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ITERATIVE TIME-REVERSAL CONTROL
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Abstract. A novel method to solve inverse problems for the wave equation is

introduced. The method is a combination of the boundary control method and

an iterative time reversal scheme, leading to adaptive imaging of coefficient

functions of the wave equation using focusing waves in unknown medium. The

approach is computationally effective since the iteration lets the medium do

most of the processing of the data.

The iterative time reversal scheme also gives an algorithm for approximating
a given wave in a subset of the domain without knowing the coefficients of the
wave equation.
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1. Introduction. We present a novel inversion method for the wave equation.
Suppose that we can send waves from the boundary into an unknown body with
spatially varying wave speed c(x). Using a combination of the boundary control
(BC) method and an iterative time reversal scheme, we show how to focus waves
near a point x0 inside the medium and simultaneously recover c(x0) if the wave
speed is isotropic. In the anisotropic case we can reconstruct the wave speed up to
a change of coordinates.

Let us describe the simple isotropic case more precisely. Take a closed and
bounded set M ⊂ R

3 with smooth boundary ∂M , and let c(x) be a scalar-valued
wave speed in M . Consider the wave equation

utt − c(x)2∆u = 0 in M × R+, (1)

u|t=0 = 0, ut|t=0 = 0,

− c(x)−2∂nu = f(x, t) in ∂M × R+,

where ∂n denotes the Euclidean normal derivative. We denote by uf = uf (x, t) the
solution of (1) corresponding to the boundary source term f .

The inverse problem is to reconstruct the wave speed c(x) from the set

{f |∂M×(0,2T ), uf |∂M×(0,2T ) : f ∈ C∞
0 (∂M × (0, 2T ))},

that is, the Cauchy data of solutions corresponding to all possible boundary sources
f ∈ C∞

0 (∂M×(0, 2T ))with large enough observation time 2T . This data constitutes
the response operator

Λ2T : f 7→ uf |∂M×(0,2T ), (2)
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also called the non-stationary Neumann-to-Dirichlet map. Physically, Λ2T f de-
scribes the measurement of the medium response to any applied boundary source
f , see [26].

In the classical BC method material parameters are reconstructed from Λ2T us-
ing hyperbolic techniques, see [1, 6, 7, 9, 23, 24, 25]. Straightforward numerical
implementation of the BC method is difficult: some procedures involved (such as
the Gram-Schmidt orthogonalization) are unstable, as seen in [8]. Inspired by Isaac-
son’s iterative measurement scheme [20] for electrical impedance tomography (EIT),
we overcome these problems by combining the BC method with an adaptive time
reversal iteration that lets the medium do most processing of the data.

Traditional time reversal methods record waves, invert them in time, and send
them back into the medium. If the recorded signal originates from point sources,
or is the reflection of an input wave from small scatterers in the medium, the time
reversed waves focus at the source or scatterer points. This is useful for time reversal
mirrors in communication technologies and medical therapies. The efficient use of
feedback is the main advantage of time reversal: outputs of previous measurements
dictate the input of the next one. For early references on time reversal (using
ultrasound in air), see the seminal works of Fink et al. [17, 16, 15]. For a microlocal
discussion of time reversal, see [3, 4], and for another mathematical treatment see
[27].

Time reversal in known background medium with random fluctuations has also
been extensively studied, see e.g. [5, 12], and applied to medical imaging, non-
destructive testing and underwater acoustics. These methods are outside the scope
of this paper.

Iterative time reversal has been used to find best measurements for inverse prob-
lems. By “best” we here mean “optimal for detecting the presence of an object”.
This distinguishability problem has been studied for fixed-frequency problems in EIT
[20] and acoustic scattering [36]. The connection between optimal measurements
and iterative time-reversal experiments was pointed out in [36, 37, 38]. For the
wave equation, the best measurement problem has been studied in [14], where the
optimal incident field for probing a half space was found by an iteration involving
time reversal.

Take T > 0 larger than the radius of M in travel time metric, so that any point
inside M can be reached by waves sent from the boundary before time T . The new

method introduced in this paper is based on a family of boundary sources h̃(α)

obtained from an arbitrary initial source f . For α > 0, the sources h̃(α) produce

waves u
eh(α)(T ) that converge to C0(x0)u

f (x0, T )δ(x−x0) as α → 0, where x0 ∈ M

has prescribed travel time coordinates. We call u
eh(α)(x, t) the focusing waves, as at

time t = T the function u
eh(α)(x, T ) is concentrated near x0 when α is small.

The sources h̃(α) are constructed iteratively for any α > 0. Each step in the
iteration uses time reversal, two very simple linear operators, and the response
Λ2T gj for one specific source gj . We call this process the iterative time reversal
control (ITRC).

The ITRC method proposed here has the advantage of the BC-method to be
applicable to fully non-linear inverse problems with an unknown background. Si-
multaneously, ITRC exploits feedback properties of the time reversal schemes with
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the output of the previous measurement producing the input of the next measure-
ment. The iterative nature of ITRC avoids non-physical sources which occur in the
BC-method and provides robustness against measurement noise.

The ITRC method is valid not only for the equation (1) but for a more general
equation

utt(x, t) + Au(x, t) = 0 in M × R, (3)

where A is a formally self-adjoint elliptic partial differential operator. In particular,
ITRC applies to anisotropic cases with lower order terms specified on Riemannian
manifolds.

For the acoustic equation, we can use the focusing waves to determine the
geodesics starting from the boundary points. For more general hyperbolic equa-
tions, we use those geodesics to determine the travel time distance between any
interior point and any boundary point, leading to the recovery of the wave speed in
the medium.

The paper is organized as follows. In Section 2 we formulate our main results
separately for acoustic equation and for more general hyperbolic equations. In
Section 3 we prove the convergence of iterative time-reversal control. Section 4 is
devoted to the analysis of the focusing properties of the waves, and in Section 5 we
show how to reconstruct the metric using the boundary distance function. In the
last section we discuss our method in the case of noisy measurements.

2. Main results. In this section we will describe the iteration procedure for the
time reversal and apply it to solve the inverse problem for the acoustic wave equation
(1). We will also describe the results on the inverse problems for the general wave
equation (3). Proof of results are postponed to later sections.

2.1. Notations. Let us consider the closure M ⊂ R
m, m ≥ 1, of an open smooth

set, or a (non-compact or compact) complete Riemannian manifold (M, g) of dimen-
sion m with a non-empty boundary. For simplicity, we assume that the boundary
∂M is compact. Let u solve the wave equation

utt(x, t) + Au(x, t) = 0 in M × R+, (4)

u|t=0 = 0, ut|t=0 = 0,

Bν,ηu|∂M×R+
= f.

Here, f ∈ L2(∂M ×R+) is a real valued function, A is a formally self-adjoint elliptic
partial differential operator of the form (in local coordinates in the case when M is
a manifold)

(5)

Av = −
m∑

j,k=1

µ(x)−1|g(x)|−
1
2

∂

∂xj

(
µ(x)|g(x)|

1
2 gjk(x)

∂v

∂xk
(x)

)
+ q(x)v(x),

where gjk(x) is a smooth real positive definite matrix, |g| = det(gjk(x))−1, and
µ(x) > 0 and q(x) are smooth real valued functions. Furthermore,

Bν,ηv = −∂νv + ηv,

where η : ∂M → R is a smooth function and

∂νv =

m∑

j,k=1

µ(x)gjk(x)νk
∂

∂xj
v(x),
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with ν(x) = (ν1, ν2, . . . , νm) being the normalized,
∑m

j,k=1 gjkνjνk = 1, interior
co-normal vector field of ∂M .

A particular example is the operator

A0 = −c2(x)∆ + q(x) (6)

for which ∂νv = c(x)−m+1∂nv, where ∂nv is the Euclidean normal derivative of v.
We denote the solutions of (4) by

u(x, t) = uf (x, t).

For the initial boundary value problem (4) we define the response operator (or the
non-stationary Robin-to-Dirichlet map) Λ by setting

Λf = uf |∂M×R+
. (7)

We also consider the finite time response operator ΛT corresponding to the finite
observation time T > 0,

ΛT f = uf |∂M×(0,T ). (8)

By [42], the map ΛT : L2(∂M × (0, T )) → H1/3(∂M × (0, T )) is bounded, where
Hs(∂M × (0, T )) denotes the Sobolev space on ∂M × (0, T ). Below we consider ΛT

as a bounded operator that maps L2(∂M × (0, T )) to itself.
The matrix gjk(x) (the inverse of the matrix gjk(x)) is called the travel time

metric. This is because waves propagate with unit speed with respect to the metric
ds2 =

∑
jk gjk(x)dxjdxk. We denote by d(x, y) the distance function corresponding

to gjk(x). For the wave equation we define the space L2(M,dVµ) with inner product

〈u, v〉L2(M,dVµ) =

∫

M

u(x)v(x) dVµ(x),

where dVµ = µ(x)|g(x)|1/2dx1dx2 . . . dxm.
For t > 0 and Γ ⊂ ∂M , let

M(Γ, t) = {x ∈ M : d(x,Γ) ≤ t}, (9)

be the domain of influence of Γ at time t.
For any set B ⊂ ∂M ×R+, we denote L2(B) = {f ∈ L2(∂M ×R+) : supp (f) ⊂

B}, identifying functions and their zero continuations. When Γ ⊂ ∂M is an open
set and f ∈ L2(Γ×R+), it is well known (see e.g. [19]) that the wave uf (t) = uf (· , t)
is supported in the domain M(Γ, t),

uf (t) ∈ L2(M(Γ, t)) = {v ∈ L2(M) : supp (v) ⊂ M(Γ, t)}.

2.2. Definition and convergence results for the ITRC. Our objective is to
find a boundary source h such that the wave uh(x, T ) is localized in a neigh-
bourhood of a single point x0. Note that in this paper we do not focus the pair
(uh(x, T ), uh

t (x, T )), but only the value of the wave, uh(x, T ).
Let Γ ⊂ ∂M be an open set and f ∈ L2(Γ×R+). Then supp(uf (T )) ⊂ M(Γ, T ).

Let now 0 < T0 < T so that the set M(Γ, T ) \ M(∂M, T0) is a subregion in M , see
Fig. 1. We will show how to construct boundary sources h(α) ∈ L2(∂M × [0, T ]),
α > 0, such that

lim
α→0

uh(α)(T ) = χM(∂M,T0)u
f (T ), (10)

where χN (x) is the characteristic function of a set N . Then

lim
α→0

uf−h(α)(T ) = (1 − χM(∂M,T0))u
f (T )
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Figure 1. The set M(Γ, T )\M(∂M, T0). Our goal is to find waves
sent from the boundary that focus into this area.

ss

Γ

M(∂M, T0)
M(Γ, T )

is the wave uf (T ) cut-off onto M(Γ, T ) \ M(∂M, T0), see Fig. 1. Actually, our
construction will be valid in a more general setting when, instead of the collar
neighborhood M(∂M, T0), we will be dealing with a more general set N of the form

N =
⋃J

j=1 M(Γj , Tj).
To proceed further, we define the time reversal map R2T and the time filter J2T :

R2T f(x, t) = f(x, 2T − t), (11)

J2T h(x, t) =

∫

[0,2T ]

J2T (s, t)h(x, s)ds

where J2T (s, t) = 1
2χL(s, t),

L = {(s, t) ∈ R+ × R+ : t + s ≤ 2T, s > t}. (12)

We note that the doubling of time, from T to 2T in (12) is due to the fact that, for
wave uf measured at ∂M to bring information about all points x ∈ M(Γ, T ), the
measurements’ time should be at least 2T .

For an open set B ⊂ ∂M × [0, 2T ], we denote by P = PB : L2(∂M × [0, 2T ]) →
L2(∂M × [0, 2T ]) the multiplication operator

PBf(x, t) = χB(x, t) f(x, t).

We choose B =
⋃J

j=1(Γj × [T − Tj , T ]), where Γj ⊂ ∂M are open sets and 0 ≤
Tj ≤ T . In the following, we consider Λ2T , R2T , PB and J2T as operators in
L2(∂M × [0, 2T ]).

Let α ∈ (0, 1) and ω > 0 be a sufficiently large constant. We define an, bn and
hn = hn(α) ∈ L2(∂M × [0, 2T ]) iteratively:

an := Λ2T (hn), bn := Λ2T (R2T J2T hn),

hn+1 := (1 −
α

ω
)hn −

1

ω
(PBR2T bn − P2T J2T an) + F, (13)

with a0 = 0, b0 = 0, h0 = 0, and

F =
1

ω
PB(R2T Λ2T R2T J2T − J2T Λ2T )f.
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Figure 2. Subsets of M used in Corollary 1. Note that the set

M(Γj , T̂ ) \ M(∂M, T0) shrinks to one point x = x̂ when j → ∞

and T0 → T̂ .

PSfrag replacements

∂M ẑ Γj

x̂

T0

T̂

Here an corresponds to the “iterated measurement”, bn to the “time filtered and
time-reversed measurement” and hn+1 to post-processing of hn, an and bn using
time reversal and time filtering. We say that formula (13) describes iterative time-
reversal control (ITRC) with time-interval [0, 2T ], projector PB , and starting point
f ∈ L2(∂M × [0, 2T ]).

Theorem 1. Let T > 0. Assume we are given ∂M and the response operator
Λ2T . Let Γj ⊂ ∂M , j = 1, . . . , J , be non-empty open sets, 0 ≤ Tj ≤ T , and

B =
⋃J

j=1(Γj × [T − Tj , T ]). Let f ∈ L2(∂M ×R+) and let, for ω large enough and

α ∈ (0, 1), the functions hn = hn(α) be defined by the ITRC (13) with projector PB

and starting point f0 = f |∂M×(0,2T ). These functions converge in L2(∂M × R+),

h(α) = lim
n→∞

hn(α)

and the limits satisfy

lim
α→0

uh(α)(x, T ) = χN (x)uf (x, T )

in L2(M), where N =
⋃J

j=1 M(Γj , Tj) ⊂ M .

We note that similar approaches in the case when N = M have been developed
in [21, 31].

This theorem is proven in Section 3. Let us now consider some its consequences.

2.3. Results on focusing of the waves. Let us consider a geodesic γx,ξ in (M, g)
parameterized by the arclength with γx,ξ(0) = x, γ̇x,ξ(0) = ξ, and ‖ξ‖g = 1. Let
ν = ν(z), z ∈ ∂M be the interior unit normal vector to ∂M . There is a critical
value τ(z) ∈ (0,∞], such that for t < τ(z) the geodesic γz,ν([0, t]) is the unique
shortest geodesic from its endpoint γz,ν(t) to ∂M , and for t > τ(z) it is no longer
a shortest geodesic.

We say that Γj → {ẑ} if Γj+1 ⊂ Γj and
⋂∞

j=1 Γj = {ẑ}.
Theorem 1 yields the following result which provides a method to generate fo-

cusing waves, that is, the wave from the boundary that, at a fixed time t = T , are
supported at a single point.

Corollary 1. Let ẑ ∈ ∂M and 0 < T0 < T̂ < T . Let x̂ = γẑ,ν(T̂ ) and Γj ⊂ ∂M ,
j ∈ Z+ be open neighbourhoods of ẑ ∈ ∂M such that Γj → {ẑ} when j → ∞.
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Let f ∈ C∞
0 (∂M × R+) and hn(α;T0, j) be the functions obtained by the ITRC

(13) with projector PB, B = (Γj × [T − T̂ , T ]) ∪ (∂M × [T − T0, T ]) and starting
point f0 = f |∂M×(0,2T ). Similarly, let h′

n(α;T0) be the functions obtained by (13)
with projector PB′ , B′ = ∂M × [T − T0, T ] and starting point f0. Denote

h̃n(α;T0, j) = hn(α;T0, j) − h′
n(α;T0).

If T̂ < τ(ẑ) then

(14)

lim
T0→bT

lim
j→∞

lim
α→0

lim
n→∞

1

(T̂ − T0)(m+1)/2
u

ehn(α;T0,j)(T ) = C0(x̂)uf (x̂, T )δx̂(x)

in D′(M) where C0(x̂) > 0 does not depend on f . If T̂ > τ(ẑ) the limit (14) is zero.

Above, δx̂ is the Dirac delta-distribution on (M, g) such that
∫

M

δx̂(x)φ(x) dVµ = φ(x̂), φ ∈ C∞
0 (M).

Note that we can determine τ(ẑ) by finding supremum of all those T̂ for which
(14) is non-zero with some f .

2.4. Acoustic wave equation. Before formulating the results on the inverse prob-
lems for the general equation (4), (5), let us describe the procedure of finding the
unknown wave speed, c(x) for the equation (1). The additional property used for
this case is that we can actually find the Euclidian coordinates x̂k, k = 1, . . . ,m, of

the point x̂ = γẑ,ν(T̂ ) described in Corollary 1. Indeed, for any boundary source f ,
we have two important identities to be proven in section 3. To describe them, we
introduce the functionals

Ij
2T f =

∫ 2T

0

∫ t′

0

∫

∂M

(f(x, t′′)xj − Λ2T f(x, t′′)∂νxj) dSg(x)dt′′dt′, (15)

I0
2T f =

∫ 2T

0

∫ t′

0

∫

∂M

f(x, t) dSg(x) dt′′dt′, (16)

where (x1, . . . , xm) are the Euclidian coordinates of x ∈ M . Then, defining µ(x) =
c(x)2−n, we have

∫

M

xjuf (x, T ) dVµ(x) = Ij
2T f,

∫

M

uf (x, T ) dVµ(x) = I0
2T f. (17)

As the right-hand side of (15) is written in terms of the response operator Λ2T , this
makes it possible to immediately solve the inverse problem for the acoustic equation
(1):

Corollary 2. Let ẑ ∈ ∂M and 0 < T̂ < T , x̂ = γẑ,ν(T̂ ). Also, let f ∈ C∞
0 (∂M ×

R+) and h̃n(α;T0, j) be the functions obtained from the ITRC as in Corollary 1.
Assume that the limit (14) is non-zero. Then

lim
T0→bT

lim
j→∞

lim
α→0

lim
n→∞

I l
2T h̃n(α;T0, j)

I0
2T h̃n(α;T0, j)

= x̂l(ẑ, T̂ ), l = 1, 2, . . . ,m.

where x̂l(ẑ, T̂ ) are The Euclidian coordinates of x̂ = γẑ,ν(T̂ ).
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Moreover,

c(x̂)2 =

m∑

l=1

(
∂sx̂

l(ẑ, s)|s= bT

)2
.

We note that, for equation (17) to be valid, we need Au = 0 for u = xl and
u = 1. This is definitely the case for the acoustic operator, A = c(x)2∆ but not for
a general A of form (5).

2.5. General hyperbolic equation. It is well known, see e.g. [23, 24, 25, 28],
that the response map Λ can not, in general, determine coefficients µ and gjk of
operator A (see (5)) uniquely due to two transformations discussed below.

First, we can introduce a differentiable coordinate transformation F : M → M
such that the boundary value F |∂M is the identity operator. Then the push forward
metric g̃ = F∗g, that is,

g̃jk(y) =

m∑

p,`=1

∂xp

∂yj

∂x`

∂yk
gp`(x), y = F (x),

and the functions µ̃ = µ ◦ F−1, q̃ = q ◦ F−1, and η̃ = η determine the operator Ã

of form (5) such that the response operators for A and Ã are the same.
Second, we can apply a gauge transformation u(x, t) → κ(x)u(x, t), where κ ∈

C∞(M) is a strictly positive function. The operator Ã is then transformed to the

operator Ãκ,

Ãκw := κÃ(κ−1w)

and the boundary operator Bν,η – to Bν,bη, with

η̂ = η − κ−1∂νκ.

Thus, the response operator Λ̃κ of Ãκ coincides with the response operator Λ of A.
Note that, making a gauge transformation with κ = µ−1, we come to the operator

Ãκ of form (5) with µ(x) = 1.

Corollary 3. Assume that µ = 1 and we are given the boundary ∂M and the
response operator Λ. Then, using ITRC, we can find, in a constructive way, the
manifold (M, g) up to an isometry and the operator A uniquely.

Moreover, if M ⊂ R
m, m ≥ 2, and A is of form (6), given the set M and the

response operator Λ we can determine c(x) and q(x) uniquely.

3. Proof of the convergence of the iteration.

3.1. Controllability results. Proof of equation (17). The seminal result im-
plying controllability is Tataru’s unique continuation result, see [41, 43]:

Theorem 2 (Tataru). Let u be a solution of wave equation

utt(x, t) + Au(x, t) = 0.

Assume that

u|Γ×(0,2τ) = 0, ∂νu|Γ×(0,2τ) = 0 (18)

where Γ ⊂ ∂M, Γ 6= ∅ is open, and τ > 0. Then,

u(x, τ) = 0, ∂tu(x, τ) = 0 for x ∈ M(Γ, τ).
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This result yields the following Tataru’s controllability result, see e.g. [24] and
references therein.

Theorem 3. Let Γ ⊂ ∂M be open and τ > 0. Then the linear subspace

{uf (τ) ∈ L2(M(Γ, τ)) : f ∈ C∞
0 (Γ × [0, τ ])}

is dense in L2(M(Γ, τ)).

3.2. Inner products. Let us consider the Blagovestchenskii identity, which goes
back to [10]

Lemma 1. Let f, h ∈ L2(∂M × [0, 2T ]). Then
∫

M

uf (x, T )uh(x, T ) dVµ(x) = (19)

∫

[0,2T ]2

∫

∂M

J(t, s)
[
f(t)(Λ2T h)(s) − (Λ2T f)(t)h(s)

]
dSg(x)dtds,

where J(t, s) = 1
2χL(s, t), see (12).

The proof in a slightly different context is given e.g. in [24].
Proof. Let w(t, s) =

∫
M

uf (t)uh(s) dVµ. Integrating by parts, we see that

(∂2
t − ∂2

s )w(t, s) (20)

= −

∫

M

[
Auf (t)uh(s) − uf (t)Auh(s)

]
dVµ(x)

−

∫

∂M

[
∂νuf (t)uh(s) − uf (t)∂νuh(s)

]
dSg

=

∫

∂M

[
(−∂νuf (t) + ηuf (t))uh(s) − uf (t)(−∂νuh(s) + ηuh(s))

]
dSg

=

∫

∂M

[
f(t)Λ2T h(s) − Λ2T f(t)h(s)

]
dSg.

Moreover, as

w|t=0 = w|s=0 = 0, ∂tw|t=0 = ∂sw|s=0 = 0,

we can consider (20) as one dimensional wave equation with known right hand
side and vanishing initial and boundary data. Solving this initial boundary value
problem, we obtain (19). 2

The Schwartz kernel of Λ2T is the Dirichlet boundary value of the Green’s func-
tion G(x, x′, t − t′) satisfying

(∂2
t + A)Gx′,t′(x, t) = δx′(x)δ(t − t′) in M × R+, (21)

Gx′,t′ |t=0 = 0, ∂tGx′,t′ |t=0 = 0, Bν,ηGx′,t′ |∂M×R+
= 0,

where Gx′,t′(x, t) = G(x, x′, t − t′). As

G(x, x′, t − t′) = G(x′, x, t − t′),

we see that

Λ∗
2T = R2T Λ2T R2T

where R2T f(x, t) = f(x, 2T − t) is the time reversal map.
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Thus, we can rewrite formula (19) in the form
∫

M

uf (x, T )uh(x, T ) dVµ(x) =

∫

∂M×[0,2T ]

(Kf)(x, t)h(x, t) dSg(x)dt (22)

where K is defined as

K = K2T := R2T Λ2T R2T J2T − J2T Λ2T . (23)

Analyzing (23), we see that the inner product in the left-hand side of (22) can
be found by making two measurements, one with the input f and the other with
the input R2T J2T f, obtained from f by basic operations of the time reversal R2T

and the time filtering J2T .
Similar considerations make it possible to prove equations (17) for the acoustic

equation (1). Recall that in this case µ = c(x)2−m. Let p(x) = xj , j = 1, . . . ,m, be
coordinate functions and

vj(t) =

∫

M

p(x)uf (x, t) dVµ(x).

Note that ∆p(x) = 0. Integrating by parts, we see that

∂2
t vj(t) = −

∫

M

(−c2(x)∆uf (x, t) )p(x) dVµ(x) =

∫

M

∆uf (x, t)p(x) dx

=

∫

∂M

(∂nuf (x, t)p(x)uf (x, t)nj) dSe(x)

=

∫

∂M

(f(x, t)p(x) − (Λ2T f)(x, t)∂νp(x)) dSg(x).

Again, vj(0) = v′
j(0) = 0 and we obtain formula (15) by integration. The formula

(17) follows analogously using the constant function p(x) = 1.

3.3. Proof of Theorem 1. Let us analyze the minimization problem

min
h∈L2(B)

‖uf (T ) − uh(T )‖2
L2(M,dVµ) (24)

where B =
⋃J

j=1(Γj × [T − Tj , T ]), Γj ⊂ ∂M are open and 0 ≤ Tj ≤ T .
As the solution of this minimization problem does not always exist, we can reg-

ularize it and study

min
h∈L2(∂M×[0,2T ])

F (h, α), (25)

where α ∈ (0, 1) and

F (h, α) = 〈K(Ph − f), Ph − f〉L2(∂M×[0,2T ],dSg) + α‖h‖2
L2(∂M×[0,2T ],dSg).

We recall that P = PB is multiplication with the characteristic function of B, that
is, (PBh)(x, t) = χB(x, t) ·h(x, t).

By (22),

F (h, α) = ‖uf (T ) − uPh(T )‖2
L2(M,dVµ) + α‖h‖2

L2(∂M×[0,2T ]).

The minimization problem (25) is equivalent to (24) when α = 0.

Lemma 2. For given α ∈ (0, 1) the problem (25) has a unique minimizer. More-
over, the minimizer is the unique solution of the equation

(PKP + α)h = PKf. (26)
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Proof. The minimization problem is strictly convex, and the map h 7→ uh(T ) is
continuous L2(∂M×[0, 2T ]) → Hs1(M), s1 < 5/6 by [35], see also [34]. Now if hj →
h weakly in L2(∂M× [0, 2T ]) as j → ∞ then Phj → Ph weakly in L2(∂M× [0, 2T ]).
As the embedding Hs1(M) → L2(M) is compact, then uPhj (T ) → uPh(T ) in
L2(M). Therefore,

lim
j→∞

〈K(Phj − f), Phj − f〉L2(∂M×[0,2T ])

= lim
j→∞

‖uPhj (T ) − uf (T )‖2
L2(M,dVµ) = ‖uPh(T ) − uf (T )‖2

L2(M,dVµ).

Let hj be a sequence such that limj→∞ F (hj , α) = infh F (h, α). As F (h, α) ≥
α‖h‖2

L2 , the sequence (hj) is bounded. Thus by choosing a subsequence of hj , we
can assume that hj converge to h in the weak topology of L2(∂M × [0, 2T ]), Since
‖h‖L2 ≤ lim infj→∞ ‖hj‖L2 , this implies that F (h, α) ≤ lim inf F (hj , α). Thus, the
limit h is a global minimizer of F (· , α).

By computing the Fréchet derivative, Dh of the functional F (h, α) in any direc-

tion h̃ ∈ L2(∂M × [0, 2T ]) at a minimizer h, we see that

0 = Dh(〈K(Ph − f), Ph − f〉 + α‖h‖2
L2)h̃

= 〈h̃, P ∗K(Ph − f)〉 + 〈h̃, P ∗K∗(Ph − f)〉 + 2α〈h̃, h〉

for all h̃. Since K∗ = K and P ∗ = P , this implies that h satisfies equation (26).
As K is non-negative, PKP + αI ≥ αI so that equation (26) has a unique solution
providing the minimizer h = h(α). 2

Note that equation (26) also implies that

h(α) ∈ Ran(P ). (27)

Next we want to solve equation (26) using iteration. To this end, let ω ∈ R+ be
a constant such that

ω > 2(1 + ‖PKP‖).

Then equation (26) can be written as

(I − S)h =
1

ω
PKf, where S = I −

α + PKP

ω
. (28)

Since PKP is non-negative and

αI ≤ αI + PKP ≤
ω

2
I,

we see that ‖S‖ ≤ 1 − α/ω < 1. Thus we can solve h using iterations: Let

F :=
1

ω
PKf =

1

ω
P (J2T Λ2T − R2T Λ2T R2T J2T )f,

h0 = 0, and consider the iterations

hn+1 = Shn + F, n = 0, 1, . . . .

As hn = Phn by (27), we can write these iterations in the form (13), and limn→∞ hn =
h(α) in L2(∂M × [0, 2T ]).

Applying this algorithm can find the minimizers h = h(α) ∈ Ran (P ) of problem
(26). The corresponding waves converge by the following lemma:
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Lemma 3. We have

lim
α→0

uh(α)(x, T ) = χN (x)uf (x, T )

in L2(M), with N =
⋃J

j=1 M(Γj , Tj) as in Theorem 1.

Proof. As uPh(T ) = χNuPh(T ),

F (h, α) = F0 + ‖χN (uPh(T ) − uf (T ))‖2
L2(M) + α‖h‖2

L2(∂M×[0,2T ]),(29)

where

F0 = ‖(1 − χN )uf (T )‖2
L2(M)

does not depend on h. By Theorem 3, for any ε > 0 there is hε ∈ L2(B) such that

‖uPhε(T ) − χNuf (T )‖2
L2(M) <

ε

2
. (30)

Thus we have

F (hε, α) = F0 +
ε

2
+ α‖h(ε)‖2

L2(∂M×[0,2T ]).

This shows that if α < α(ε), where

α(ε) :=
ε

2‖h(ε)‖2
L2(∂M×[0,2T ])

,

then

F (hε, α) ≤ F0 + ε.

Thus the minimizer h(α) of F (h, α) with α < α(ε) satisfies

F (h(α), α) ≤ F0 + ε.

As by (27), h(α) = Ph(α), we get from (29) that, for α < α(ε),

‖χN (uh(α)(T ) − uf (T ))‖2
L2(M) ≤ ε/2. (31)

Using again that uh(α)(T ) = χNuh(α)(T ), the claim follows. 2

Theorem 1 follows from Lemmata 2 and 3. 2

4. Proofs for the focusing of the waves. In this section we prove Corollaries 1
and 2.

Proof of Corollary 1. Let (z(x), s(x)) be the boundary normal coordinates of
x ∈ M , that is, s(x) = d(x, ∂M) and z(x) is the closest point of ∂M to x when
such a point is unique. When a closest boundary point is not unique, the boundary
normal coordinates are not defined.

We consider first the claim of the corollary in the case when T̂ < τ(ẑ). Then

the boundary normal coordinates near x̂ = γẑ,ν(T̂ ) are well defined and the metric
tensor in these coordinates has the form

g =

(
1 0
0 [gαβ(z, s)]m−1

α,β=1

)
, (32)

where [gαβ(z, s)] ∈ R
(m−1)×(m−1) is a smooth positive definite matrix-valued func-

tion near (ẑ, T̂ ) = (z(x̂), s(x̂)). Then there is a C1 = C1(ẑ, T̂ ) > 1 such that

C−1
1 I ≤ [gαβ(z, s)] ≤ C1I
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near (ẑ, T̂ ). Using this we see that there is a C2 > 1 such that

C−1
2 ≤

volg
(
M({ẑ}, T̂ ) \ M(∂M, T0)

)

(T̂ − T0)(T̂ 2 − T 2
0 )(m−1)/2

≤ C2.

As the solution uf (x, t) is smooth for f ∈ C∞
0 (∂M × R+),

lim
T0→bT

χM({ẑ}, bT )∪M(∂M,T0)
− χM(∂M,T0)

volg
(
M({ẑ}, T̂ ) \ M(∂M, T0)

) uf (T ) = uf (x̂, T )δx̂

in D′(M), the claim follows in the case T̂ < τ(ẑ).

When T̂ > τ(z), the claim follows from the fact that, for sufficiently small T̂ −

T0 > 0, the set M({ẑ}, T̂ ) \ M(∂M, T0) is empty. 2

Remark 1. The above proof shows that in Corollary 1

C0(x̂) = lim
T0→bT

(T̂ − T0)
(m+1)/2

volg
(
M({ẑ}, T̂ ) \ M(∂M, T0)

) . (33)

Proof of Corollary 2. The claim follows directly from Corollary 1 if we take into
account that the geodesics have speed one with respect to the travel time metric
c(x)2|dx|2 and that almost any point in M lies on a unique shortest normal geodesic
to ∂M . 2

5. Boundary distance functions and reconstruction of the metric. Here
we present a method for finding the boundary distance functions using ITRC.

Let z, y ∈ ∂M , 0 ≤ T1 ≤ τ(z) and T > d∂M (y, z) + T1. Denote x = γz,ν(T1).
Next we give an algorithm that can be used to determine d(x, y).

To this end, let Γj ⊂ ∂M and Σj ⊂ ∂M be neighbourhoods of z and y, respec-
tively, such that Γj → {z} and Σj → {y} when j → ∞.

Let ε > 0, τ ∈ [0, T ], and

N1
j = M(Γj , T1) B1

j = Γj × [T − T1, T ]

N2
j = M(Σj , τ) B2

j = Σj × [T − τ, T ]

N3
ε = M(∂M, T1 − ε) B3

ε = ∂M × [T − (T1 − ε), T ].

Lemma 4. The distance d(x, y) is the infimum of all τ ∈ [0, T ] that satisfy the
condition

the set I(j, ε) = (N1
j ∩ N2

j ) \ N3
ε contains (34)

a non-empty open set for all j ∈ Z+, ε > 0.

See Figure 3 for a sketch of the cases of empty and non-empty I(j, ε).

Proof. First consider what happens if d(x, y) < τ . Since T1 ≤ τ(z), we see
that then B(x, r) ∩ (N1

j \ N3
ε ) contains a non-empty open set for all r > 0, where

B(x, r) ⊂ M is a ball of (M, g) with center x and radius r. When r < τ − d(x, y),
we see that B(x, r) ⊂ N2

j . Thus I(j, ε) contains an open set and (34) is satisfied.
On other hand, if d(x, y) > τ , let r = d(x, y) − τ . When j → ∞ and ε → 0,

we see using metric in the boundary normal coordinates (32) that N 1
j \ N3

ε → {x}
in the Hausdorff metric. Thus when j is large enough and ε is small enough,
N1

j \ N3
ε ⊂ B(x, r/2). Then B(x, r/2) ∩ N 2

j = ∅, and (34) is not satisfied.
Summarizing, condition (34) is satisfied if d(x, y) < τ and not satisfied if d(x, y) >

τ . As d(x, y) < T , this yields the claim. 2
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Figure 3. Sketch of the situation in Lemma 4 when I(j, ε) is
empty (left) and non-empty (right).

Next we show that by using ITRC we can test if condition (34) is valid. To this
end, denote

Ñ1(j, ε) = N1
j ∪ N3

ε B̃1(j, ε) = B1
j ∪ B3

ε

Ñ2(j, ε) = N2
j ∪ N3

ε B̃2(j, ε) = B2
j ∪ B3

ε

Ñ3(j, ε) = N1
j ∪ N2

j ∪ N3
ε B̃3(j, ε) = B1

j ∪ B2
j ∪ B3

ε

Ñ4(j, ε) = N3
ε B̃4(j, ε) = B3

ε .

Let f ∈ C∞
0 (∂M × R+). Using ITRC on time interval [0, 2T ] with projectors

PB corresponding to B = B̃k(j, ε), k = 1, 2, 3, 4 and starting point f , we obtain
functions hn(α; ε, j, k) ∈ L2(∂M × [0, 2T ]). Using them, define

(35)

pn(α, j, ε) = hn(α; ε, j, 1) + hn(α; ε, j, 2) − hn(α; ε, j, 3) − hn(α; ε, j, 4).

Lemma 5. The condition (34) is satisfied if and only if there exists an f ∈
C∞

0 (∂M ×R+) such that for any j ∈ Z+ and ε > 0 the functions pn(α, j, ε) defined
in formula (35) satisfy

lim
α→0

lim
n→∞

〈K2T pn(α, j, ε), pn(α, j, ε)〉 6= 0. (36)

Proof. The functions hn(α; ε, j, k) defined by ITRC satisfy

χ eNk(j,ε)u
f (T ) = lim

α→0
lim

n→∞
uhn(α;ε,j,k)(T ), k = 1, 2, 3, 4.

A simple computation gives us

χI(j,ε)(x) = χ eN1(j,ε)
(x) + χ eN2(j,ε)

(x) − χ eN3(j,ε)
(x) − χ eN4(j,ε)

(x) (37)

for all x ∈ M . Therefore, using (35) we see that in L2(M)

χI(j,ε)u
f (T ) = lim

α→0
lim

n→∞
upn(α,j,ε)(T ).

By Theorem 3 we see that the functions uf (T ) with f ∈ C∞
0 (∂M ×R+) are smooth

and form a dense set in L2(M(∂M, T )). Thus condition (34) is satisfied if and only
if there exists an f ∈ C∞

0 (∂M × R+) such that for any j ∈ Z+ and ε > 0

〈χI(j,ε)u
f (T ), uf (T )〉L2(M)

= lim
α→0

lim
n→∞

〈K2T pn(α, j, ε), pn(α, j, ε)〉L2(∂M×[0,2T ]) 6= 0.
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This proves the claim. 2

Lemmata 4 and 5 give an algorithm for the determination of d(x, y) from x =
γz,ν(T1) ∈ M to y ∈ ∂M by using ITRC. Indeed,

d(x, y) = inf{τ ∈ [0, T ] : there is an f ∈ C∞
0 (∂M × R+) (38)

such that (36) holds for all j ∈ Z+ and ε > 0}.

Summarizing, we have proven:

Proposition 1. Assume we are given ∂M and the response operator Λ. Let z, y ∈
∂M , T1 ≤ τ(z). Then using the algorithm (38) we can compute d(x, y) for x =
γz,ν(T1).

Let us consider consequences of the result above. To this end, we define the set
of the boundary distance functions. For each x ∈ M , the corresponding boundary
distance function, rx ∈ C(∂M) is given by

rx : ∂M → R+, rx(z) = d(x, z), z ∈ ∂M.

In fact, rx ∈ Lip (∂M) with the Lipschitz constant equal to one. The boundary
distance functions define the boundary distance map R : M → C(∂M), R(x) = rx,
which is continuous and injective (see [24]). Denote by

R(M) = {rx ∈ C(∂M) : x ∈ M},

the image of R. It is known (see [24, 25, 29]) that, given the set R(M) ⊂ C(∂M)
we can endow it, in a constructive way, with a differentiable structure and a metric
tensor g̃, so that (R(M), g̃) becomes a manifold that is isometric to (M, g),

(R(M), g̃) ∼= (M, g).

A stable procedure of construction of (M, g) as a metric space from the set R(M), g̃)
and the corresponding Hölder type stability estimates are given in [22].

Example By the triangle inequality,

‖rx − ry‖∞ ≤ d(x, y). (39)

We consider in this example the case when (M, g) is a compact manifold such that
all points x, y ∈ M can be joined with a unique shortest geodesic. This implies that,
for any x, y ∈ M , the shortest geodesic γ([0, s]) from x to y, parameterized by the
arclength, can be continued to a maximal geodesic γ([0, L]) that hits the boundary
at a point z = γ(L) ∈ ∂M . Then

|rx(z) − ry(z)| = d(x, y)

implying equality in (39). Thus in the case when all geodesics between arbitrary
points x, y ∈ M are unique, the manifold (M, g) is isometric to the manifold R(M)
with the distance function inherited from C(∂M). In the general case the construc-
tion of the metric is more elaborate.

By Theorem 1 we can compute for all x = γz,ν(T ) with T ≤ τ(z) the corre-
sponding boundary distance function rx. Since all points x ∈ M can be represented
in this form (see e.g. [13]) we can find the set R(M) that can be endowed with a
manifold structure isometric to the original manifold (M, g). We have thus proven
the following result:

Corollary 4. Assume we are given ∂M and the response operator Λ. Then using
the ITRC we can find the manifold (M, g) up to an isometry.
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Corollary 4 can also be formulated by saying that we can find the metric tensor
g in local coordinates. For example, for any point x0 ∈ M there are zj ∈ ∂M ,
j = 1, 2, . . . ,m, such that x 7→ (X1(x), . . . , Xm(x)) with Xj(x) := d(x, zj) define
local coordinates near x0. In these coordinates the distance functions x 7→ d(x, z),
z ∈ ∂M determine the metric tensor. For details of this construction, see [24].

Next we prove Corollary 3.

Proof of Corollary 3. As the boundary data ∂M and Λ determine (M, g) up
to an isometry, we can apply formula (33) to find the function C0(x), x ∈ M in
Corollary 1. Thus in local coordinates we can find the values of waves uf (x, t) for
all x ∈ M , t > 0. By Tataru’s controllability theorem, the waves uf (x, T ) with
fixed f ∈ C∞

0 (∂M × (0, T )) form a dense set in L2(M(∂M, T )). In this dense set
we can find the functions

Auf (x, t) = −∂2
t uf (x, t) = −uftt(x, t),

implying that we can find the values Aw for all w ∈ L2(M(∂M, T )). As T is
arbitrary, we find Aw for all w ∈ L2(M).

Having at hand the values of Aw for all w ∈ L2(M), and using (5), we can
identify, for µ = 1 and already known in local coordinates gij(x), the potential
q(x).

When M ⊂ R
m and A is of the form (6), our further constructions are based on

the uniqueness, if any, of the isometric embedding of a Riemannian manifold into
R

m of the same dimension such that the metric becomes isotropic and the boundary
∂M is kept fixed. As we know a priori that such embedding exists, we use this to
find c(x) in the Euclidian coordinates in M (for the details of this and following
constructions, see [24, section 4.5], or [28]). We then find the unique κ so that the
gauge transformed operator Aκ takes the form (5) with µ = 1. As the potential q
for Aκ is already found, by applying κ−1 we recover q. 2

6. Iteration when measurements have errors. Let (Ω,Σ, P) be a complete
probability space.

Assume the measurements have a random noise, that is, the measurements give
us, for an input f , the output Λ2T f + ε, where ε is random Gaussian noise that has
values in L2(∂M×(0, 2T )). Assume that Eε = 0 and denote the covariance operator
of ε by Cε. Note that Cε is a compact operator on L2(∂M × (0, 2T )), e.g. [11], and
thus the standard white noise on ∂M × (0, 2T ) does not satisfy our assumptions.

Assume that the noise is independent of previous measurements each time when
we do a new measurement. When the noise is added to the ITRC, we come to the
iteration of the form

h̃n+1 = Sh̃n + p + Nn,

where Nn = PJε1n − PRε2n with the random variables ε1n and ε2n having the same
distribution as ε. Thus Nn are independent identically distributed Gaussian random
variables satisfying ENn = 0 and having covariance operator CN = PJCεJ

∗P ∗ +
PRCεR

∗P ∗. Let us consider the averaged results of iterations

h̃ave
K =

1

K

K∑

n=1

h̃n. (40)
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Then

1

K

K∑

n=1

h̃n =
1

K

K∑

n=1

hn +
1

K

K∑

n=1

n∑

m=1

(n − m + 1)Sn−mNn

=

(
1

K

K∑

n=1

hn

)
+

(
1

K

K∑

n=1

(I − S)−2Nn

)

+

(
1

K

K∑

n=1

(−(I − S)−2Sn+2 − (n + 2)(I − S)−1Sn+1)Nn

)

= H1
K + H2

K + H3
K ,

where hn are the results of the ITRC without noise.
Above, the deterministic term H1

K converges to limn→∞ h̃n = h(α), that is, to
the same limit as the ITRC without noise. Now consider H2

K and H3
K as random

variables in L2(∂M × (0, T )). They can also be viewed as random fields on ∂M ×
(0, T ), see [39]. By the law of large numbers in infinite dimensional spaces [18], we
see that

lim
K→∞

‖H2
K‖L2(∂M×(0,T )) = 0. (41)

As ‖S‖L(L2(∂M)) ≤
1
2 , the last term H3

K also satisfies an estimate analogous to (41).
Thus the averaged ITRC with noise converges to the same limit as ITRC without
noise, that is,

lim
K→∞

h̃ave
K = h(α) in L1(Ω;L2(∂M × (0, T ))).
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