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1. Introduction. Formulation of results.

1.1. The goal of this paper is to consider inverse problems with dif-
ferent types of boundary data given as boundary forms. In particular, the
boundary measurements considered in this paper are related to the mea-
surements of energy needed to force the boundary value of a physical field
to a given one.

In various applications it is often not possible to measure the Cauchy
data on the whole boundary, as one can not attach sources and measure-
ment devices to the same locations. A perfect example is given by the
seismic measurements when the boundary sources are often made of explo-
sives. Similarly, in many cases it is difficult to measure both the amplitude
and phase of a field. On the contrary, the total energy of a wave is often
easily accessible and, in particular, it is possible to find the energy which
is required to force the boundary value of the field to a given one, that is,
to measure the energy needed to do a given measurement. In theoretical
inverse problems this idea goes back to A. Calderón who in his 1980 semi-
nal paper [Cl] considered the inverse problem for the conductivity equation
from the point view of energy measurements. Similarly, the measurements
based on energy or interference of waves have been used in many applica-
tions, e.g. in impedance tomography (see e.g. [CIN]) and near field optical
tomography (see e.g. [SM]). The work of Calderón was extended by J.
Sylvester and G. Uhlmann who developed a method of complex geometric
optics to solve fully non-linear inverse problems [SU].

In the paper we consider also the question of the equivalence of differ-
ent boundary data used in inverse problems. Our interest in the equiva-
lence of inverse problems with various boundary data comes from the fact
that there are numerous examples when the solution of a particular inverse
problem is used to solve an inverse problem of another type. For exam-
ple, A. Nachman, J. Sylvester, and G. Uhlmann [NSU] solved the inverse
boundary spectral problem for a Schrödinger operator by reducing it to
the inverse boundary value problem in fixed frequency and then using the
method of the complex geometric optics. Similarly, inverse problems in
the time-domain are often reduced to problems in the frequency domain
(see e.g. [Is]). The equivalence is also useful for applications as it makes
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possible the use of reconstruction algorithms developed for some type of
inverse problems to other inverse problems.

In this paper we concentrate mainly on the case of non-compact do-
mains and manifolds and Robin boundary conditions. Our intention in
doing so stems from the existence of many rather detailed expositions of
these type of results for the compact case, e.g. [KaL], [KKLM] and, in
particular, [KKL]. In addition, the non-compact case differs significantly
from the compact one and we believe that it is worth a separate discussion.
As [KKL] deals with the Dirichlet boundary condition we have decided to
concentrate here on the Robin one.

1.2. We start with necessary definitions. Let M be a smooth, complete
(possibly non-compact) m-dimensional Riemannian manifold with bound-
ary ∂M and let a(x,D) be an elliptic 2nd-order partial differential operator,

a(x,D)v(x) = −∆g v(x) + (V (x),Ov(x))g + c(x)v(x),(1)

where ∆g = g−1/2∂jg
1/2gjk(x)∂k with g = det(gij), [gij ] = [gij ]

−1 is the
Laplace-Beltrami operator corresponding to the metric gij , V is a smooth
real vector field (1st order operator) and c is a smooth real valued func-
tion. As usual we use Einstein’s summation over repeated upper and lower
indices.

Next we consider an operator A related to a(x,D),

Av = a(x,D)v, D(A) = {v ∈ H2(M) : Bv|∂M = ∂νv + ηv|∂M = 0},(2)

where ν is the exterior unit normal vector to ∂M and η is a smooth real
valued function on ∂M . As usual H2(M) stands for the Sobolev space of
functions having square integrable derivatives up to the second order. We
assume that there is a smooth measure dµ on M ,

dµ = ρ dVg , dVg = g1/2 dx1 · · · dxm,(3)

where dVg is Riemannian volume on (M, g), so that A is self-adjoint with
respect to dµ. In particular,

∫

M

vAu dµ =

∫

M

uAv dµ(4)

for u, v ∈ D(A). Then

a(x,D)v(x) = −ρ−1g−1/2(∂ig
1/2gijρ∂jv(x)) + q(x)v(x).(5)

The fact that A of form (2), (5) is self-adjoint as well as just an in-
variant definition of the Sobolev spaces Hs(M) puts some restrictions on
(M, g; ∂M), ρ, q, and η. For our purposes it is sufficient to assume that
(M, g; ∂M) is (possibly) a non-compact manifold of (finitely) bounded
geometry and ρ, ρ−1 ∈ C∞(M) ∩ C2

b (M), q ∈ C∞(M) ∩ C0
b (M) and
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η ∈ C∞(∂M) ∩ C1
b (∂M). Here C lb is the class of functions having uni-

formly bounded derivatives upto order l. For the explanation of these facts
as well the definition of a manifold of bounded geometry see Appendix.

As A is self-adjoint, it has a spectral resolution,

A =

∫

R

λdE(λ),(6)

where E(λ) is the spectral projector on the interval (−∞, λ].
Since D(An) ⊂ H2n

loc(M) and A ≥ λ0I due to q(x) ∈ C0
b , we see that

for any λ ∈ R the projection E(λ) is an infinitely smoothing operator,
E(λ) : Hs

comp(M) → C∞(M) for any s ∈ R. Thus E(λ) has a smooth
Schwartz kernel and there is a measure dp(·, · ;λ) on M ×M such that

(u,E(λ)v)L2(M,dµ) =

∫

M×M

u(x)v(y)dx,yp(x, y;λ).(7)

Here, we use the notation dx,yp(x, y;λ) = dp(x, y;λ) to indicate that inte-
gration variables are x and y and λ is a parameter. Clearly, the Radon-
Nikodym derivative dpx,y(x, y;λ)/(dµ(x)dµ(y)) is a real valued C∞(M ×
M)-function for any λ. In particular, if M is compact and λj and ϕj are
the eigenvalues and the normalized eigenfunctions of A, then

dp(x, y;λ) =
∑

λj≤λ

ϕj(x)ϕj (y)dµ(x)dµ(y).

Now we consider the measure dP (x, y;λ) on ∂M × ∂M ,

dPx,y(x, y;λ) =
dpx,y(x, y;λ)

dVg(x)dVg(y)
dSg(x)dSg(y),

where dSg is the Riemannian volume of the boundary.
Let δ∂M is the surface delta-measure with respect to dVg . Then

∫

M

h(x, y)δ∂M (x)δ∂M (y)dp(x, y;λ) =

∫

∂M

h(x, y)dP (x, y;λ).(8)

Remark 1. In the compact case, if the measure ρdSg on the bound-
ary is known, then λj and ϕj |∂M determine dP (x, y;λ). Operating as in
[KKL], we also see that dP (x, y;λ) determines λj and ϕj |∂M upto a unitary
transformation of the eigenfunctions corresponding to the same eigenvalue.

Therefore, it is natural to give the following generalization of the
Gel’fand data to the case of a possibly non-compact manifold:

Definition 1. We define the Gel’fand boundary spectral data of A to
be the measure dP (x, y;λ) given on ∂M × ∂M for all λ ∈ R.

Other objects on ∂M related to the spectral properties of A are the
Robin-to-Dirichlet maps

Λzφ = uφz |∂M ,(9)
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where uφz is the solution of the Robin problem

a(x,D)uφz = zuφz , Buφz |∂M = φ(10)

where z ∈ C is not an eigenvalue.
Definition 2. We define the Calderon-Gel’fand boundary form

Λz[φ, ψ] related to problem (10) by the formula

Λz[φ, ψ] =

∫

∂M

Λzφ(x)ψ(x) ρ(x)dSg(11)

which is equivalent to a Dirichlet-type form for uφz and uψz ,

Λz[φ, ψ] =

∫

∂M

ηuφzu
ψ
z ρdSg+

∫

M

(
(Ouφz ,Ou

ψ
z )g+(q − z)uφzu

ψ
z

)
ρdVg ,(12)

where (Ou,Ov)g = gij∂iu∂jv (compare with e.g. with [Cl], [SU]).
1.3. We consider also the hyperbolic initial boundary value problem

corresponding to the elliptic operator A,

p2
t + a(x,D))uf (x, t) = 0 in M × R+,

(13)
Buf |∂M×R+

= f ∈ C∞
0 (∂M × R+), uf |t=0 = 0, ∂tu

f |t=0 = 0.

For initial boundary value problem (13) we define the non-stationary Robin-
to-Dirichlet map (response operator) Λ,

Λf = uf |∂M×R+
.(14)

The operator Λ gives rise to the hyperbolic form B[f, h],

B[f, h] =

∫ ∞

0

∫

∂M

(
∂νu

f uh − uf ∂νuh
)
ρdSg dt(15)

=

∫ ∞

0

∫

∂M

(
fΛh− Λfh

)
ρdSg dt.

There is a natural concept of energy for the wave equation (13) given by

E(u, t) =
1

2

∫

∂M

η(x)|u(x, t)|2ρ(x)dSg
(16)

+
1

2

∫

M

(
|Ou(x, t)|2g + q(x)|u(x, t)|2+ |∂tu(x, t)|2

)
dµ(x).

When f ∈ C∞
0 (∂M× [0, T ]) we see that E(uf , t) is constant for t > T , that

is, the energy is conserved. Therefore, the energy E(uf , T ) is brought into
M through the boundary ∂M × R+. We define the total energy flux Π(f)
through the boundary as

Π(f) = lim
t→∞

E(uf , t).(17)
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Actually, Π(f) is given by a quadratic form of f ,

Π(f) = Re

∫

∂M

∫ ∞

0

f(x, t)∂tΛf(x, t) ρ(x)dSxdt.(18)

Because differential equation (13) is translation invariant in time, we extend
the map Λ, the form B, and the energy flux Π to f ∈ C∞

0 (∂M × R) by
setting e.g. Λf(x, t) = (Λ(f(· , · −T )))(x, t+ T ).

1.4. Before formulating inverse problems, we need to introduce the no-
tion of a gauge-transformation. We will consider all operators and bound-
ary data in such a way that our considerations do not depend on a par-
ticular choice of the scale of measurements. For instance, if the change of
the scale of measurements is described by a function κ(x), κ|∂M = 1, that
is at a point x ∈ M the physical quantity u(x) is replaced with κ(x)u(x),
this change of the scale of measurements does not affect the physical model
or the measurements of this quantity on ∂M . However, it does change its
mathematical description, i.e., the differential equation which describes the
process. For this reason we formulate all our statements so that they are
invariant in gauge transformations u(x) → κ(x)u(x).

Definition 3. Let κ ∈ C∞(M), κ(x) ≥ κ0 > 0 for x ∈ M . The
gauge transformation generated by the function κ is the transformation

Sκ : L2(M,dµ) → L2(M,dµκ), Sκu(x) = κ(x)u(x),

with dµκ = κ−2(x)dµ. If κ|∂M = 1 the gauge transformation Sκ is normal-
ized on ∂M . Each gauge transformation determines the corresponding
gauge transformation Aκ of the operator A,

Aκu = κA(κ−1u).

If A is an elliptic differential operator in L2(M,dµ) of form (2), (5) with
ρ, ρ−1 ∈ C2

b (M), q ∈ C0
b (M) and η ∈ C1

b (∂M), then Aκ is also an elliptic
differential operator in L2(M,dµκ) of form (2), (5) with ρκ, ηκ and qκ from
the same classes as soon as κ, κ−1 ∈ C2

b (M). Furthermore,

D(Aκ) = {v ∈ H2(M) : Bκv|∂M = ∂νv+ηκv|∂M = 0}, ηκ = η+κ−1∂νκ,

and aκ(x,D)u(x) is given by the formula

aκ(x,D)u(x) = κ−1(x)a(x,D)(κ(x)−1u(x)).

The gauge transformations Sκ : L2(M) → L2(M) parametrized by κ :
κ ∈ C∞(M), κ, κ−1 ∈ C2

b (M) form an Abelian group G with respect to
composition

Sκ1
◦ Sκ2

= Sκ1κ2
.
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The action of this group on the set of the second order elliptic differential
operators is given by Sκ(A) = Aκ = κAκ−1. For any A

σA = {Sκ(A) : Sκ ∈ G}
is the orbit of the group G through A. The gauge transformations normal-
ized on ∂M form a subgroup G∂M and the corresponding orbit is denoted
by σ∂MA.

Although gauge transformations change a(x,D), the metric tensor
gij = aij associated with the operator A remains invariant, gijκ = gij .

An important fact related to the gauge transformations is that any
orbit σA of a self-adjoint operator A of form (2), (5) contains a unique
Schrödinger operator which is called the Schrödinger operator correspond-
ing to A.

Lemma 1. i. Let A be an elliptic differential operator of form (2),
(5). There is a unique Schrödinger operator −∆g + q̃ in the orbit σA, that
is, for a given A there is a unique κ such that A = κ(−∆g + q̃)κ−1 and
dµ = κ−2dVg.
ii. A is a Schrödinger operator if and only if dµ = dVg.

Proof. The assertion is proven in [KKL], see also [K1], [KK]. The basic
idea is to consider the corresponding Dirichlet quadratic form in M and
observe that a gauge transformation is equivalent to changing the measure
in this form. �

In gauge transformations, the hyperbolic form B, energy flux Π and
Calderon-Gel’fand form Λz are also changed. Indeed, if for example uf (x, t)
is a solution of problem (13) for the operator a(x,D), then v(x, t) =
κ(x)uf (x, t) is the solution of the problem

(∂2
t + aκ(x,D))v(x, t) = 0 in M × R+,

(19)
Bκv|∂M×R+

= κf, v|t=0 = 0, ∂tv|t=0 = 0.

Thus, if B,Π correspond to the operator A and Bκ,Πκ – to its gauge
transformation Aκ then

Λκ[f, h] = Λ[κf, κh], Πκ[f, h] = Π[κf, κh].(20)

Similarly, if Λz and dP (x, y, λ) are the Calderon-Gel’fand forms and bound-
ary spectral data of A and Λzκ, dPκ(x, y, λ) – of Aκ, then

dPκ(x, y;λ) = κ(x)−1κ(y)−1dP (x, y;λ), Λzκ[φ, ψ] = Λz[κφ, κψ].(21)

The forms Λz and Λzκ, B and Bκ, etc. which satisfy (20), (21) are called
gauge equivalent.

1.5. Now we are in the position to formulate various inverse problems
on M related to the above concepts.

Inverse problems. Determine (M, g) and A upto a normalized gauge
transformation, i.e., determine σ∂MA when we are given one of the follow-
ing data:
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i. The Gel’fand boundary spectral data dP (x, y;λ) on ∂M × ∂M for
all λ ∈ R.

ii. The Calderon-Gel’fand forms Λz for all z ∈ C \ σ(A), where σ(A)
is the spectrum of A.

iii. The hyperbolic form B.
iv. The energy flux Π.
Our aim is to show that, in particular, the energy measurements can

be used to obtain the other data. Moreover, we will show:
Theorem 1. Inverse problems i.-iv. are equivalent, i.e., any of the

data i.-iv. determine all other data.
Thus all inverse problems i.-iv. can be reduced to solving one of them.

Instead of solving problem iii. we will solve a more general problem which
also answers the above problems. To formulate this more general problem
denote by B2T the hyperbolic form B restricted to the set of sources f, h ∈
C∞

0 (∂M × (0, 2T )). We will show that
Theorem 2. Assume that we are given the hyperbolic form B2T of an

operator A of form (2), (5). This data determines uniquely the manifold
MT = {x ∈ M : d(x, ∂M) < T} and the metric tensor g on MT . More-
over, we can find a(x,D) on MT upto a normalized gauge transformation,
i.e., we can find the orbit

σ∂MA|MT = {aκ(x,D)|MT : κ > 0, κ|∂M = 1}.

In particular, if any of data i.− iv. is given, it is possible to determine the
whole manifold (M, g) and the orbit σ∂MA. If, in addition, we have a
priori knowledge about the structure of the operator, we can in many cases
solve the inverse problem uniquely. For instance, we have:

Corollary 1. Let M ⊂ Rm is given. Assume the metric g to be
conformally Euclidean, that is gjk(x) = σ(x)δjk where σ(x) > 0. Moreover,
assume that we know any of the data i.-iv. for a Schrödinger operator
A = −∆g + q. Then we can determine g, q and η uniquely.

At last we consider the case when the data is given only on an open
subset S ⊂ ∂M . In this case we can define the Gel’fand boundary spectral
data dPS

dPS(x, y;λ) = dP (x, y;λ), x, y ∈ S,(22)

the Calderon-Gel’fand form ΛzS

ΛzS [f, h] = Λz[f, h], f, h ∈ C∞
0 (S),(23)

the hyperbolic boundary forms BS and even B2T
S

B2T
S [f, h] = B[f, h], f, h ∈ C∞

0 (S × (0, 2T )),(24)

and the energy flux ΠS ,

ΠS(f) = Π(f), f ∈ C∞
0 (S × R+).(25)
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Then the analogs of Theorems 1 and 2 remain valid for dPS , ΛzS , etc:

Theorem 3. i. Assume that we are given S ⊂ ∂M . Then any data
(22)–(25) determine all others.

ii. Assume that we are given S ⊂ ∂M and B2T
S . Then this data determine

uniquely the manifold M(S, T ) = {x ∈ M : d(x, S) < T}, the metric
tensor g and the operator a(x,D) on M(S, T ) upto a gauge transformation
normalized on S, i.e., we can find σSA|M(S,T ).

1.6. This paper gives a concise review of some of the results obtained
in the multidimensional inverse boundary value problems, especially those
regarding the equivalence of various types of data, gauge equivalence and
also reconstruction procedures and uniqueness for hyperbolic inverse prob-
lems. The used techniques are based on various variants of the BC-method
(for the original paper see [B1]). There are currently several extended ex-
positions of this method, e.g. [B2], [KK], [KaL]. The monograph [KKL]
is particularly close to our exposition in this paper and we refer the inter-
ested reader to this monograph for further details. Having said so we should
stress that the majority of works on the BC-method deal with the case of
inverse boundary problems on compact manifolds. More precisely, due to
the local in time nature of the method, the treatment of hyperbolic inverse
problems is essentially the same for compact and non-compact cases. This
makes possible to closely follow in our proof of Theorem 2 the method de-
scribed in [KKL], Ch. 4.2. An alternative approach to hyperbolic inverse
problems also based on the BC-method and technique of Gaussian beams
is given in [BKa] which deals with the wave equation for the Laplace oper-
ator on a Riemannian manifold. However, when coming to inverse spectral
problems, i.e., problems i. and ii., non-compact manifolds differ rather
significantly from the compact ones due to a more complicated nature of
the spectral properties of elliptic operators on non-compact manifolds. To
our knowledge the only paper where the BC-method is applied to an in-
verse boundary spectral problem on a non-compact domain is [BKu1] where
M = Rm+ . In particular, the definition of the boundary spectral data (Def-
inition 1) differs from that for the compact case. Moreover, the proof of
the equivalence, although ideologically close to that in [KKL], Ch. 4.1 and
[KKLM], implies some technical ideas absent in [KKL]. There are some
other differences in our exposition as compared to the previous ones. For
example, in the proof of Lemma 4 dealing with the inner products of waves
we use variational technique which, we believe, is more appropriate for
the numerical realization of the method. Furthermore, the step by step
reconstruction of the manifold from a part of the boundary is based on
the direct continuation of Green’s function for the wave equation which, to
our knowledge, has been unknown. And, of course, we deal with boundary
forms rather then the corresponding operators. We believe that the in-
variance properties possessed by the forms better reflect the nature of the
problem. This approach is essentially similar to that in, e.g. [SU], [LU],
[Sy] which use differential forms rather then functions.
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The plan of the paper is as follows: In section 2 we prove Theorem
1 about the equivalence of data i.-iv. in the case of the whole boundary,
S = ∂M . In section 3 we describe the procedure of the reconstruction of a
Riemannian manifold (MT , g) and the Schrödinger operator on it from the
hyperbolic form B2T and give the proof of Theorem (2). An alternative
approach based on Gaussian beams is given in Section 4. Section 5 is
devoted to the generalization of the above results to the case S 6= ∂M .
At last, in Appendix we collect some necessary results about properties of
manifolds of bounded geometry and elliptic operators on such manifolds.
Our exposition is rather concise, especially in Sections 4 and 5 and when
the construction used is similar to those for the compact case. Nevertheless,
we provide (at least brief) proofs of the main ingredients of the method,
namely the Blagovestchenskii identity and controllability results.

2. Proof of equivalence of the boundary data.

2.1. We start with the observation that since a(x,D) of form (5)
is real,

uφz = uφz , uf (x, t) = uf (x, t), (A− z)−1Φ = (A− z)−1Φ,(26)

where z /∈ σ(A) and uφz and uf (x, t) are solutions of problems (10) and
(13), correspondingly. This allows us to work not with the inner product
in L2(M) but with the complex bilinear pairing 〈·, ·〉, namely, 〈Φ,Ψ〉 =∫
M

Φ(x)Ψ(x)dµ, or the corresponding distribution duality. Using (26) we
see that the forms Λz[φ, ψ], B[f, h] and Π[f ] determine complex
bilinear forms

ΛzC[φ, ψ] =

∫

∂M

(Λzφ)(x)ψ(x) ρ(x)dSg = Λz[φ, ψ]

(27)

=

∫

∂M

ηuφzu
ψ
z ρdSg+

∫

M

(
〈Ouφz ,Ouψz 〉g+(q−z)uφzuψz

)
ρdVg ,

where 〈Ou,Ov〉g = gjk∂ju ∂kv,

BC[f, h] =

∫ ∞

0

∫

∂M

(fΛh− Λfh) ρdSg dt = B[f, h],(28)

ΠC[f, h] =
1

2

∫

∂M

∫ ∞

0

(f(t)∂tΛh(t) + ∂tΛf(t)h(t)) ρdSxdt(29)

with

ΠC[f, h] = lim
t→∞

EC[uf (t), vh(t)],

where

EC[u(t), v(t)] =
1

2

∫

∂M

ηu(t)v(t) ρdSg
(30)

+
1

2

∫

M

(〈Ou(t),Ov(t)〉g+qu(t)v(t)+∂tu(t)∂tv(t)) dµ.
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In the following, we will prove the equivalence for the complex forms.
Clearly, due to (27)–(30) this will prove Theorem 1.
2.2. Spectral data. We start with the equivalence of the Gel’fand bound-
ary data dP (x, y;λ) and Calderon-Gel’fand forms Λz

C
.

i.→ ii. Consider the complex bilinear form

〈(A − z)−1Φ,Ψ〉L2(M), z /∈ σ(A).(31)

As H−1(M) = D((A + c)1/2), this form can be continued onto H−1(M),
in particular, onto Ψ,Φ of the form

Ψ = ψ(x)δ∂M (x), Φ = φ(x)δ∂M (x),(32)

where ψ, φ ∈ C∞
0 (∂M) or, more generally, in H−1/2(∂M). Next we use

the fact that

uφz = (A− z)−1Φ =

∫

R

dλE(λ)Φ

λ− z
.(33)

Then

ΛzC[φ, ψ] = 〈(A− z)−1Φ,Ψ〉L2(M) =

∫

σ(A)

dmφ,ψ(λ)

λ− z
,(34)

where mφ,ψ(λ) is the complexified spectral measure

mφ,ψ(λ) = 〈E(λ)Φ, Ψ〉 =
(
E(λ)Φ, Ψ

)
=

∫

∂M

φ(y)ψ(x) dP (x, y;λ).(35)

Thus the boundary spectral data uniquely determine the Calderon-
Gel’fand forms, i.e., i. determines ii.

ii.→ i. To prove the opposite we use the Pleijel-Stone formula (e.g.
[Ko], [RS]) which together with (33)–(35) shows that

lim
ε→+0

1

2πi

∫ λ

−∞

〈[(A− k − iε)−1 − (A− k + iε)−1]Φ,Ψ〉L2(M)dk

(36)

=
1

2

∫

∂M

φ(x)ψ(x) (dP (x, y;λ − 0) + dP (x, y;λ)),

where dP (x, y;λ − 0) = limε→0− dP (x, y;λ − ε) is considered as a distri-
bution limit. Because φ, ψ ∈ C∞

0 (∂M) are arbitrary, equations (34), (36)
imply that the forms Λz

C
determine dP (x, y;λ− 0) + dP (x, y;λ). Since the

spectral projectors E(λ) are continuous from the right we see that, in the
sense of distributions,

dP (x, y;λ) = lim
ε→+0

dP (x, y;λ+ ε)

=
1

2
lim
ε→+0

(dP (x, y;λ+ ε) + dP (x, y;λ + ε− 0)),
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Thus we can also determine dP (x, y;λ), i.e., ii. determines i.
2.3. Hyperbolic data. Next we return to the time-domain problem. For
f ∈ C∞

0 (∂M × R), let f̂ be its Fourier transform with respect to time,

f̂(x, k) =

∫

R

e−iktf(x, t) dt.

If f = 0 for |t| ≥ c0, the function f̂(x, k) is analytic in k ∈ C and
C∞−smooth in x. Moreover, by the Paley-Wiener theorem this functions
satisfies

||f̂(· , k)||Cm(∂M) ≤ Cm,N (1 + |k|)−N exp(c0| Im k|), m,N > 0.(37)

The solution uf (x, t) of problem (13) lies in C∞(M×R) and, using spectral
resolution (6),

uf (t) =

∫

R

∫ t

−∞

sin
√
λ(t− t′)√
λ

dλ(E(λ)F (t′)) dt′,(38)

where F (x, t) = f(x, t)δ∂M (x). Using this representation,

‖uf (t)‖L2(M) ≤ Cfe
τ0t, t > 0,(39)

where

τ0 =
√

max(0,−λ0),(40)

and λ0 is the bottom of the spectrum σ(A). Then the Fourier transform

ûf (x, k) of uf (x, t) is well-defined for Im k < −τ0 and is there the solution

of elliptic problem (10) with z = k2 and φ(x) = f̂(x, k). Thus, when
Im k < −τ0

Λ̂f(k) = ûf (k)|∂M = Λk
2

f̂(k).(41)

However, the right-hand side of (41) is analytic when k2 /∈ σ(A) which

determines an analytic continuation of Λ̂f(k) onto k ∈ C, k2 /∈ σ(A) ⊂
[λ0,∞) ⊂ R.

After these preparations we can show that the hyperbolic data iii. and
iv. are equivalent to each other and to i.

i.→ iii. We will show that
∫ ∞

0

∫
∂M

Λf h ρdSg dt, where f, h ∈
C∞

0 (∂M×R), may be represented in terms of the Gel’fand boundary spec-
tral data dP (x, y;λ). Due to (15) and (28) this will prove that i. determines
iii. Indeed, by the Parseval identity and formula (41)

∫ ∞

0

∫

∂M

Λf h ρdSg dt = 〈e−τtΛf, eτth〉L2(∂M×R+)

(42)
=

∫

R

Λ
(k−iτ)2

C
[f̂(k − iτ), ĥ(−k + iτ)] dk.
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Using formulae (34), (35) we obtain from (42) that

∫ ∞

0

∫

∂M

Λfh ρdSg dt

(43)

=

∫

R

[∫

R

∫

∂M

∫

∂M

f̂(x, k−iτ)ĥ(y,−k+iτ)

λ− (k − iτ)2
dx,y,λP (x, y;λ)

]
dk.

Hence dP (x, y;λ) determines the forms Λ and B.
iii.→ iv. Let f ∈ C∞

0 (∂M × R+). It follows from (30) that

∂tEC(uf , t) =

∫

∂M

f(t)∂tΛf(t) ρdS.

As ∂tΛf = Λ∂tf , integrating by parts and using definitions (15), (17) we
obtain

ΠC(f) =

∫ ∞

0

∫

∂M

f(t)∂tΛf(t) ρdSdt =
1

2
BC[f, ∂tf ],(44)

which implies that the hyperbolic form determines the energy flux.
iv.→ i. Let us consider the form ΠC[f, h] when f, h are of the form

f(x, t) = f0(t)φ(x), h(x, t) = h0(t)ψ(x),(45)

with f0, h0 ∈ C∞
0 (R) and φ, ψ ∈ C∞

0 (∂M).
We intend to use the Parseval formula as in (42) to represent the

integral in the rhs of (29) in terms of the Fourier transforms f̂ , ĥ. When

f, h are of form (45), then f̂(x, k) = f̂0(k)φ(x), ĥ(x, k) = ĥ0(k)ψ(x) and
satisfy (37). Thus using partial integration we see that

ΠC[f, h]=−1

2

∫ ∞

0

∫

∂M

[
eτt∂tf(t)(e−τtΛh(t))+(e−τtΛf(t))eτt∂th(t)

]
ρdSxdt.

As Λk
2

is analytic for k2 /∈ σ(A), applying the Parseval formula we see that

ΠC[f, h] =
1

4πi

∫

R

∫

∂M

(k+iτ)〈f̂(k+iτ), Λ̂h(−k−iτ)〉L2(∂M)dk

(46)

− 1

4πi

∫

R

∫

∂M

(k−iτ)〈Λ̂f(k−iτ), ĥ(−k+iτ)〉L2(∂M)dk

Using the above formulae together with (34) and (41) we obtain that

ΠC[f, h] =
1

4πi

∫

Γτ

Λk
2

C [φ, ψ]f̂0(k) ĥ0(−k)kdk
(47)

=
1

4πi

∫

Γτ

〈(A− k2)−1Φ, Ψ〉L2(M)f̂0(k)ĥ0(−k) kdk,
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where Γτ is the boundary of the strip {k ∈ C : | Im k| ≤ τ} and Φ,Ψ are
given by formula (32). Because |〈(A− k2)−1Φ, Ψ〉| ≤ cφ,ψ for k ∈ Γτ when

τ > τ0 (40) and Φ,Ψ ∈ H−1(M) while f̂0(k), ĥ0(−k) ∈ S(R), integral (47)
converges absolutely. Using again (34) we see that

ΠC[f, h] =
1

4πi

∫

σ(A)

[∫

Γτ

f̂0(k)ĥ0(−k)
kdk

λ− k2

]
dmφ,ψ(λ),(48)

Further considerations are based on the following lemma.
Lemma 2. For any z, Im z > τ0 there is a sequence fn0 ∈ C∞

0 (R) such
that

lim
n→∞

ΠC[fn] =
1

2

∫

σ(A)

dmφ(λ)

λ− z2
,(49)

where fn = fn0 (t)φ(x) and dmφ(λ) = dmφ,φ(λ).
Proof. i. We note that if f0(t) = h0(t) = exp (izt)H(t), where H(t) is

the Heaviside function, then f̂0(k)ĥ0(−k) = (k2 − z2)−1. Therefore, using
formally (48) we obtain by means of the residue theorem that

ΠC[f ] =
1

2

∫

σ(A)

dmφ(λ)

λ− z2
.

Next, let uf (t), t > 0 solve (13) with f = H(t) exp(izt)φ(x). Then,

uf (x, t) = exp (izt)uφz2(x) + w(x, t),(50)

where uφz2 = (A − z2)−1Φ exists since Im z > τ0 and w satisfies (∂2
t +

A)w = 0, w|t=0 = −uφz2 , wt|t=0 = −izuφz2 . Using spectral resolution (6)
and formula (33), we obtain the representation

w(t) = −
∫

R

W (λ, z, t)dλ(E(λ)uφz2),

(51)

W (λ, z, t) = cos(
√
λt) + iz

sin(
√
λt)√
λ

Since by (34),

dλ〈E(λ)uφz2 , u
φ
z2〉 =

dλ〈E(λ)Φ,Φ〉
(λ− z2)2

=
dmφ(λ)

(λ− z2)2
,

formula (51) implies that

EC(w, t) =
1

2

∫

σ(A)

[
λW 2 + (∂tW )2

]
dλ〈E(λ)uφz2 , u

φ
z2〉

(52)

=
1

2

∫

σ(A)

dmφ(λ)

λ− z2
.
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In particular, EC(w, t) = EC(w, 0). Moreover, it follows from (51) that

‖w(t)‖2
H1(M) + ‖∂tw(t)‖2

L2(M) ≤ cφ exp (2τ0t), when t > 0,(53)

while

‖ exp (izt)uφz2‖2
H1(M)+‖∂t(exp (izt)uφz2)‖2

L2(M) ≤ cφ exp [−2( Im z)t].(54)

Because Im z > τ0, representation (50) together with (52)–(54) imply that
EC(uf , t) is defined for t ≥ 0 and

ΠC[f ] = lim
t→∞

EC(uf , t) = EC(w, 0).(55)

Comparing formulae (52), (55) and (34) we see that

ΠC[f ] = lim
t→∞

EC(uf , t) =
1

2
Λz

2

C [φ, φ].

Next we consider uε,N (x, t) that is the solution of (13) with f = fε,N (t)φ(x),
where fε,N (t) is given by

fε,N (t) = fε(t)χ̃N (t), fε(t) = (H(· ) exp (iz· ) ∗ χε)(t).

Here ∗ stands for the convolution in time, χε(t) is a usual mollifier with
supp (χε) ⊂ (−ε, ε) and χ̃N is a smooth cut-off function, χ̃N = 1 for t ≤ N
and 0 for t ≥ N + 1. Then

uε,N(x, t) = fε,N(t)uφz2(x) + w1
ε(x, t) + w2

ε,N (x, t),(56)

where, for t > 1,

w1
ε(t) = −

∫

σ(A)

(W (λ, z, ·) ∗ χε)(t) dλ(E(λ)uφz2),(57)

and, for t > N + 1,

w2
ε,N (t) = −

∫

σ(A)

W 2
ε,N (λ, z, t)dλ(E(λ)uφz2 ),

(58)

W 2
ε,N (t) =

∫ t

0

sin(
√
λ(t−t′))√
λ

[2∂tχ̃N(t′)∂tfε(t
′)+∂2

t χ̃N (t′)fε(t
′)] dt′.

Clearly, (W (λ, z, · )∗χε(· ))(t) →W (λ, z, t) uniformly on any compact set of
λ, t and are uniformly bounded when ε ∈ (0, 1), λ ∈ σ(A) on any compact

set of t. Because
∫
σ(A)(1 + |λ|)d(E(λ)uφz2 , u

φ
z2) <∞ this implies that

lim
ε→0

EC(w1
ε , t) = EC(w, t)

for bounded t. However, EC(w1
ε , t) does not depend on t for t > 1.
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Furthermore, EC(w1
ε + w2

ε,N , t) does not depend on t for t > N + 1
and, as is seen from (58),

lim
N→∞

EC(w1
ε + w2

ε,N , N + 1) = lim
N→∞

EC(w1
ε , N + 1) = EC(w1

ε , 1).(59)

In addition, w1
ε(t), w

2
ε,N (t) satisfy estimate (53) uniformly for ε and N

while fε,N(t)uφz2 satisfies estimate (54). Thus,

ΠC[fε,N ] = lim
t→∞

EC(uε,N , t) = EC(w1
ε + w2

ε,N , N + 1).(60)

Combining (59) and (60) with (52), we can choose a sequence εn, Nn so
that fn = fεn,Nn

satisfy

lim
n→∞

ΠC(fn) = lim
ε→0

EC(w1
ε , 1) =

1

2

∫

σ(A)

dmφ(λ)

λ− z2
.

�

Lemma 2 shows that ΠC[f ] determines F (ω) =
∫
σ(A)

dmφ(λ)
λ−ω for any

ω = z2, Im z > τ0. Because F (ω) is analytic outside σ(A) we can continue
it to C \ σ(A). Then the Pleijel formula (compare with (36)) may be used
to find mφ(λ) and, henceforth, using polarization, mφ,ψ(λ). Clearly, this
also determines dP (x, y, λ).

Remark 2. When σ(A) ⊂ R+, F (ω), ω /∈ σ(A) can be directly found
from ΠC without analytic continuation. Thus, the step iv. → i. does not
require analytic continuation.

3. Reconstructions.

3.1. Blagovestchenskii identity. In this section we will describe a
procedure to reconstruct the manifold and the Schrödinger operator on it.
Here the given data is the hyperbolic form B2T that is gauge equivalent to
the form B̃2T of the Schrödinger operator. In Section 5 we will generalize
our results to the case when data is given both on a finite part S ⊂ ∂M and
finite time-interval. To this end we present our constructions so that they
can be easily extended to this general case. Remarks in the text often give
generalizations of results which are used later in Section 5. As in [KKL], we
will actually construct an isometric copy of (M, g) and an operator on it.

For x ∈ M and ξ ∈ Tx(M), |ξ|g = 1, we denote by γx,ξ(s) the geodesic
parametrized by its path length which starts at x in the direction ξ.

By Lemma 1 there is a gauge transformation Sκ which makes A into
a Schrödinger operator Aκ = −∆g + q. We denote by Λ̃2T , B̃2T the Robin-
to-Dirichlet and hyperbolic forms for −∆g + q, and by Λ2T , B2T – those

forms for A. By (20), B2T [f, h] = B̃2T [κ|∂Mf, κ|∂Mh], i.e., we are given the
form

f, h→ B̃2T [κ|∂Mf, κ|∂Mh],

where κ|∂M is unknown. (In the future, when it does not cause confusion
we will write κ instead of κ|∂M ).
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Consider the initial boundary value problem for the Schrödinger oper-
ator,

∂2
t u

f − ∆gu
f + quf = 0 in M × R,

(61)
Buf

∣∣
∂M×R+

= f, uf
∣∣
t=0

= 0, ∂tu
f
∣∣
t=0

= 0.

The reconstruction is based on two main ingredients, namely the com-
putation of the inner products of solutions to problem (61) and controlla-
bility results.

We start with the inner products, that is the Blagovestchenskii iden-
tity. Denote by C∞

◦

(Γ × R+),Γ ⊂ ∂M the class of functions

f ∈ C∞
0 (Γ × R), f = 0 when t < 0.

Lemma 3. Let f, h ∈ C∞
◦

(∂M × R+). Then

∫

M

uκf (T )uκh(T ) dVg =
1

2

∫ T

−T

sign(τ)B2T [YT+τ (f), YT−τ (h)] dτ,(62)

where Yτ is the delay operator, (Yτf)(x, t) = f(x, t− τ).

Proof. Let w(t, s) =
∫
M
uf (t)uh(s) dVg . Integrating by parts and using

(61) we see that

(∂2
t −∂2

s )w(t, s) = −
∫

M

[(−∆g+q)u
f (t)uh(s)−uf (t)(−∆g+q)uh(s)]dVg

= −
∫

∂M

[∂νu
f (t)uh(s) − uf (t)∂νuh(s)] dSg(63)

=

∫

∂M

[f(t)Λ̃2Th(s) − Λ̃2T f(t)h(s)] dSg.

Moreover,

w|t=0 = w|s=0 = 0, ∂tw|t=0 = ∂sw|s=0 = 0.

Thus, for s ≥ t,

w(t, s) =
1

2

∫

L(t,s)

[∫

∂M

[f(t′)Λ̃2Th(s′) − Λ̃2T f(t′)h(s′)] dSg

]
dt′ds′,

where L(t, s) is the triangle bounded by s′ + t′ = s+ t, s′ − t′ = s− t and
t′ = 0. Introducing τ = 1

2 (s′ − t′), θ = 1
2 (s′ + t′) , we have

w(t, s)=

∫ (s+t)/2

(s−t)/2

∫ (s+t)/2

τ

[
Yτf(θ) Λ̃2TY−τh(θ)−Λ̃2TYτf(θ)Y−τh(θ)

]
dθdτ

(64)

=

∫ (s+t)/2

(s−t)/2

B̃2T [Yδ+τf, Yδ−τh] dτ, where δ = 2T − 1

2
(s+ t).
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Similar formula can be written for s ≤ t. When s = t we can use both to
obtain a symmetrized one. Taking κf, κh instead of f, h and using relation
(20), this symmetrized formula with s = t = T takes the form (62). �

Remark 3. It is clear from the proof, e.g. formula (64) that B2T

determines
(
uκf (t), uκh(s)

)
for s+ t ≤ 2T .

3.2. Approximate controllability. Let t > 0 and Γ ⊂ ∂M be open
and

M(Γ, t) = {x ∈ M : dist(x,Γ) < t},(65)

be the domain of influence of Γ at time t. When f ∈ C∞
0 (Γ × R+),

uκf (t) ∈ L2(M(Γ, t)) = {u ∈ L2(M) : supp(u) ⊂M(Γ, t)}.

The controllability result we need is based on the celebrated Tataru’s
Holmgren-John unique continuation theorem [Ta1] (see also [Ta2], [Ho]).

Theorem 4. Let u be a solution of wave equation (61). Assume that

u|Γ×(0,2τ) = 0, ∂νu|Γ×(0,2τ) = 0(66)

where Γ ⊂ ∂M, Γ 6= ∅ is open. Then,

u(x, τ) = 0, ∂tu(x, τ) = 0 for x ∈M(Γ, τ).

This result yields the following controllability result.
Theorem 5. Let Γ ⊂ ∂M be open and τ > 0. Then the linear

subspace,

{uf (τ) ∈ L2(M(Γ, τ)) : f ∈ C∞
0 (Γ × [0, τ ])},

is dense in L2(M(Γ, τ)).
Sketch of the proof. Let ψ ∈ L2(M(Γ, τ)) be such that

〈uf (· , τ), ψ〉 = 0(67)

for all f ∈ C∞
0 (Γ × [0, τ ]). We need to show that ψ = 0. To this end,

consider the following initial boundary value problem,

(∂2
t − ∆g + q)e = 0, Be|∂M×R = 0, e|t=τ = 0, ∂te|t=τ = ψ.(68)

Integrating by parts and using equations (67) and (68), we obtain that

0 =

∫

M×[0,τ ]

[uf (∂2
t − ∆g + q)e− (∂2

t − ∆g + q)uf e] dVg dt

=

∫

∂M×[0,τ ]

f e dSg dt.
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Since f ∈ C∞
0 (Γ× [0, τ ]) is arbitrary, e|Γ×[0,τ ] = 0. Together with boundary

conditions in (68), this yields that the Cauchy data of e vanish on Γ× [0, τ ].
Moreover, since e(x, t) = −e(x, 2τ − t) due to e|t=τ = 0, the Cauchy data
of e vanish on Γ × [0, 2τ ]. Therefore, ψ = 0 due to Theorem 4. �

3.3. Inner products of waves. Now our main ingredients are ob-
tained and there have been various ways to proceed. In this section we will
consider a method based on a minimization algorithm. In the next sec-
tion we will briefly present a method based on Gaussian beams (for more
detail see e.g. [BKa], [KK], [KKL]). Alternatively, one can use methods
based on propagation of singularities, e.g. [B2] or methods based on a wave
approximation of delta-distributions [KL2].

We start with projections onto domains of influences. Actually, there
are several ways to obtain these projections. Here we describe an approach
based on minimization because we want to use in the reconstruction as few
unstable procedures as possible. A more explicit construction based on the
Gram-Schmidt orthgonalization procedure may be found in e.g. [B1] or
[KKL].

Let PΓ,τ : L2(M) → L2(M(Γ, τ)) be the orthoprojection,

PΓ,τu(x) = χM(Γ,τ)(x)u(x),

where χM(Γ,τ) is the characteristic function of the set M(Γ, τ).
Lemma 4. Let f, h ∈ C∞

0 (∂M × R+), T > 0, t, s, τ1, τ2 ∈ [0, T ]. Let
also Γ1,Γ2 ⊂ ∂M be open sets. Assume that we are given the form B2T .
Then it is possible to find the inner products

(69)

(
PΓ1,τ1u

κf (t), PΓ2,τ2u
κh(s)

)
L2(M)

=

∫

M(Γ1,τ1)∩M(Γ2,τ2)

uκf (x, t)uκh(x, s) dVg .

Proof. Using Theorem 5 we see that

||uκf (t)||2 − ||PΓ1,τ1u
κf (t)||2

= ||(1 − PΓ1,τ1)u
κf (t)||2(70)

= inf{‖uκf (t) − uκη(τ1)‖2 : η ∈ C∞
0 (Γ1 × [0, τ1])}.

Since

‖uκf (t) − uκη(τ1)‖2 = ‖uκf (t)‖2 − 2 Re
(
uκf (t), uκη(τ1)

)
(71)

+ ‖uκη(τ1)‖2,

the rhs of (70) can be computed by Lemma 3 and Remark 3. Therefore,
we can choose a sequence ηj ∈ C∞

0 (Γ1 × [0, τ1]) such that lim uκηj (τ1) =
PΓ1,τ1u

κf (t). Similarly, we find η̃k ∈ C∞
0 (Γ2 × [0, τ2]) with limuκη̃k(τ2) =

PΓ2,τ2u
κh(s). As

(
uκηj (τ1), u

κη̃k(τ2)
)

can be found by Lemma 3 and Re-
mark 3 this proves the result. �
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qq
Γ

M(∂M, s− ε)
M(Γ, s)

Fig. 1. The set M(Γ, s) \ M(∂M, s − ε).

Remark 4. Lemma 4 remains valid if

t+ τ1 ≤ 2T, s+ τ2 ≤ 2T

This is true due to the remark after Lemma 3.
Let z1, z2 ∈ ∂M and denote M(z1, τ) = {x ∈ M : d(x, z1) < τ}.

If sequences of open sets Γji → zi, i = 1, 2, then M(Γji , τi) → M(zi, τi).
Hence we obtain

Corollary 2. Let B2T be given. Then for f, h ∈ C∞
0 (∂M × R+),

t, s, τ1, τ2 ∈ [0, T ] we can find
(
Pz1,τ1u

κf (t), uκh(s)
)
,

(
Pz1,τ1u

κf (t), Pz2,τ2u
κh(s)

)
,

where Pz,τ is the projection to M(z, τ).
3.4. Reconstruction of the manifold.

Lemma 5. Let y ∈ ∂M , s ∈ (0, T ), and γy,ν([0, s]) be a normal
geodesic. Then given B2T we can determine whether γy,ν is the shortest
geodesic between γy,ν(s) and the boundary ∂M or not. Moreover, when this
geodesic is minimal, B2T determines min(d(γy,ν(s), z), T ) for any z ∈ ∂M .

Proof. i. The geodesic γy,ν is the shortest geodesic between γy,ν(s)
and ∂M if and only if for any ε > 0 and any neighborhood Γ of y (see
Fig. 1.),

M(Γ, s) \M(∂M, s− ε) 6= ∅.(72)

By Theorem 5 property (72) is true if and only if for some h ∈ C∞(Γ×[0, s])

‖uκh(s)|| > ||PM(∂M,s−ε)u
κh(s)‖

However, this inequality can be checked when B2T is given.
ii. Let now γy,ν be the shortest geodesic between γy,ν(s) and ∂M ,

z ∈ ∂M and t ∈ (0, T ). Then t ≥ d(γy,ν(s), z) if and only if there is a
neighborhood Γ ⊂ ∂M of y such that for sufficiently small ε > 0,

M(Γ, s) ⊂M(∂M, s− ε) ∪M(z, t).(73)

Now, property (73) is true if and only if for any h ∈ C∞
0 (Γ × [0, s]),

||uκh(s)||2 = ||PM(∂M,s−ε)u
κh(s)||2 + ||PM(z,t)u

κh(s)||2

− (PM(∂M,s−ε)u
κh(s), PM(z,t)u

κh(s))L2(M).
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This again can be checked using B2T . Thus taking infimum of all t for
which property (73) is satisfied we find min(d(γy,ν(s), z), T ). �

Next we introduce the truncated boundary distance functions

rTx (z) = min(d(x, z), T ), z ∈ ∂M, x ∈M,

and the truncated boundary distance map

RT : M 7→ C(∂M), x 7→ rTx .

Since each x has a closest boundary point zx and the shortest geodesic from
zx to x is normal, Lemma 5 implies

Theorem 6. The hyperbolic form B2T determines the set RT (M
(∂M, T )).

One can show (e.g. [K2], [KKL]) that the map R : M(∂M, T ) →
RT (M(∂M, T )) is a homeomorphism.

Our further constructions use the evaluation functions, Ez , z ∈ ∂M ,

Ez : RT (M(∂M, T )) → R, Ez(r
T
x ) = rTx (z) = min(d(x, z), T ).(74)

It can be shown that for any rTx̃ ∈ RT (M(∂M, T )) we can choose z1, · · · , zm
∈ ∂M so that Ezj

, j = 1, · · · ,m, form a system of coordinates near rTx̃
which makes RT (M(∂M, T )) diffeomorphic to M(∂M, T ). Let g̃ be the
metric on RT (M(∂M, T )) which makes it isometric to (M(∂M, T ), g), i.e.,
g̃ = ((RT )−1).g. Then the differentials of Ez are covectors of length 1 on
(RT (M(∂M, T )), g̃). Using this observation it is possible to find infinitely
many covectors of length 1 at any point and reconstruct the metric g̃ (for
details see e.g. [KKL]).

Identifying (M(∂M, T ), g) with its isometric copy (RT (M(∂M, T )), g̃)
and using definition , we come to the following result:

Lemma 6. Let the form B2T be given. Then it possible to construct
the Riemannian manifold (M(∂M, T ), g) = (MT , g).

3.5. Construction of the gauge class of the operator. So far we
have constructed an isometric copy of (M(∂M, T ), g), namely, the manifold
(RT (M(∂M, T )), g̃). Our next goal is to find the potential q and impedance
η on this manifold.

Lemma 7. The form B2T determines η|∂M and q|M(∂M,T ), where η, q
is the impedance and potential of the corresponding Schrödinger operator.
Moreover, it determines also κ|∂M .

Proof. We recall that any point x ∈ M(∂M, T ) is represented as an
endpoint of a shortest normal geodesic to ∂M .

Let y ∈ ∂M and s be such that normal geodesic γy,ν([0, s]) is shortest
geodesic between its endpoints and let Γ be a neighborhood of y. Let
uκf (x, t) be the solution of (61) with f ∈ C∞

0 (Γ× [0, T ]). By using Lemma
4, we can compute the inner products and find

lim
ε→0

||(Py,s − PΓ,s−ε)u
κf (t)||2

Vg(M(y, s) \M(∂M, s− ε))
= |uκf (x0, t)|2, t ≤ T,(75)
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where x0 = γy,ν(s). Indeed, the sets M(y, s) \M(∂M, s− ε) converge to
x0 (see Fig. 1), the waves uκf (x0, t) are smooth while the denominator can
be found since the metric g is already known. Thus we can find |uκf (x0, t)|
at any t.

Next, let x0 ∈ int(M(∂M, T )) be a point for which there is real-
valued f with uκf (x0, T ) 6= 0. These points form an open dense subset
of int(M(∂M, T )) as can be seen from Theorem 4 and openness of the sets
{x : uf (x, T ) 6= 0}. Then,

q(x0) =
−∂2

t u
κf (x0, T ) + ∆gu

κf (x0, T )

uκf (x0, T )

=
−∂2

t |uκf (x0, T )| + ∆g |uκf (x0, T )|
|uκf (x0, T )|

and the rhs can be found from (75). Thus q can be found in a dense subset,
and by smoothness on the whole M(∂M, T ).

Finally, varying f and t and using the fact that κ > 0 we can find
κ|∂M and η|∂M from

Buf = [∂νu
κf (t) + ηuκf (t)]|∂M = κ|∂Mf(t).

�

Remark 5. Formula (75) and Remark 4 show that given B2T and
f we can find |uκf (x, t)| when d(x, ∂M) ≤ T and t + d(x, ∂M) ≤ 2T .
Moreover, as uκf (x, t) = 0 when d(x, ∂M) > T and t < T we thus can find
|uκf (x, t)| when t+ d(x, ∂M) ≤ 2T .

4. Alternative reconstruction via Gaussian beams.

4.1 Gaussian beams Exposition in this section is very concise. It is
based on properties of Gaussian beams (see formula (76) below) which are
essentially identical for compact and non-compact manifolds. We refer an
interested reader to [KKL], Ch. 2.4 or [KK] where the necessary properties
of Gaussian beams are discussed in detail.

Gaussian beams, called also “quasiphotons”, are a special class of so-
lutions of the wave equation depending on a parameter ε. They can be
described as an asymptotic sum

Uε(x, t)=Mε exp {−(iε)−1θ(x, t)}
N∑

n=0

un(x, t)(iε)
n, x∈M, t ∈ [t−, t+],(76)

where Mε = (πε)−m/4 is the normalization constant. The function θ(x, t)
is called the phase function and un(x, t), n = 0, 1, . . . , N – the amplitude
functions. A phase function θ(x, t) is associated with a geodesic t 7→ γ(t) ∈
M so that

Im θ(γ(t), t) = 0,(77)

Im θ(x, t) ≥ C0d(x, γ(t))
2,(78)
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for t ∈ [t−, t+]. These conditions guarantee that the absolute value of
Uε(x, t) looks like a Gaussian distribution in x which moves in time along
the geodesic γ(t). The phase function satisfies the eikonal equation

(∂tθ)
2 − gjl(x)∂jθ∂lθ � 0,(79)

where � means the coincidence of the Taylor coefficients of both sides
considered as functions of x depending on t as a parameter at the points
γ(t), t ∈ [t−, t+]. The amplitude functions un, n = 0, . . . , N can be con-
structed as solutions of the transport equations

Lθun � (∂2
t − ∆g + q)un−1, with u−1 = 0.(80)

Here Lθ is the transport operator

Lθu = 2∂tθ∂tu− 2〈Oθ,Ou〉g + (∂2
t − ∆g)θ · u.(81)

The following existence result is proven e.g. in [KKL], [KK]:
Theorem 7. Let γ(t), t ∈ [t−, t+] be a geodesic lying in int(M) when

t ∈ (t−, t+). Let θ0(x), u
0
n(x), n = 0, 1, . . . be functions with θ0 satisfying

(78) for t = t0 ∈ [t−, t+]. Assume that ∂tγ(t0) = cGrad θ0(γ(t0)), c > 0.
Then there are functions θ(x, t) and un(x, t) satisfying (78)–(80) such

that θ(x, t0) = θ0(x), un(x, t0) = u0
n(x, ). Moreover, there is a solution

uε(x, t) of equation

(∂2
t − ∆g + q)uε(x, t) = 0, (x, t) ∈ M × [t−, t+],(82)

such that

|uε(x, t) − χ(x, t)Uε(x, t)| ≤ CÑ ε
Ñ ,(83)

where Ñ → ∞ when N → ∞. Here χ is the cut-off function, χ = 1 near
the trajectory (γ(t), t), t ∈ [t−, t+].

In the other words, for an arbitrary geodesic and matching initial data
there is a Gaussian beam that propagates along this geodesic.

Next we consider a class of boundary sources in (61) which generate
Gaussian beams. Let z0 ∈ ∂M , t0 > 0, and let z = (z1, . . . zm−1) be a
local system of coordinates on ∂M near z0. Consider a class of functions
fε = fε,z0,t0(z, t) on the boundary cylinder ∂M × R, where

fε(z, t) = (πε)−m/4χ(z, t) exp {iε−1Θ(z, t)}V (z, t).(84)

Here χ is a smooth cut-off function near (z0, t0) and

Θ(z, t) = −(t− t0) +
1

2
〈H0(z − z0), (z − z0)〉 +

i

2
(t− t0)

2,(85)

where 〈· , · 〉 is the complexified Euclidean inner product, 〈a, b〉 =
∑
ajbj ,

and H0 is a symmetric matrix with a positive definite imaginary part, i.e.,
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H0 = Ht
0, ImH0 > 0. At last V (z, t) is a smooth function having non-zero

value at (z0, t0).

The following result in valid (see e.g. [KKL]).

Lemma 8. For any function V and t < t0 + τ(z0) the solution uε,V
of problem (61) is a Gaussian beam propagating along the normal geodesic
γz0,ν . Here τ(z0) is the first time when the geodesic γz0,ν hits ∂M .

4.2 Reconstruction. Using the Gaussian beams described in Lemma
8 we can give an alternative method of the reconstruction of M, g, q and η
of the Schrödinger operator in the orbit on an unknown operator A.

Indeed, by Corollary 2, the hyperbolic form B2T uniquely determines
||Py,τuκf (t)||. Let f = fε be of form (84)–(85) with V = 1. Then due
to Lemma 8 uκf (t), f = fε is a Gaussian beam uε,κ propagating along
γz0,ν . The asymptotic expansion (76) of a Gaussian beam implies that for
s < τ

S,T
(z0), s+ t0 ≤ T ,

lim
ε→0

||Py,τuε,κ(s+ t0)|| =

{
h(t), d(γz0,ν(s), y) < τ,
0, d(γz0,ν(s), y) > τ,

where h(t) is a strictly positive function. Thus we can find min(d(γz0,ν(s),
y), T ). �

To find q, η and κ|∂M we need to consider the Gaussian beam uε,κ(x, t)
more carefully. In particular, it follows from [KKL], Ch. 2.4 that

lim
ε→0

||uε,κ(t)||2 = h2(t) =
|κ(z0)|2

√
g(z0, 0))√

det(ImH(t)) |det(Y (t))|
.(86)

Here the complex valued matrices H(t) and Y (t) explicitly depend only on
the metric tensor g which is already in our disposal and the initial matrix
H0(t0). More precisely, these matrices are solutions of some Cauchy prob-
lems for the Hamilton system of equations and a linear system of ordinary
differential equations along the geodesic γz0,ν(s). Using (86) together with
Corollary 2 this gives us κ(z0) > 0.

To find potential q we can use the second term of the asymptotic
expansion of ||Py,τuε,κ(s + t0)||2. Using results of section 2.4.19 of [KKL]
we can easily obtain that for d(γz0,ν(s), y) < τ

lim
ε→0

ε−1(||Py,τuε,κ(s+ t0)||2 − h2(t)) = a(s)

∫ s

0

q(γz0,ν(t))dt + b(s).(87)

Here functions a(s) and b(s) again depend only on the metric g and initial
data (84), (85). These functions can be found by solving some Cauchy
problems for a system of ordinary differential equations along γz0,ν . More-
over, a(s) 6= 0 for any s. Therefore, by using (87) we can find the integral
of the potential q along the normal geodesic γz0,ν [0, s] and thus q itself. �
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S . Right: M2 is union of domain of influences of balls

Br(z) ⊂ MT
S
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5. Reconstruction with data given on a part of the boundary.

5.1. Local constructions. In this section we will generalize construc-
tions of Section 3 to the case when B2T

S is given for open subset S ⊂ ∂M ,

i.e., the form f 7→ B̃2T [κf, κf ] = B2T [f, f ], f ∈ C∞
0 (S × R+) is given.

The construction of M(S, T ) will be given by iterating local construc-
tions. First, we will construct a subset of M adjacent to S.

We use the function τS,T : S → R,

τ
S,T

(z) = sup{s ∈ [0, T ] : d(γz,ν(s), S) = s}.

We note that the function τ
S,T

is, in general, not continuous but only upper
semicontinuous. Let

ΩS,T = {(z, s) ∈ S × R+ : s < τ
S,T

(z)}

be the open set that lies under the graph of τ
S,T

. The exponential map,

exp∂M : ΩS,T →M, (z, s) 7→ γz,ν(s),(88)

is a diffeomorphism between ΩS,T and MT
S ,

MT
S = exp∂M (ΩS,T ) ⊂M,

(see Fig 2).
Let g̃ = (exp∂M )∗g be a metric on ΩS,T which makes exp∂M an isometry.
We will first construct the function τ

S,T
and, therefore, ΩS,T and then the

metric tensor g̃ in this set.
We want to apply the results of Section 3. We first observe that the

main tools, Lemma 3 and Lemma 4 remain valid with B2T
S instead of B2T

if we take f, h ∈ C∞
0 (S × R+), Γ1,Γ2 ⊂ S.

To construct τS,T we observe that for s < T we have s ≤ τ
S,T

(y) if and
only if for any t < s and any neighborhood Γ ⊂ S of y, M(Γ, s) 6⊂M(S, t).
On the other hand, by Theorem 5, M(Γ, s) ⊂M(S, t) if and only if

‖PS,tuκf (s)‖ = ‖uκf (s)‖(89)

for all f ∈ C∞
0 (Γ × (0, s)). As both sides of (89) can be computed when

B2T
S is given, we see that B2T

S determines τ
S,T

.
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Using some local coordinates y = (y1, . . . , y(m−1)) on S, we obtain
local coordinates (y1, . . . , y(m−1), s) on ΩS,T .

Next we construct the metric g̃ in these local coordinates. Using part
ii. of the proof of Lemma 5 when Γ ⊂ S, and z, y ∈ S, we see that B2T

S

determines min(d(γy,ν(s), z), T ) for z, y ∈ S and s < T .
Again, we use evaluation functions

Ez : ΩS,T → R, Ez(y, s) = min(d(z, γ(y,ν)(s)), T ) = rT(y,s)(z),

where z ∈ S. Then Ez(y, s), considered as a function of (y, s) with fixed z
is a truncated distance function. Thus using them as in section 3.4 we find
g̃. Further steps to find q|MT

S
and η, κ|S are also the same.

5.2. Global constructions.

Lemma 9. Assume that we are given (MT
S , g) and the gauge-equival-

ence class σSa(x,D)|MT
S

as well as the form B2T
S . Let Br(z) ⊂ MT

S be a

ball and consider the manifold M \Br(z) with the boundary ∂M ∪S1, S1 =
∂Br(z). Then we can find the form B2T1

S1
, T1 < T − (r + d(z, S)) upto a

gauge transformation.
Proof. As we know the orbit σSa(x,D)|MT

S
we can work with the

restriction to MT
S of the corresponding Schrödinger operator −∆g + q.

(i) We start with the reconstruction of the values of waves uf (x, t), f ∈
C∞
◦

(S × R+) in MT
S . For at any point x = γy,ν(s) ∈ MT

S it is possi-
ble to construct a wave uf0 with uf0(x, s) > 0. Indeed, we can take, for
instance, the real part of a Gaussian beam, f0 = fε,y,0 (84) with suffi-
ciently small ε. By remark after Lemma 4 we can find the inner products(
(Py,s − PS,s−δ)u

f (t), uf0(s)
)

for t+ s < 2T , s < T . As the metric in MT
S

is already found similar considerations to that in Lemma 5 make possible
to find uf (γy,ν(s), t). Thus we obtain uf (x, t) for t < 2T − d(x, S) when

x ∈MT
S , f ∈ C∞

◦

(S × R+).
Let now G(x, y, t) be the Green function

(∂2
t − ∆g + q)G(x, y, t) = δy(x)δ(t) in M × R, y ∈ M

(90)
BG(· , y, · )|∂M×R = 0; G(x, y, t)|t<0 = 0.

The distribution G has a limit when y → ∂M , G(· , y, · ) ∈ D′(M × R). It
is then the solution of problem (61) with κf = δ∂M,y(x)δ(t) where δ∂M,y is
the delta-function on ∂M . Choosing a sequence fj ∈ C∞

0 (S × R+), fj →
δ∂M,y(x)δ(t) in D′(∂M × R) we find G(x, y, t) as a limit of ufj (x, t). Thus
we can find G(x, y, t) for y ∈ S, x ∈ MT

S , t+ d(x, S) < 2T .
Let us now fix x ∈ MT

S . Because G(x, y, t) = G(y, x, t) we know
G(x, y, t) when x ∈ S, y ∈ MT

S , and t+ d(y, S) < 2T .
Let Br(z) ⊂ MT

S be a ball and consider the initial boundary
value problem

∂2
t u− ∆gu

F + quF = F, in M × R,
(91)

BuF
∣∣
∂M×R

= 0, uF
∣∣
t=0

= 0, ∂tu
F
∣∣
t=0

= 0,
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where F (x, t) ∈ C∞
◦

(Br(z) × R+). Since

uF (x, t) =

∫

R

∫

Br(z)

G(x, y, t− s)F (y, s) dVg(y)ds,(92)

we can find uF (x, t) for x ∈ S, t < 2T − (d(z, S) + r).
Next we consider the inner product w(t, s) = (uF (t), uh(s)) where

h ∈ C∞
◦

(S × R+). The same considerations as in the proof of Lemma 3
show that

(∂2
t − ∂2

s )w(t, s) = −
∫

∂M

uF (t)|S ·h(s) dSg +

∫

M

F (t)uh(s)dVg .(93)

Our previous results imply that we can evaluate the rhs of (93) for t, s <
2T − (d(z, S) + r). Therefore we can find (uF (t), uh(s)) for any F ∈
C∞
◦

(Br(z) × R+) and h ∈ C∞
◦

(S × R+) for t+ s < 2T − (d(z, S) + r).
Using an approximation to (Py,s−PS,s−δ)uh(s) by the waves uηj , ηj ∈

C∞
0 (S × (0, s)) as described in the proof of Lemma 4 we find the inner

products
(
(Py,s − PS,s−δ)u

h(s), uF (t)
)
. Because uh(γy,ν(s), s) is known

this gives us uF (x, t) for any F (x, t) ∈ C∞
◦

(Br(z) × R+), t + d(x, S) <
2T − (d(z, S) + r), x ∈ MT

S . Approximating δz(y)δ(t) by smooth func-
tions F (t, y) it is thus possible to determine G(x, z, t) in X = {(x, z, t) :
d(x, S) + d(z, S) + t < 2T, x, z ∈ MT

S }.
(ii) Consider the manifold M\Br(z) and the initial boundary value problem

∂2
t e
f − ∆ge

f + qef = 0 in M\Br(z) × R+
(94)

Bef |∂M×R+
= 0, ∂νe

f |S1×R+
= f ; ef |t=0 = eft |t=0 = 0,

where S1 = ∂Br(z) and f ∈ C∞
0 (S1×R+). If ẽf is a smooth continuation of

ef inside Br(z)×R+ then ẽf is the solution to (91) with F = (∂2
t−∆g+q)ẽ

f .
Because we know uF (x, t) in Br(z) × (0, 2T (z, r)), T (z, r) = T −

(d(z, S) + r) we use the above considerations to find ef |S1×(0,2T (z,r)) for

any f ∈ C∞
0 (S1 ×R+), i.e., to construct the response operator Λ

2T (z,r)
S1

for
the manifold M \ Br(z). As the metric near Br(z) is known this provides

us with the hyperbolic form B2T (z,r)
S1

of the Schrödinger operator. �

After this it is possible to iterate the previous construction: We con-
struct the manifold and the Schrödinger operator in the domain (see Fig. 2)

M2 =
⋃

z∈M1,r>0

M
T (z,r)
∂Br(z) ∪M1, where M1 = MT

S .

To glue together M
T (z,r)
∂Br(z) with different z and r we use the fact that if

G(x, y, t) = G(x̃, y, t) for some t > 0 and y ∈ Ω where Ω ⊂M is open then
x = x̃.

In M2 we can again take balls Br(z), and iterate the construction.
Then it takes only a finite number of iterations to reconstruct any compact
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subset in (M(S, T ), g) and at most numerable many to construct the whole
manifold (M(S, T ), g) and the Schrödinger operator on it and, therefore,
the orbit σSa(x,D)|M(S,T ).

We note that the extensive use of the Green functions for a step by
step reconstruction of the manifold and the operator is somewhat similar to
that in [LaU] which, however, deals with a fixed-frequency inverse problem.

6. Appendix: Elliptic operators on manifolds of bounded ge-

ometry. Here we consider a class of second-order elliptic self-adjoint dif-
ferential operators on non-compact manifolds with boundary. Manifolds
and coefficients of the operators are C∞-smooth. Moreover, all Rieman-
nian manifolds (M, g) are assumed to be complete as metric spaces, i.e.,
Cauchy sequences converge.

We denote by Br(x) the balls of (M, g) and by B∂,r(y) the balls of
(∂M, g∂M ), where g∂M is the metric inherited from (M, g).

Assume that there is r0 > 0 such that

a. For any x0 ∈ M and r ≤ min(r0, dg(x0, ∂M)) the ball Br(x0) is the
domain of Riemannian normal coordinates x = (x1, · · · , xm) centered in x0;
b. For any y0 ∈ ∂M and r ≤ r0 the ball B∂,r(y0) is the domain of Rieman-
nian normal coordinates (on ∂M) y = (y1, · · · , ym−1) centered in y0;
c. For any x0 ∈ M with dg(x0, ∂M) < r0 there exists a unique near-
est boundary point y0 = y(x0) ∈ ∂M and, when r < r0, the cylinder
Cr(x0) = {x ∈ M : dg(x, ∂M) < r, y(x) ∈ B∂,r(y0)}, is the domain of
boundary normal coordinates x = (y1, · · · , ym−1, n) where (y1, · · · , ym−1)
are Riemannian coordinates on B∂,r(y(x0)) and n = dg(x, ∂M).

We note that the supremum of all such r0 is called the injectivity radius
of (M,∂M). In the future we denote by B̂r(x0), x0 ∈M , r ≤ r0 either a ball
Br(x0) if r ≥ dg(x0, ∂M) or a cylinder Cr(x0) if r < dg(x0, ∂M). Moreover,

by normal coordinates in B̂r(x0) we mean Riemannian normal coordinates

if B̂r(x0) = Br(x0) and boundary normal coordinates if B̂r(x0) = Cr(x0) .
Remark 6. By the Hopf-Rinow theorem any two points on a complete

Riemannian manifold without boundary can be connected by a shortest
geodesic. Moreover, for any x there is r(x) > 0 such that Br(x)(x) is a
domain of Riemannian normal coordinates. Using the Hopf’s double of
M and a locally finite partition of unity, a manifold (M, g, ∂M) can be
considered as a subset of a manifold without boundary. Then the Hopf-
Rinow theorem implies that any x ∈ M can be connected with ∂M by a
shortest geodesic which is normal to ∂M . Moreover, if y ∈ ∂M there is
r(y) > 0 such that Cr(y)(y) is a domain of boundary normal coordinates
(for results on geometry see e.g. [Cv]). What is essential in conditions a–c
is that r(x) is uniformly bounded from below.

Definition 4. A complete connected smooth non-compact Rieman-
nian manifold (M, g, ∂M) is called a k-finite, k ∈ Z+, manifold of bounded
geometry if there is r0 such that the injectivity radius of Riemannian nor-
mal coordinates and injectivity radius of boundary normal coordinates are
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larger than r0 and for some C > 0

i. In any generalized geodesic ball B̂r(x0) of radius r < r0 there exist
normal coordinates x = (x1, · · · , xm) such that in these coordinates the
metric tensor satisfies

C−1I ≤ g ≤ CI, |∂αgij | ≤ C when |α| ≤ k.(95)

ii. If (B̂r(x0), x) and (B̂r(x̃0), x̃) are above coordinates, then transition
functions satisfy ||x̃ ◦ x−1||Ck+1 ≤ C.

Remark 7. Conditions of this definition are satisfied if, for exam-
ple, the injectivity radii of the Riemannian normal coordinates in M , the
boundary normal coordinates in M and Riemannian normal coordinates in
∂M are uniformly bounded, and in addition the Riemannian curvature ten-
sor R and the second fundamental form of the boundary S have bounded
covariant derivatives upto order k + 1. We note that above geometric re-
quirements can be made weaker by using harmonic coordinates, see e.g.,
[HH], [dTK] and [KaKuLT].

Examples of manifolds of bounded geometry are given by manifolds
which asymptotically at infinity look like as a finite number of cones and
waveguides.

Manifolds of bounded geometry enjoy a number of important proper-
ties:

(i) For any r < r0 the manifold M has a covering of a countable set of

generalized balls B̂r/2(xi) which have a finite intersection index I , i.e., if we

take more than I balls B̂r(xi) they will have empty intersection. In addition

balls B̂r/4(xi) do not intersect. This result is a direct generalization to the
manifolds with boundary of the result by Gromov [Gr1] using uniform
estimate of the volume of balls BR(x) (see e.g. [KaKuLa]).

(ii) There is a partition of unity φi, supp(φi) ⊂ B̂r/2(xi) which satisfy
‖φi‖Ck+1 ≤ Ck in normal coordinates satisfying (95).

(iii) There is an invariant definition of spaces Cq(M) for q ≤ k + 1. Also
the Sobolev spaces Hs(M) have an invariant meaning for 0 ≤ s ≤ k + 1.
Furthermore, for such s

Hs(M) = cl(C∞
c (M)),(96)

where C∞
c (M) consists of C∞-functions which are equal to 0 outside some

ball BR(x). The space of Sobolev functions having compact support is
denoted by Hs

c (M). For these results we refer to [Sh1].

(iv) Similar Sobolev spaces can be defined on ∂M and the usual embedding
and extension theorems remain valid for Hs(M), s ≤ k + 1.

For k-finite manifold of bounded geometry we can generalize the basic
results for second order elliptic operators given in [Sh1] for non-compact
manifolds without boundary.
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Let us consider elliptic operators with smooth coefficients of the form

a(x,D)v(x) = −∆g v(x) + (V (x),Ov(x))g + c(x)v(x),(97)

V is a real vector field (1st order operator) and c is a real valued function
(cf. (1)). If a(x,D) is symmetric on C∞

0 (int(M)) with respect to a smooth
measure dµ = ρdVg , ρ > 0, dVg = g1/2 dx1 · · · dxm, then

a(x,D)v(x) = −ρ−1g−1/2(∂ig
1/2gijρ∂jv(x)) + q(x)v(x)(98)

with a smooth real q (cf. (5)).
Lemma 10. Let (M, g, ∂M) be a k-finite manifold of bounded geometry

and a(x,D) be an operator of form (98) with ρ, ρ−1 ∈ C∞(M) ∩ C2
b (M)

q ∈ C∞(M) ∩ C0
b (M).

Then for any real valued η ∈ C∞(∂M) ∩ C1
b (∂M) the operator A,

Av = a(x,D)v; D(A) = {v ∈ H2(M) : ∂νv + ηv|∂M = 0}(99)

is self-adjoint and bounded from below, i.e. A ≥ −c0. Moreover, D((A +
c)1/2) = H1(M) when c > c0.

We remind the readers that Ckb stands for the class of functions having
k uniformly bounded derivatives.

Lemma 10 can be proved by following arguments of [Sh1]. The idea of
the proof is to consider a minimal operator A0 defined by (98) on C∞

η (M),
i.e., the set of smooth functions satisfying the Robin boundary condition
(99). Then A = cl(A0) is a self-adjoint operator with D(A) = {v ∈
H2(M) : ∂νv + ηv|∂M = 0}. This may be shown by the same technique
of minimal-maximal operators and methods based on finite propagation
speed as in [Sh1] (also [Ch]).

Remark 8. For readers convenience we note that Green’s formula is
valid on the manifolds of bounded geometry. Indeed, by using definition
(96) we see for instance that for u, v ∈ D(A) ∩H1

c (M)
∫

M

(v a(x,D)u− u a(x,D)v) ρdVg(x) =

∫

∂M

(v Bu− uBv)) ρdSg(x).

This fact is used many times in our considerations.
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