriate initial data at time
t=0.
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Lemma 12 Let O(x) be smooth function near xy having the Taylor expan-
sion

O(zr) < Z@l = Z %@7’[;7, Yy =1 — Zo.

121 y>1

Let in addition ©1 = (po,y), |po| = 1, be real and ©y = %(Hoy,y), with
Im Hy > 0. Then for any integer K > 1 there exists a function 6(z,t) =
Ok (z,t), satisfying conditions (6), (7), such that

1(0,0)* — gij(x)8i08j0| < Ogd(z, z(1))X,

6(z,0) < O(z),
where x(t) is the geodesic Yyo v, (t), vo = Igpo.

Proof. Using (zg,po) as initial conditions in Lemma 6 we obtain the bichar-
acteristic (z(t), p(t)) and 6;(¢),

01(t) = (p(t), y)-

Having constructing (x(t), p(t)) and using H; as initial data in Lemma 8 we
construct (1),

1
0x(t) = 5(H(t)y, y).
Finally with arbitrary ©;, 3 < | < K — 1, as initial data we find 6;(¢) as
solutions of initial problem (23), (24).
The desired function 6 (x,t) is given by formula

Ol t) = 0t = 3 %07(15)(:5 ().
=1 /=1

¢

After construction #, we find u, by using the transport equation. The
analysis of transport equations

Lou, — (0F — Ay + q)up 1 < v, <0 (25)
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is also based upon the Taylor expansion for the amplitudes u, near x = z(t)

un(x: t) = Z un,l(y7 t) = Z an,l(ga t);

1>0 1>0

where u,,; and u,; are homogeneous polynomials of order [, { = 0,1, ..., with
respect to y and 7, § = Y (¢)y. Here the operator Ly,

Lou = 20,00,u — 2¢7'0;00u + (07 — A,)0 - u,

is a first order linear differential operator.

We consider ,,; as a function of ¢ with values in the space of homogeneous
polynomials of the order ! with respect to . By (25), we obtain differential
equations for i, ,

d ~
i (t) + T ()in, (1) = Faalt), nl=0,1,....

The right-hand sides J?n,l(t) are homogeneous polynomials of order [ depend-
ing on 4y, x(t) and O with k <1+ 2, 7 < n. The factor r(¢) in this equation
has the form

1 1d
r(t) = itr(Bt +CH) + 17 In g(%).

Using factorization H(t) = Z(t)Y~'(t) and differential equation for Y (¢)
we can see that

1 1 1, fdY |
— = — = — —_— .
Str(B'+ CH) = Str((B'Y + C2)Y '] = Str ( Y

Using well known formula

v\ d
tr (EY )— dtln[detY(t)]

we obtain ordinary differential equations for

a
dt

tnt) + (g7 B0t ()00 ) s0) = Foe)
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Solutions to the equations are given by the formula

t

i a(t) = o(t){iins(0) + / o () Fos(t) d')

0

~ [aewy (o) ,[9(0)
olt) = \/ detY (1) \/ 0@

Simple investigations show, for example, that

with

upo(t) = wuo0(0)o(t),

. 1_ -
iolt) = —na(t) [ alal))dt + (0
0
We remark that this formula is in fact integration along the geodesic 7z 4,
v = Igpo. The function ﬂ%,o(t) depends upon @, o1, Uoz2, p, and Y, but
not q.

To this far we have constructed a formal Gaussian beam on one coordi-
nate chart with a given initial data at time ¢ = 0. By using terms of the
asyptotical expansion at time ¢ = t; as a new initial data and repeating
previous considerations, we can construct a formal Gaussian beam on lo-
cal coordinate patches which cover the geodesic Yy, 4,([0,7]), T < l(zo, vo),
where [(zg,v9) € (0,00] is the first time when the geodesic 7y, 4, hits the
boundary. We summarize this in the following theorem.

Theorem 4 Consider the wave equation on the compact manifold M. Let
O(z), Uy(z), n=0,...,N, be smooth complex valued functions given in an
open neighborhood V' of xy, xo € M. Assume that ©, and Uy satisfy the
following conditions i) ©(xy) =0,

i) ImO(z) > cd?*(x,x0), ¢ > 0,

7'7'7') 8w®(x0) = Do, ‘Po‘g = ]-;

iU) Uo(JT()) 75 0.

Lety, x = x(t) be the geodesic with initial data (zo,vo), vo = Igpo and T <
l(xg,v0). Then there exist smooth complex valued functions 0(z,t), u,(z,t),
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n =20,...,N in an open neighborhood W of the path u : [0,T] - M x R,

w(t) = (z(t),t) such that the Gaussian beam UN of the order N,
N
UY (x,1) = (me) "™ exp {—(i€) "0(z, )} Y un(z, 1) (i€)",
n=0

satisfies he following conditions

1) 0(z(t), 1) =0,
i) Im 0(z,t) > cd®(z, x(t)),

i) 9,0(x(t), 1) = p(t), |p(t)]y =1,
i) up(z(t),t) # 0. v) In a neighborhood U' C 'V of x

U (,0) = (1) ™" exp {~(i€) O ()} _ Un(e)(ie)"| < CeM 1,

n=0
vi) (9 — Ay + q)UN| < C(e)N /"

Corollary 2 Let UY(t,z) be a formal Gaussian beam constructed in Theo-
rem 4. Then for any j > 0 and multi inder «

1010%(0? — Ay + q)UYN| < Cjo M eN—3~lol=m/t,

Proof. By analyzing the construction of functions # and u,,, we observe
the corresponding v,, satisfy

\8§8§vn(t, z)| < Cd(z, x(t))Q(N“L?_"_j_a).
From these inequalities the statement follows. O

Theorem 5 Let O(z) and Uy(x), n =0,..., N, be defined as in Theorem 4.
Then there is a solution u(x,t) of the equation

(07 — Mg + Quclz,t) =0, (z,t) € M x [0,T],
0<T < d(zxg,0M), such that for any j > 0 and multi indezx «
10705 (uc(t, @) — x(t, 2)UN (t,2))| < Ce¥-UHlebm/s,

Here UN (x,t) is the formal Gaussian beam of Theorem 4 and x 1is the cutting
function, x =1 near u([0,7)).
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Proof. Let u.(t,z) = x(t,z)UN(t,z) + v"(z,t), where vV satisfies the
initial boundary value problem

0 = Ag + ™ = — (0] — Ay + ) (x(t, 2)U),
’l)N|t:0 = 0, 8t’l)N|t:0 =0.

Then the assertion follows from general hyperbolic estimates, Theorem 4 and
Corollary 2. o

The functions u.(z,t) introduced in Theorem 5 are called Gaussian
beams of order N.

9 GGaussian beams from the boundary.

Here we construct Gaussian beams generated by boundary sources.

Let zg € OM, ty > 0, and z = (2%,...2™!) be a local system of coordi-
nates on OM near zp. Consider a class of functions f. = fe .4 (2,1) on the
boundary cylinder OM x R where

fo(z,t) = (me) ™ * exp {ie 1O (2, 1)}V (2). (26)
Here
@(Z,t) = —(t — t()) -+ (H()(Z — Z()), (Z — Z())) + Z(t — t())Z, (27)

where Hj is a given symmetric matrix with positive definite imaginary part,
Hy = H|}, Im Hy > 0 and V is a given smooth function with Taylor expansion
V <Y, Vi near z = 2.

Consider the initial boundary value problem

Ofu — Agu+ qu =0, (28)
ult:() =0, atu|t:0 =0, u|aM><R+ = fe(z;t)X(zat)

where x is smooth cut—off function near (zg,%p). In this section we prove
that the solution of initial boundary value problem (28) is a Gaussian beam.
The corresponding geodesic starts at zp and is normal to the boundary. To
this end, we first construct a formal Gaussian beam which asymptotically
has the right boundary value. Then the solution of problem (28) is close
to the constructed formal Gaussian beam until the corresponding trajectory
hits the boundary.
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In the construction we use the boundary normal coordinates (z,n) =
(z',...,2™ ' n) where n is the distance to the boundary and (2, ..., 2™ 1)
are the coordinates of the nearest boundary point in the local coordinates of
the boundary. The system of coordinates is smooth near the boundary and
the length element has the form

ds? = gap(z,n)dz"d2" + dn?, (29)

a,f=1,...,m— 1. Here the metric tensor gns(z,0) is the metric tensor on
the boundary 0M.

Theorem 6 There is a unique formal Gaussian beam UM (z,n,t) such that
near (zo, to) its phase function 6 and the amplitude functions ug, k = 0,1, ...,
satisfy the following boundary conditions
0(2,0,t) < —(t —to) + (Ho(z — 20), (z — 20)) +i(t — t0)?,  (30)
uo(2,0,t) <V (z), wuk(z,0,t) <0, K=1,....
Moreover, corresponding geodesic y(t) is the normal geodesic, starting at

point zy at time ty, i.e.7y is given in the boundary normal coordinates by the
curve

z(t) = 20, n(t) =1t— 1. (31)
The proof consists of several lemmas.

Lemma 13 The geodesic y(t) corresponding to the formal Gaussian beam
UN which satisfy the boundary data is the normal geodesic .o v, -

Proof. Consider a formal Gaussian beam in the boundary normal coor-
dinates (z,n,t). Previously it was shown that the phase function € of the
Gaussian beam has the form

0(z,n,t) =Y _6i(t),

where
01(t) = palt)(z* —2%(t)) + pm(t)(n — n(t)) (32)
0:(t) = %[Haﬂ(t) (2% = 2°(1) (7 = 2 (1)) + (33)

+2H 4 (1) (2% = 2%(1)) (0 — n(t)) + Hypn (£) (0 — n(2))?]-
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We remind that p(t) is the canonical transformation of the unit velocity
vector along the geodesic v and 6;(t) are homogeneous polynomials of order
[ with respect to z — z(t) and n — n(t).

Consider linear term of 0(z,0,t) near (zo,t;) and compare it with the
linear term of ©(z,t) appearing in Lemma 12. We can see that

(Z(tﬂ)v n(tO)) = (ZO, 0)7 p(tﬂ) = (07 Ty 07p0m):
Moreover,

dn(ty)

=1
dt

Pom

As |p(t)| = 1 for all ¢t we have, in particular, that py,, = 1. By using the
Hamilton system and the initial conditions

Zlmyy =20, Nley, =0, Pliey, = (0,...,0,1),

it is easy to prove that the unique solution of the Cauchy problem has the
form

z2(t) = 29, n(t)=t—1to, p(t)=1(0,...,0,1). (34)

To complete the proof we mention that it is necessary that v(to) = 2.
Indeed, if y(tg) = Zo # 2o then Taylor’s expansion for #(z,0,t) would not
match Taylor’s expansion (30). &

As our geodesic is normal to the boundary then 6; is the homogeneous
polynomials of order [ with respect to (z — zp,n — (t — tp)).

Next we complete the proof of Theorem 6. Considering the quadratic
term of 65(z,0,t) and compare it with the quadratic form in expansion (30)
we obtain that

H(to) == ﬁo,
ﬁOaﬂ :HOa,B7 ﬁOamzoa HOmm:i: aaﬁzla"'am_l' (35)
Having found initial data for the quadratic form H (ty) we can find H(t). In

boundary normal coordinates H (t) has the form

H(t)=Zt)Y '(t) = Hy(I + / t C(t')dt' - Hy) ™", (36)

to

28



where

t
to
C™*(t) = g™ (29, t — to) — 6"™*™. (38)

In boundary normal coordinates matrices B and D in the Riccati equation

are equal to zero and the matrix C has form (38). The fact can be used to
prove formulae (36), (37).
_ Let us now return to the formula for 6(z,0,¢). The homogeneous terms
0, involves 6;(to)|,—, and also derivatives of 6;(t)|,_, for j =2,3,...1 - 1.
Hence, if we know 6, (t),...,6; 1(t), comparing expansion for 6(z,0,t) with
expansion (30) we obtain initial data (o). Solving initial value problem for
6,(t) we find the functions.

Similarly, we find Taylor’s expansion for the amplitudes u;(z,n,t)

|t:t0’
[=0,1,..., where

w(z,m,t) < Z u(t).

k>0

Here u;(t) are homogeneous polynomials of order k of variables (z — zg,n —
(t — to)). In particular,

upo(to) = V%),

o 1/4
ugo(t) = (detY(t))™"/? (%) V(z0).

¢
Denote by uf(x,t) the solution of the initial boundary value problem (28).

Let [,, be the time when normal geodesic ,,, hits the boundary OM for the
first time.

Theorem 7 LetT < l,,. Then, for any j > 0 and multi indez o,
10705 (ul (w, 1) — x (2, )UN (z,1))| < CeNmUHeh—m/e, (39)

Here UN (z,t) is a formal Gaussian beam of Theorem 6 and x(x,t) is a cutting
function having value 1 near the trajectory (z(t),t), t € [0,T].

Proof. The proof follows from Theorem 6. &
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10 Construction of manifold and boundary
distance functions

To this far we have constructed special solutions, Gaussian beams, on the
manifold M. Next, we study the inner products of the Gaussian beams to
construct the Riemannian manifold (M, g). First we start with the domains
of influences.

Definition 4 Let I' C OM be a subset of boundary and 7 > 0. The domain
of influence corresponding to the set I' and 7 > 0 is

Y, r)={ze M : dz,T) <7} (40)

Particularly, we consider the case where I' consist of exactly on point y and
use notation

Yy, 7)={zeM : dz,y) <1} (41)

For each domain of influence ¥ we denote by L?*(X) the subspace of L?( M)
which contains all functions having support in >:

L*(X) = {u € L*(M) : supp (u) C Z}.

Let Ps be the orthoprojector in L?(M) onto the space L*(2). It has a simple
form

(Pra)(z) = xz(z)a(z) (42)

where xx(x) is the characteristic function of the set X.

Our main plan below is to find out when a Gaussian beam is located in a
given domain of influence. Before going to details, we explain how this can
be done in principle. Let us consider the Ps-projections of Gaussian beams.
If the Gaussian beam u/(z,t) is at the time ¢ at the point x(t), then the norm
|| Psue(-,t)||L2(ar) is approximately zero if z(t) ¢ . Vice versa, the norm is
approximately one if z(¢) € ¥, In this way we can found out if the point
x(t) is in a given ball having center at boundary point or not. This gives us
information about the global metric structure of M. To compute the norms
of projections, we use the formula

o

| Poul 7o = Y (ms)ji(u, 05) {u, o) (43)

3,k=0
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where my is the Gram—Schmidt matrix of projection Ps,

(mE)jk = <PE()0]ag0k>7 jak: 1725 (44)

where ¢; are the eigenfunctions of —A, + ¢. Finally, to find the Gram-
Schmidt matrix of an ortonormal projection we construct a special ortonor-
mal basis for the image of the projection. This basis, called wave basis,
consists of functions u/i = ufi(-,7) where u/i are solutions of wave equation
(28). However, first we have to show that such a basis exists and for this we
need so-called controllability results.

Let I' C OM be an open subset of the boundary and define a mapping

W7 HY(T x [0,7]) = L2 (-f7)

where u/ solves initial boundary value problem (28). By finite speed of wave
propagation,

supp (u/(-,7)) € M(T,7) (45)
for supp (f) C I'x R.. This equation explains the term ’domain of influence’.
Indeed, the waves sent from I' can not propagate in time 7 outside the set

(T, 7).

Next we show that the set of the possible final states u/(-,7) are dense
in L2(M(T,7)). In other words, with the boundary source f supported in
[ x [0, 7] one can control the wave in such a way that the final state u/ (-, 7)
is arbitrarily close to any state in L*(M (T, 7)).

Example. Let us consider one-dimensional wave equation

up(x,t) — ugg(x,t) =0, (z,t) €10,2] x [0,1]
u(z,0) = ug(z,0) =0, u(0,t) = f(t), u(2,t)=0.

The solution of this equation is u(z,t) = f(t — x). Particularly, at time
t = 1 the solution u(z,1) vanishes outside the domain of influence, that is,
for z > 1. We see that for any v € L?([0,1]) there is f(¢) = v(1 — ) such
that u(x,1) = v(x). This fact is called exact controllability, since by source
with f € L*([0,1]) we can control the final state u(z,1) € L*([0,1]).

Next we generalize this example in m-dimensional case.
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Theorem 8 Let 7 > 0 and I' C OM be an open subset of boundary. Then
the set

W(CE(T x [0,7])) = {u! (-, 7) € L*(B(T,7)) : f € C§°(T x [0,7])}
is dense in L*(X(T,7)).

Proof. Let us consider a function 1 € L?(3(T, 7)) in the orthocomple-
ment of the range of W7, that is,

(W (-,7),9) =0

for all f € C§°(T" x [0,7]). To show that the range of W” is dense we have
to show that v vanishes. For this we consider the equation

enw —Age+qge = 0in M x [0,7]
elomxpo) = 0, eli=r =0, efi=r = 9.

By integration by parts

0 = / (e — Age + ge)uf — e(ul, — Ayul + qul)] dx dt
Mx[0,7]

- - [wepa s [ [ raeds.a

_ / /fﬂdszdt
OM JO

for all f € C§°(y x [0, 7]). This yields
e[rx[o,7] = Ovelrxjo] =0

and hence the Cauchy data of e vanishes on I" x [0, 7]. Since e[;—, = 0, we
can define a reflection of e over the surface t = 7,

| e(z,1), fort <7,
E(,t) = { —e(z,21 —t), fort>T.

Since the traces of F and E; coincide from both sides of the surface ¢t = T,
Green’s formula shows that

Ey+a(x,D)E = 0in M x [0, 27].
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Moreover, the Cauchy data of E vanishes on I' x [0, 27],
Elrxpo2r =0, 0,F|rxp,.2r = 0.

Thus we see by using Tataru’s Holmgren-John theorem [26] that E vanishes
in the set
K ={(z,t): d(z,T) <71 — |1 — 1|}

Indeed, by deforming the surface I' x [0, 27] in continuous way so that the
surface is non-characteristic, we can reach any point of the the double cone
K. Thus by Tataru’s Holmgren-John theorem the solution E vanish in the
set K. Particularly

U(z) = Ey(x,t)|i=r =0, for z € 3(T, 7).

Hence the assertion is proven. O

Since u/ (1) are dense in L*(X(T', 7)), there are f; such that ufi(r) form
an ortonormal basis in L?(X(T", 7)). Next we construct this kind of functions
f; by using boundary spectral data.

Lemma 14 Let 7 > 0. By using the boundary spectral data we can find
boundary sources ; € C(I x [0, 7]) such that

u(z) = u’(z,7) (46)
forms an ortonormal basis of L*(X(y,7)).

Proof. Let (o ) be a complete set in L?(I" x [0, 7]) and let us use Gram-—
Schmidt orthonormalisation procedure to the functions % (7) with known
inner products

cjk = (u (1), u* (7).

More precisely, we define 3; € Cg°(I" x [0, 7]) recursively as

':a'—jiluafT ubk (1 ;= L .
nj J ;( (7), (7)), B (uni (), um (1))

In the case when 7; = 0, we remove the corresponding o; from the original
sequence and continue the procedure with the next «;. By Theorem 8, the
sequence (;) obtained in this way is dense in L*(3(I',7)) and ortonormal.

%
After finding the basis for the space L?(X) we construct the Gram-

Schmidt matrix of the corresponding projection.
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Lemma 15 Let I' C OM be open. Then for a domain of influence ¥ =
Y(T, 7) the boundary spectral data determines the corresponding Gram—Schmidt
matriz My,

(Ms)r = (Pepj, ox), J,k=1,2,.... (47)

Proof. By Lemma 14, we can construct a sequence §; € C§°(I' x [0, 7])

such that the corresponding solutions of the wave equation form an ortonor-
mal basis of L?(Z). We denote this basis by

v (x) = uPt(z, 7). (48)

In this wave-basis all functions u € L?(%(T, 7)) have representations

u(z) = Z(u, v) ().

By applying this for v = Ps¢; and using the fact that (Pxpj, v)) = (@;, v)
we obtain

o0

(Pawmyeir o) = (@) vi) (v, on).
=0

By Corollary 1 the inner products can be computed from the boundary spec-
tral data imply that (Pyr r)¢;, ¢x) can be found. &

Letting I" tends to a point {y} we obtain the following result.

Lemma 16 The boundary spectral data determines the the Gram—Schmidt
matriz My, for a slice ¥ = X(y, ).

Next we start to construct the manifold structure by using projections
to domains of influences. We consider a normal geodesics 7, (%), Yz, (1) =
exp,, (vt), where 2y € OM and v is the unit normal vector to the boundary
at the point 2. Let uc(,t; 20, to) = ul (z,t) be the Gaussian beam sent from
the point z; at the time ¢y in the normal direction, i.e. the solution of initial
boundary value problem with the boundary source f.(z,t) given by formulae
(26), (27).

By means of boundary spectral data we can find when the Gaussian beam
is in a given domain of influence.
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Lemma 17 Lety,z € OM, and a > 0. Consider the point x =y, ,(t), where
t <l,+a. Then for the normal Gaussian beam u(z,t; z,a) sent at the time
a from the boundary point z we have

{ 0, forrt<d(z,y),

lim (Poryue( otz a) w620 =3 ) o002 g )

e—0+
where « is a positive constant o = (g(zo,0)/det(Im Hy))'?|V (2)|?.

Proof. When 7 < d(z,y) we have z ¢ ¥(y, 7). Then for sufficiently small r,
the ball B(z,r) C M satisfies B(z,r) N X(y,7) = 0. For € < r® the formal
Gaussian beam UM (z,t; z, a) exponentially small in 3(y, 7). Using Theorem
7 we have for any K < N — 2

| Pry,ryue(- 5 2, 0) |1 = O(X).

Assume that 7 < d(z,y). Then for sufficiently small r, B(z,r) C X(y, 7).
Using the same arguments as above we see that

1 Pry,rye(c, 8 2, )| = llue(-, £ 2, 0) [ + O("). (49)

By Theorem 7 we can use in the right hand side of formula (49) formal
Gaussian beam U (-, ¢; z, a) for sufficiently large N instead of Gaussian beam
ue(+,t; z,a) with the same estimate. Using the main terms of the formal
Gaussian beam UY we obtain

(UN(-,t;2,a), UN (-, t; 2,0)) = (50)

= (7r6)_m/2a/ e~ ImHOUY) | det Y ()| dy" - - - dy™ + O(e) =

avdet(Imbo) | o) — a4+ 0(e

~ Jdet Im H(1))[detY (1) 2 N

where on the last step we used Lemma 10. &

By using Lemma 17 we can find the time [,. Indeed, [, is largest T" such
that for 7 € (0,7) and

})1_1)% al—l>%l+<PE(6M,p)Us(‘ y T3 2, CL), U’E(' » T3 2, a)> = 0.

Using above observations we can now compute the distances of a Gaussian
beam to the boundary at any time.
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Lemma 18 For any z € OM and t < [, we can find d(,,(t),y) for any
y € OM.

Proof. The claim follows from Corollary 2. {.

Now we are ready to define the set R(M) of boundary distance functions.
The boundary distance functions are the functions

ro(y) = d(z,y), ye€ oM

where z € M. Obviously r, is continuous and bounded by diameter of M.
Thus we can define a mapping

R:Mw— C(OM), x— 1,

which assign to any point x the continuous function which gives the distance
of x to the boundary points. The set of all boundary distance functions is
denoted by

R(M)={r, € C(OM) : z € M}.

It is well known that any manifold M of dimension m can be embedded
to an Euclidean space R" having sufficiently large dimension n = 2m + 1.
In our case we go even further and construct a map from M to an infinite
dimensional space C(0M). By triangle inequality,

|lre = r2llc = sup |d(z,y) — d(z,y)| < d(=, 2).
yeOM

Hence R(M) is a continuous image of m-dimensional manifold M in C(0M).
We will show later that the set R(M) can be consider as a smooth surface or
a sub-manifold in the space C'(0M). First we prove that we can find R(M).

Theorem 9 The boundary spectral data determines the set R(M).

Proof. Each point z € M has a nearest boundary point z and by varia-
tional principle, the shortest geodesic from z to z is normal to the boundary.
It means that every point lies on a normal geodesic starting from boundary.
Thus

M={x="9,,»0) : z€0M, te€l0,l,)}. (51)
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By Lemma 18 we can find for any given z € OM and ¢ < [, the boundary
distance function

d(Vz (1), y) = r2(y),

where z = 7, ,,(t). This shows that we can construct the set
R(M) ={d(v..(t),-): z€0M, tel0,l,)}.

Note that each point x € M may lie on several normal geodesics but at least
on one normal geodesic. Thus each function r, has many representatives
d(7:,.(t), ) but each at least one. &

Our next aim is to define a differentiable structure on R(M) such that
it becomes a differentiable manifold. After this we construct a metric which
makes it a Riemannian manifold.

Example. Consider Riemannian manifold (M, g) which is geodesically
simple. This means

1. For any x,y € M there is a unique geodesic 7 joining these point.

2. Any geodesic 7([a,b]) can be continued to a geodesic y([a, b']) which
endpoints are boundary points.

Let us consider the set of boundary distance functions R(M). By triangular
inequality,

||T$ - Ty”C(@M) < d(.’l?,y), T,y € M.
Moreover, let ([a,b]) be the shortest geodesic from y to z. This geodesic

can be continued to the shortest geodesic y([a, b]) where z = y(a') € OM.
Then

ro(2) —ry(2) = [7(l', b)) = |7([a', a])| = d(z, y).
Thus
lrz = ryllc@om) = d(z,y)
and the mapping R : M — R(M) is an isometry.

In the case of a general manifold we need more delicate constructions. At
first we prove that R(M) is a topological manifold. For this, we equip R(M)
with the relative topology as a subset R(M) C C(0M).

Lemma 19 The mapping R: M — R(M) is a homeomorphism.
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Proof. Let z,y € M and z € 0M. By triangular inequality
|72 — ryllcom < d(z,y), z,y € M,

which shows that R is continuous. Next we show that it is one-to-one. As-
sume that r, = r, for z,y € M. Let us choose a point z € M for which

: !
ro(e) = gl ()
and denote by h = r;(z) this minimum. Then z € OM is one of the nearest
boundary points to x, and h = d(z,z). Since r, = r,, we see that z is also
some of the nearest boundary points to y having the same distance A from
Y.

By variational principle, the shortest geodesic v from x to z is normal to
OM at the point z. Thus x = exp,(hv,). Since y has the same representation,
we see that x = y. This shows that R: M — R(M) is one-to-one.

Since by definition the mapping R maps M onto R(M), we see R is
a bijective, continuous mapping defined on a compact set M. Since M is
compact, elementary topological arguments show from this that R is open
and thus a homeomorphism. O

Since R : M — R(M) is a homeomorphism and M is a differentiable man-
ifold, also R(M) has a differentiable manifold structure. However, R(M) can
have several differentiable structures, and we have to choose the one which
coincides with the structure of M. Next we give a sketch of the construc-
tion which specifies the right differentiable structure on the set R(M). So,
consider the evaluation functions

E,:R(M)— R,r— r(z)

where z € M. For any r € R(M) \ R(OM), consider a point zo € OM at
which 7 gets its minimum. Thus, if x € M is such that » = r,, then 2z, is
the nearest point of OM to x. By using the fact that the normal geodesic
from 2y to x is the shortest geodesic from = boundary, it is possible to show
that the distance function (y, z) — d(z, z) is differentiable when y is near x
and z is near zy. Thus by choosing points z1, ..., 2z, near zy in a right way,
the evaluation functions E,,, j = 1,...,m define coordinates near r. These
points can be chosen for instance in the following way. Let n; € T,,0M, j =
1,...,m~—1 be a basis of the tangent space of the boundary. Let z; = p1,,,(€)
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where f1,, ,. are geodesics of the boundary OM satisfying pi., ,; (0) = 2o and
fiz0,m;(0) = mj. When ¢ is small enough, the points z1,..., zp_1 and z, = 2o
are such that E,,, j = 1,...,m define coordinates in a neighborhood of r
in R(M). Near boundary R(OM) of R(M) we have to define coordinates
in different way by using boundary normal coordinates. These coordinates
are the pair (2(r), s(r)) where s(r) is the minimal value of r € R(M) and
z = z(r) € OM is the point where this minimal value is achieved. These
coordinates on R(M) define for R(M) a differentiable structure which makes
the function R : M — R(M) diffeomorphism.

Next we construct the Riemannian metric on R(M) such that R : M —
R(M) becomes an an isometry.

Lemma 20 The set R(M) determines a Riemannian metric tensor G on
R(M) such that (R(M),QG) is isometric to (M, g).

Proof. We give the sketch of the proof. Let us consider the metric tensor
G = R.g which is the push forward of the metric ¢ on M to the manifold
R(M). When we equip R(M) with this metric, the mapping R is an isometry
by definition, and thus an appropriate metric G exists of R(M). Next we
show that by knowing the set R(M) we can find this metric tensor.

For each r € R(M), we define functions s(r) and z(r) where s(r) =
min{r(z) : z € OM} and z(r) € OM is one of the points where r(z) = s(r).
If r = R(z), then z(r) is a nearest boundary point to x and s(r) = d(x,0M).
Let us denote by 7(z) the maximum of the set {s(r) : r € R(M), z(r) =
z}. The geometrical meaning of 7(z) is related to the normal geodesic v, ,.
Indeed, 7(z) is the maximal ¢ for which z is the nearest boundary point of
the point 7, ,(1).

Let 7o € R(M)™, and let o € M be such a point that ry = R(xq). Next
we construct the metric tensor at the point rg in some local coordinates, e.g.
the local coordinates defined with evaluation functions E,,. Let zp = 2(ro) be
a nearest boundary point to xy. Next, for simplicity, we assume that s(ry) <
7(2p). From this one can show that if we perturb the geodesic v,, ., ([0, s(r¢)])
to a geodesic 7, ¢, where (z,&) is near to (x¢, V), then the perturbed geodesic
72,¢ 1s the shortest geodesic between its endpoints. Particularly, this and the
inverse function theorem yield that the distance function

e: M x0M — R, (z,z) — d(z, 2) (52)

is smooth function near the point (zg, 2)-
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Next we consider the evaluation functions on R(M). If for z = R™*(r)
then

E.(r) =d(z, 2).

Since mapping (52) is smooth, also (r,z) — E,(r) is a smooth function on
R(M) x OM near (ro,z0). Let z € OM be a fixed point. Since z — e(z, 2)
is a distance function, its differential respect of x, denoted by d.e(-,z2) :
T.M — R, is a covector having length 1. Since R : (M, g) — (R(M),G) is
an isometry, this yields that

|dE, |ry|lc = [|dze(- az)‘ong =1

Hence we can construct unit covectors in the space 7% R(M). Moreover, one
can show that the mapping

2+ dE,|,, € T/ R(M)

maps a neighborhood of z5 to an open set. Thus we can construct an open
set of the unit sphere

S;,R(M) ={v € T, R(M) : [[v]|e =1}.

The G-unit sphere is an ellipsoid in local coordinates, and since an open
subset of the surface of an ellipsoid determines the ellipsoid uniquely, we can
find the whole G-unit sphere in 7} R(M). This determines the metric tensor
G at rg.

Finally, the metric tensor G' is a smooth 2-form. Since we have con-
structed G is a dense subset of R(M), we can continue it on the whole
R(M). This proves the assertion. &

In the following we can identify the isometric Riemannian manifolds
(M, g) and (R(M),G). Since we have now reconstructed the manifold and
the metric on it, it remains to show the following result.

Lemma 21 The boundary spectral data determines the potential q uniquely.

For this, we consider the projection of Gaussian beams and the inner
product of the projection of the Gaussian beam and eigenfunctions.
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Lemma 22 Let zyp € OM and I' C OM 1is an open neighborhood of zy. Let
T < Tom(20). Then for arbitrary eigenfunction p;, j =1,2,...,

(Psao,m) 5, ul (1)) = (53)
—iem A=D1 dey(—i H ()] 7 2100 (8) 9 (20, 7) 9" (20, T) + O™/,

where t = T + to. Here ug(t) is given by formula (89) and H(t) is given by
formula (36).

Proof. We can compute the inner product of the eigenfunction and the
projection of the Gaussian beam by using the boundary normal coordinates
analogously to the proof of Lemma 17. The formula (53) can be obtained by
applying stationary phase method. &

Proof. (of Lemma 21) Let us consider result of Lemma 22. Since we have
already determined the manifold M and the metric on it, we have determined
also the coefficients ugo(t) and H(t) which depend only on the metric g (and
not on ¢). Hence from formula (44) we can find the values of absolute values of
the eigenfunctions |¢;| on all normal geodesics 7,,([0,7(z))). In particular,
we can find values of |p;| in a dense set, and since the eigenfunctions are
continuous, we can find them on the whole manifold M.

To finish the reconstruction of ¢, let h(z) = |¢;(x)|. Since ¢; vanish in
nowhere dense set X, we can find for any r, such that ¢;(z) # 0 the value of

(Ag +N)wi(@) (A + Aj)h(z)

q(z) = =
() h(z)
Since ¢ is continuous and we know it in a dense set, we can find ¢(z) for any
given 7. ¢
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