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1. Introduction

In electrical impedance tomography one aims to determine the in-
ternal structure of a body from electrical measurements on its sur-
face. To consider the precise mathematical formulation of the electrical
impedance tomography problem, suppose that Ω ⊂ Rn is a bounded
domain with connected complement and let us start with the case when
σ : Ω → (0,∞) be a measurable function that is bounded away from
zero and infinity.

Then the Dirichlet problem

∇ · σ∇u = 0 in Ω,(1)

u
∣∣
∂Ω

= φ ∈W 1/2,2(∂Ω)(2)

admits a unique solution u in the Sobolev space W 1,2(Ω). Here

W 1/2,2(∂Ω) = H1/2(∂Ω) = W 1,2(Ω)/W 1,2
0 (Ω)

stands for the space of equivalent classes of functions W 1,2
0 (Ω) that are

same up to a function in W 1,2
0 (Ω) = clW 1,2(Ω)(C

∞
0 (Ω)). This is the most

general space of functions that can possibly arise as Dirichlet boundary
values or traces of general W 1,2(Ω)-functions in a bounded domain Ω.

In terms of physics, if the electric potential of a body Ω at point x
is u(x), having the boundary value φ = u|∂Ω, and there are no sources
inside the body, u satisfies the equations (1)-(2). The electric current
J in the body is equal to

J = −σ∇u.
In electrical impedance tomography, one measures only the normal
component of the current, ν · J |∂Ω = −ν · σ∇u, where ν is the unit
outer normal to the boundary. For smooth σ this quantity is well
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defined pointwise, while for general bounded measurable σ we need to
use the (equivalent) definition of ν · σ∇u|∂Ω,
(3)

〈ν · σ∇u, ψ〉 =

∫

Ω

σ(x)∇u(x) ·∇ψ(x) dm(x) , for all ψ ∈W 1,2(Ω)(Ω),

as an element ofH−1/2(∂Ω), the dual of space ofH1/2(∂Ω) = W 1/2,2(∂Ω).
Here, m is the Lebesgue measure.

Calderón’s inverse problem is the question whether an unknown con-
ductivity distribution inside a domain can be determined from the volt-
age and current measurements made on the boundary. The measure-
ments correspond to the knowledge of the Dirichlet-to-Neumann map
Λσ (or the quadratic form) associated to σ, i.e., the map taking the
Dirichlet boundary values of the solution of the conductivity equation

(4) ∇ · σ(x)∇u(x) = 0

to the corresponding Neumann boundary values,

Λσ : u|∂Ω 7→ ν · σ∇u|∂Ω.(5)

For sufficiently regular conductivities the Dirichlet-to-Neumann map
Λσ can be considered as an operator from W 1/2,2(∂Ω) to W−1/2,2(∂Ω).
In the classical theory of the problem, the conductivity σ is bounded
uniformly from above and below. The problem was originally pro-
posed by Calderón [19] in 1980. Sylvester and Uhlmann [74] proved
the unique identifiability of the conductivity in dimensions three and
higher for isotropic conductivities which are C∞-smooth, and Nach-
man gave a reconstruction method [62]. In three dimensions or higher
unique identifiability of the conductivity is proven for conductivities
with 3/2 derivatives [69], [17] and C1,α-smooth conductivities which are
C∞ smooth outside surfaces on which they have conormal singularities
[34]. In a recent preprint of Haberman and Tataru, the uniqueness has
been proven for the C1-smooth conductivities [37]. The problems has
also been solved with measurements only on a part of the boundary
[43].

In two dimensions the first global solution of the inverse conductivity
problem is due to Nachman [63] for conductivities with two derivatives.
In this seminal paper the ∂ technique was first time used in the study
of Calderón’s inverse problem. The smoothness requirements were re-
duced in [18] to Lipschitz conductivities. Finally, in [11] the uniqueness
of the inverse problem was proven in the form that the problem was
originally formulated in [19], i.e., for general isotropic conductivities in
L∞ which are bounded from below and above by positive constants.
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The Calderón problem with an anisotropic, i.e., matrix-valued, con-
ductivity that is uniformly bounded from above and below has been
studied in two dimensions [73, 63, 51, 7, 38] and in dimensions n ≥ 3
[53, 51, 70]. For example, for the anisotropic inverse conductivity
problem in the two dimensional case it is known that the Dirichlet-
to-Neumann map determines a regular conductivity tensor up to a dif-
feomorphism F : Ω → Ω, i.e., one can obtain an image of the interior
of Ω in deformed coordinates. This implies that the inverse problem
is not uniquely solvable, but the non-uniqueness of the problem can
be characterized. We note that the problem in higher dimensions is
presently solved only in special cases, like when the conductivity is real
analytic.

Electrical impedance tomography has a variety of different applica-
tions for instance in engineering and medical diagnostics. For a general
expository presentations see [16, 22], for medical applications see [25].

In the last section we will study the inverse conductivity problem
in the two dimensional case with degenerate conductivities. Such con-
ductivities appear in physical models where the medium varies contin-
uously from a perfect conductor to a perfect insulator. As an example,
we may consider a case where the conductivity goes to zero or to in-
finity near ∂D where D ⊂ Ω is a smooth open set. We ask what kind
of degeneracy prevents solving the inverse problem, that is, we study
what is the border of visibility. We also ask what kind of degeneracy
makes it even possible to coat of an arbitrary object so that it appears
the same as a homogeneous body in all static measurements, that is,
we study what is the border of the invisibility cloaking. Surprisingly,
these borders are not the same; We identify these borderlines and show
that between them there are the electric holograms, that is, the conduc-
tivities creating an illusion of a non-existing body (see Fig. 1). These
conductivities are the counterexamples for the unique solvability of in-
verse problems for which even the topology of the domain can not be
determined using boundary measurements.

In this presentation we concentrate on solving Calderón’s inverse
problem in two dimensions. The presentation is based on the works
[11, 5, 7, 8] where the problem is considered using the quasiconformal
techniques. In higher dimensions the usual method is to reduce, by sub-
stituting v = σ1/2u, the conductivity equation (1) to the Schrödinger
equation and then to apply the methods of scattering theory. Indeed,
after such a substitution v satisfies

∆v − qv = 0,
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where q = σ−1/2∆σ1/2. This substitution is possible only if σ has some
smoothness. In the case σ ∈ L∞, relevant for practical applications the
reduction to the Schrödinger equation fails. In two dimensional case
we can overcome this by using methods of complex analysis. However,
what we adopt from the scattering theory type approaches is the use
of exponentially growing solutions, the so-called geometric optics so-
lutions to the conductivity equation (1). These are specified by the
condition

(6) u(z, ξ) = eiξz
(

1 + O
(

1

|z|

))
as |z| → ∞,

where ξ, z ∈ C and ξz denotes the usual product of these complex
numbers. Here we have set σ ≡ 1 outside Ω to get an equation defined
globally. Studying the ξ-dependence of these solutions then gives rise to
the basic concept of this presentation, the nonlinear Fourier transform
τσ(ξ). The detailed definition will be given Section 2.6.

Thus to start the study of τσ(ξ) we need first to establish the exis-
tence of exponential solutions. Already here the quasiconformal tech-
niques are essential. We note that the study of the inverse problems
is closely related to the non-linear Fourier transform: It is not difficult
to show that the Dirichlet-to-Neumann boundary operator Λσ deter-
mines the nonlinear Fourier transforms τσ(ξ) for all ξ ∈ C. Therefore
the main difficulty, and our main strategy, is to invert the nonlinear
Fourier transform, show that τσ(ξ) determines σ(z) almost everywhere.

The properties of the nonlinear Fourier transform depend on the
underlying differential equation. In one dimension the basic properties
of the transform are fairly well understood, while deeper results such
as analogs of Carleson’s L2-converge theorem remain open. The reader
should consult the excellent lecture notes of Tao and Thiele [75] for an
introduction to the one-dimensional theory.

For (1) with nonsmooth σ, many basic questions concerning the non-
linear Fourier transform, even such as finding a right version of the
Plancherel formula, remain open. What we are able to show is that
for σ±1 ∈ L∞, with σ ≡ 1 near ∞, we have a Riemann-Lebesgue type
result,

τσ ∈ C0(C).

Indeed, this requires the asymptotic estimates of the solutions (6), and
these are the key point and main technical part of our argument. For
results on related equations, see [66]. The nonlinear Fourier transform
in two dimensional case is also closely related to the Novikov-Veselov
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(NV) equation that is a (2+1)-dimensional nonlinearevolution equation
that generalizes the (1+1)-dimensional Korteweg-deVries(KdV) equa-
tion, see [14, 50, 76, 78].

2. Calderón’s inverse for isotropic L∞-conductivity

To avoid some of the technical complications, below we assume that
the domain Ω = D = D(1), the unit disk. In fact, see [11], the reduction
of general Ω to this case is not difficult. Our main aim in this section is
to consider the the following uniqueness result and its generalizations:

Theorem 2.1. [11] Let σj ∈ L∞(D), j = 1, 2. Suppose that there is a
constant c > 0 such that c−1 ≤ σj ≤ c. If

Λσ1 = Λσ2 ,

then σ1 = σ2 almost everywhere. Here Λσi
, i = 1, 2, are defined by (5).

For the first steps in numerical implementation of the solution of the
inverse problem based on quasiconformal methods see [9].

Our approach will be based on quasiconformal methods, which also
enables the use of tools from complex analysis. These are not available
in higher dimensions, at least to the same extent, and this is one of
the reasons why the problem is still open for L∞-coefficients in the
three and higher dimensional case. The complex analytic connection
comes as follows: From Theorem 2.3 below we see that if u ∈ W 1,2(D)
is a real-valued solution of (1), then it has the σ-harmonic conjugate
v ∈W 1,2(D) such that

∂xv = −σ∂y u, ∂yv = σ∂x u.(7)

Equivalently (see (26)), the function f = u + iv satisfies the R-linear
Beltrami equation

(8)
∂f

∂z̄
= µ(z)

∂f

∂z
,

where ∂f
∂z̄

= ∂z̄f = 1
2
(∂xf + i∂yf), ∂f

∂z
= ∂z̄f = 1

2
(∂xf − i∂yf), and

µ =
1 − σ

1 + σ
.

In particular, note that µ is real-valued and that the assumptions on σ
in Theorem 2.1 imply ‖µ‖L∞ ≤ k < 1. This reduction to the Beltrami
equation and the complex analytic methods it provides will be the
main tools in our analysis of the Dirichlet-to-Neumann map and the
solutions to (1).
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2.1. Linear and non-linear Beltrami equations. A powerful tool
for finding the exponential growing solutions to the conductivity equa-
tion (including degenerate conductivities) are given by the non-linear
Beltrami equation. We therefore first review few of the basic facts here.
For more details and results see [5].

We start with general facts on the linear divergence-type equation

(9) divA(z)∇u = 0, z ∈ Ω ⊂ R
2

where we assume that u ∈W 1,2
loc (Ω) and that the coefficient matrix

(10) A = A(z) =

[
α11 α12

α21 α22

]
, α21 = α12,

is symmetric and elliptic,

(11)
1

K(z)
|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K(z)|ξ|2, ξ ∈ R

2,

almost everywhere in Ω. Here, 〈η, ξ〉 = η1ξ1 + η2ξ2 for η, ξ ∈ R2. We
denote by KA(z) the smallest number for which (11) is valid. We start
with the case when A(z) is assumed to be isotropic, A(z) = σ(z)I with
σ(z) ∈ R+. We also assume that there is K ∈ R+ such that KA(z) ≤ K
almost everywhere.

For many purposes it is convenient to express the above ellipticity
condition (11) in terms of the following single inequality:

(12) |ξ|2 + |A(z)ξ|2 ≤
(
KA(z) +

1

KA(z)

)
〈A(z)ξ, ξ〉

for almost every z ∈ Ω and all ξ ∈ R2. For the symmetric matrix
A(z) this is seen by representing the matrix as a diagonal matrix in
the coordinates given by the eigenvectors.

Below we will study the divergence equation (9) by reducing it to
the complex Beltrami system. For solutions to the divergence equation
(9) a conjugate structure, similar to harmonic functions, is provided by
the Hodge star operator ∗, which here really is nothing more than the
(counterclockwise) rotation by 90 degrees,

(13) ∗ =

[
0 − 1
1 0

]
: R

2 → R
2, ∗∗ = −I.

There are two vector fields associated with each solution to the ho-
mogeneous equation

divA(z)∇u = 0, u ∈W 1,2
loc (Ω).
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The first, E = ∇u, has zero curl (in the sense of distributions, the
curl of any gradient field is zero), while the second, B = A(z)∇u, is
divergence-free as a solution to the equation.

It is the Hodge star ∗ operator that transforms curl-free fields into
divergence-free fields, and vice versa. In particular, if

E = ∇w = (wx, wy), w ∈W 1,1
loc (Ω),

then ∗E = (−wy, wx) and hence

div(∗E) = div(∗∇w) = 0,

at least in the distributional sense. We recall here the following well-
known fact from calculus (the Poincaré lemma).

Lemma 2.2. Let E ∈ Lp(Ω,R2), p ≥ 1, be a vector field defined on
a simply connected domain Ω. If CurlE = 0, then E is a gradient
field; that is, there exists a real-valued function u ∈ W 1,p(Ω) such that
∇u = E.

When u is A-harmonic function in a simply connected domain Ω,
that is, u solves the equation divA(z)∇u = 0, then the field ∗A∇u is
curl-free and may be rewritten as

(14) ∇v = ∗A(z)∇u,
where v ∈ W 1,2

loc (Ω) is some Sobolev function unique up to an addi-
tive constant. This function v we call the A-harmonic conjugate of
u. Sometimes in the literature one also finds the term stream function
used for v.

The ellipticity conditions for A can be equivalently formulated for
the induced complex function f = u+iv. We arrive, after a lengthy but
quite routine purely algebraic manipulation, at the equivalent complex
first-order equation for f = u + iv, which we record in the following
theorem.

Theorem 2.3. Let Ω be a simply connected domain and let u ∈W 1,1
loc (Ω)

be a solution to

(15) div A∇u = 0.

If v ∈ W 1,1(Ω) is a solution to the conjugate A-harmonic equation
(14), then the function f = u+ iv satisfies the homogeneous Beltrami
equation

(16)
∂f

∂z̄
− µ(z)

∂f

∂z
− ν(z)

∂f

∂z
= 0.
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The coefficients are given by

(17) µ =
α22 − α11 − 2iα12

1 + Trace(A) + detA
, ν =

1 − detA

1 + Trace(A) + detA
.

Conversely, if f ∈ W 1,1
loc (Ω,C) is a mapping satisfying (16), then

u = Re (f) and v = Im (f) satisfy (14) with A given by solving the
complex equations in (17),

α11(z) =
|1 − µ|2 − |ν|2
|1 + ν|2 − |µ|2 ,(18)

α22(z) =
|1 + µ|2 − |ν|2
|1 + ν|2 − |µ|2 ,(19)

α12(z) = α21(z) =
−2 Im (µ)

|1 + ν|2 − |µ|2 ,(20)

The ellipticity of A can be explicitly measured in terms of µ and ν.
The optimal ellipticity bound in (11) is

(21) KA(z) = max{λ1(z), 1/λ2(z)},
where 0 < λ2(z) ≤ λ1(z) < ∞ are the eigenvalues of A(z). With this
choice we have pointwise

(22) |µ(z)| + |ν(z)| =
KA(z) − 1

KA(z) + 1
< 1.

We also denote by Kf(z) the smallest number for which the inequal-
ity

(23) ‖Df(z)‖2 ≤ Kf (z)J(z, f)

is valid. Here, Df(z) ∈ R2 is the Jacobian matrix (or the derivative)
of f at z and J(z, f) = det (Df(z)) is the Jacobian determinant of f .

Below, let k ∈ [0, 1] and K ∈ [1,∞] be constants satisfying

sup
z∈Ω

(|µ(z)| + |ν(z)|) ≤ k and K :=
1 + k

1 − k
.(24)

Then (16) yields ∣∣∣∣
∂f

∂z̄

∣∣∣∣ ≤ k

∣∣∣∣
∂f

∂z

∣∣∣∣ .

The above ellipticity bounds have then the relation

(25) Kf(z) ≤ KA(z) ≤ K for a.e. z ∈ Ω.

A mapping f ∈ W 1,2
loc (Ω) satisfying (23) with Kf (z) ≤ K < ∞ is

called a K-quasiregular mappings. If f is a homeomorphism, we call



THE CALDERÓN’S INVERSE PROBLEM - IMAGING AND INVISIBILITY 9

it K-quasiconformal. By Stoilow’s factorization Theorem B.9 any K-
quasiregular mapping is a composition of holomorphic function and a
K-quasiconformal mapping.

Note the following:

1. In this correspondence, ν is real valued if and only if the matrix
A is symmetric.

2. A has determinant 1 if and only if ν = 0 (this corresponds to
the C-linear Beltrami equation).

3. A is isotropic, that is, A = σ(z)I with σ(z) ∈ R+, if and only if
µ(z) = 0. For such A, the Beltrami equation (16) then takes the form

(26)
∂f

∂z̄
− 1 − σ

1 + σ

∂f

∂z
= 0.

2.2. Existence and uniqueness for non-linear Beltrami equa-

tions. Solutions to the Beltrami equation conformal near infinity are
particularly useful in solving the equation.

When µ and ν as above have compact support and we have aW 1,2
loc (C)

solution to the Beltrami equation fz̄ = µfz + νfz̄ in C, where fz̄ = ∂z̄f
and fz = ∂zf , normalized by the condition

f(z) = z + O(1/z)

near ∞, we call f a principal solution. Indeed, with the Cauchy and
Beurling transform (see the appendix) we have the identities

(27)
∂f

∂z
= 1 + S ∂f

∂z̄
,

and

(28) f(z) = z + C
(∂f
∂z̄

)
(z), z ∈ C.

Principal solutions are necessarily homeomorphisms. In fact we have
the following fundamental Measurable Riemann Mapping Theorem,

Theorem 2.4. Let µ(z) be compactly supported measurable function
defined in C with ‖µ‖L∞ ≤ k < 1. Then there is a unique principal
solution to the Beltrami equation

∂f

∂z̄
= µ(z)

∂f

∂z
for almost every z ∈ C,

and the solution f ∈ W 1,2
loc (C) is a K-quasiconformal homeomorphism

of C.
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The result holds also for the general Beltrami equation with coeffi-
cients µ and ν, see Theorem 2.5 below.

In constructing the exponentially growing solutions to the divergence
and Beltrami equations, the most powerful approach is by non-linear
Beltrami equations which we next discuss.

When one is looking for solutions to the general nonlinear elliptic
systems

(29)
∂f

∂z̄
= H

(
z, f,

∂f

∂z

)
, z ∈ C

there are necessarily some constraints to be placed on the function H
that we now discuss. We write

H : C × C × C → C.

We will not strive for full generality, but settle for the following special
case. For the most general existence results, with very weak assump-
tions on H , see [5]. Here we assume:

(1) The homogeneity condition, that fz̄ = 0 whenever fz = 0,
equivalently,

H(z, w, 0) ≡ 0, for almost every (z, w) ∈ C × C

(2) The uniform ellipticity condition, that for almost every z, w ∈ C

and all ζ, ξ ∈ C,

|H(z, w, ζ)−H(z, w, ξ)| ≤ k|ζ − ξ|, 0 ≤ k < 1

(3) The Lipschitz continuity in the function variable,

|H(z, w1, ζ) −H(z, w2, ζ)| ≤ C|ζ | |w1 − w2|
for some absolute constant C independent of z and ζ .

Theorem 2.5. Suppose H : C×C×C → C satisfies the conditions 1–3
above and is compactly supported in the z-variable. Then the uniformly
elliptic nonlinear differential equation

(30)
∂f

∂z̄
= H

(
z, f,

∂f

∂z

)

admits exactly one principal solution f ∈W 1,2
loc (C).

Sketch of the proof. (For complete proof, see [5, Chapter 8]) Unique-
ness is easy. Suppose that both f and g are principal solutions to (30).
Then

∂f

∂z̄
= H

(
z, f,

∂f

∂z

)
,

∂g

∂z̄
= H

(
z, g,

∂f

∂z

)
.
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We set F = f − g and estimate

|Fz̄| = |H(z, f, fz) −H(z, g, gz)|
≤ |H(z, f, fz) −H(z, f, gz)| + |H(z, f, gz) −H(z, g, gz)|
≤ k|fz − gz| + CχR|gz||f − g|,

where χR denotes the characteristic function of the disk D(R) of radius
R and center zero. Put briefly, F satisfies the differential inequality

|Fz̄| ≤ k|Fz| + CχR|gz||F |
By assumption, the principal solutions f, g ∈W 1,2

loc (C) with

lim
z→∞

f(z) − g(z) = 0

Once we observe that

σ = CχR(z)|gz| ∈ L2(C)

and has compact support, Liouville type results such as Theorem B.8
in the Appendix shows us that F ≡ 0, as desired.

The proof of existence we only sketch, for details, in the more general
setup of Lusin measurable H , see [5, Chapter 8].

We look for a solution f in the form

(31) f(z) = z + Cφ, φ ∈ Lp(C) of compact support,

where the exponent p > 2. Note that

fz̄ = φ, fz = 1 + Sφ.
Thus we need to solve only the following integral equation:

(32) φ = H
(
z, z + Cφ, 1 + Sφ

)
.

To solve this equation we first associate with every given φ ∈ Lp(C) an
operator R : Lp(C) → Lp(C) defined by

RΦ = H
(
z, z + Cφ, 1 + SΦ

)

Through the ellipticity hypothesis we observe that R is a contractive
operator on Lp(C). Indeed, from (30) we have the pointwise inequality

|RΦ1 −RΦ2| ≤ k |SΦ1 − SΦ2|.
Hence

‖RΦ1 − RΦ2‖p ≤ k Sp‖Φ1 − Φ2‖p, kSp < 1,

for p sufficiently close to 2. By the Banach contraction principle, R has
a unique fixed point Φ ∈ Lp(C). In other words, with each φ ∈ Lp(C)
we can associate a unique function Φ ∈ Lp(C) such that

(33) Φ = H
(
z, z + Cφ, 1 + SΦ

)
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In fact, the procedure (33), φ 7→ Φ, gives a well-defined and nonlinear
operator T : Lp(C) → Lp(C) by simply requiring that Tφ = Φ. Further,
solving the original integral equation (32) means precisely that we have
to find a fixed point for the operator T. This, however, is more involved
than in the case of the contraction R, and one needs to invoke the
celebrated Schauder fixed-point theorem, see [5, Chapter 8] for details.
�

2.3. Complex Geometric Optics Solutions. Below in this section,
where we prove Theorem 2.1, we will assume that A is isotropic,

A(z) = σ(z)I, σ(z), σ(z) ∈ R+ and c1 ≤ σ(z) ≤ c2 with c1, c2 > 0.

Moreover, we will denote

µ =
1 − σ(z)

1 + σ(z)
.

We will use the following convenient notation

(34) eξ(z) = ei(zξ+z̄ ξ), z, ξ ∈ C.

The main emphasize in the analysis below is on isotropic conductivities,
corresponding to the Beltrami equations of type (26). However, for
later purposes it is useful to consider exponentially growing solutions
to divergence equations with matrix coefficients, hence we are led to
general Beltrami equations.

We will extend the coefficient matrix A(z) to the entire plane C by
requiring A(z) ≡ I when |z| ≥ 1. Clearly, this keeps all ellipticity
bounds. Moreover, then

µ(z) ≡ ν(z) ≡ 0, |z| ≥ 1

As a first step toward Theorem 2.1, we establish the existence of a
family of special solutions to (16). These, called the complex geometric
optics solutions, are specified by having the asymptotics

(35) fµ,ν(z, ξ) = eiξzMµ,ν(z, ξ),

where

(36) Mµ,ν(z, ξ) − 1 = O
(

1

z

)
as |z| → ∞.

Theorem 2.6. Let µ and ν be functions supported in D that k in (24)
satisfies k < 1. Then for each parameter ξ ∈ C and for each 2 ≤ p <
1 + 1/k, the equation

(37)
∂f

∂z̄
= µ(z)

∂f

∂z
+ ν(z)

∂f

∂z
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admits a unique solution f = fµ,ν ∈ W 1,p
loc (C) that has the form (35)

with (36) holding. In particular, f(z, 0) ≡ 1.

Proof. Any solution to (37) is quasiregular. If ξ = 0, (35) and (36)
imply that f is bounded, hence constant by the Liouville theorem.

If ξ 6= 0, we seek for a solution f = fµ,ν(z, ξ) of the form

(38) f(z, ξ) = eiξψξ(z), ψξ(z) = z + O
(

1

z

)
as |z| → ∞

Substituting (38) into (37) indicates that ψξ is the principal solution
to the quasilinear equation

(39)
∂

∂z̄
ψξ(z) = µ(z)

∂

∂z
ψξ(z) −

ξ

ξ
e−ξ
(
ψξ(z)

)
ν(z)

∂

∂z
ψξ(z).

The function H(z, w, ζ) = µ(z)ζ − (ξ/ξ) ν(z) eξ(w) ζ satisfies require-
ments 1–3 of Theorem 2.5. We thus obtain the existence and uniqueness
of the principal solution ψξ in W 1,2

loc (C). Equation (39) together with

Theorem B.5 yields ψξ ∈ W 1,p
loc (C) for all p < 1 + 1/k since |µ(z)| ≤ k

and eξ is unimodular.
Finally, to see the uniqueness of the complex geometric optics solu-

tion fµ,ν , let f ∈W 1,2
loc (C) be a solution to (37) satisfying

(40) f = αeiξz
(

1 + O
(

1

z

))
as |z| → ∞.

Denote then

µ1(z) = µ(z)
∂zf(z)

∂zf(z)

where ∂zf(z) 6= 0 and set µ1 = 0 elsewhere. Next, let ϕ be the unique
principal solution to

(41)
∂ϕ

∂z̄
= µ1

∂ϕ

∂z̄
.

Then the Stoilow factorization, Theorem B.9, gives f = h ◦ ϕ, where
h : C → C is an entire analytic function. But (40) shows that

h ◦ ϕ(z)

exp(iξϕ(z))
=

f(z)

exp(iξϕ(z))

has the limit α when the variable z → ∞. Thus

h(z) ≡ αeiξz.

Therefore f(z) = α exp(iξϕ(z)). In particular, if we have two solutions
f1, f2 satisfying (35), (36), then the argument gives

fε := f1 − (1 + ε)f2 = εeiξϕ(z),



14 K. ASTALA, M. LASSAS, L. PÄIVÄRINTA

The principal solutions are homeomorphisms with φ(z) = z +O(1
z
) as

|z| → ∞, where the error term O(1
z
) is uniformly bounded by Koebe

distortion, Theorem B.6. Letting now ε→ 0 gives f1 = f2. �

It is useful to note that if a function f satisfies (37), then if satisfies
not the same equation but the equation where ν is replaced by −ν. In
terms of the real and imaginary parts of f = u+ iv, we see that

(42)
∂f

∂z̄
= µ(z)

∂f

∂z
+ ν(z)

∂f

∂z
if and only if

∇ · A(z)∇u = 0 and ∇ · A∗(z)∇v = 0,

where A∗(z) = ∗A(z)−1∗ = 1
detA

A. In case A(z) = σ(z)I is isotropic
(i.e., µ = 0) and bounded by positive constants from above and below,
we see that

∂f

∂z̄
=

1 − σ

1 + σ

∂f

∂z
⇔ ∇ · σ∇u = 0 and ∇ · 1

σ
∇v = 0.

From these identities we obtain the complex geometric optics solutions
also for the conductivity equation (1).

Corollary 2.7. Suppose A(z) is uniformly elliptic, so that (11) holds
with K ∈ L∞(D). Assume also that A(z) = I for |z| ≥ 1.

Then the equation ∇ ·A(z)∇u(z) = 0 admits a unique weak solution
u = uξ ∈W 1,2

loc (C) such that

(43) u(z, ξ) = eiξz
(

1 + O
(

1

|z|

))
as |z| → ∞.

Proof. Let fµ,ν be the solution considered in Theorem 2.6. Using
equivalence (42) we see that the function

(44) u(z, ξ) = Re fµ,ν + i Im fµ,−ν

satisfies the requirements stated in the claim of the corollary.
To see the uniqueness, let u ∈ W 1,2

loc be any function satisfying the
divergence equation ∇·A(z)∇u(z) = 0 with (43). Then using Theorem
2.3 for the real and imaginary parts of u, we can write it as

u = Re f+ + iIm f− =
1

2
(f+ + f− + f+ − f−),

where f± are quasiregular mappings with

∂f±
∂z̄

= µ(z)
∂f±
∂z

± ν(z)
∂f±
∂z

and where µ, ν are given by (17). Given the asymptotics (43), it is
not hard to see that both f+ and f− satisfy (35) with (36). Therefore
f+ = fµ,ν and f− = fµ,−ν . �
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The exponentially growing solutions of Corollary 2.7 can be consid-
ered σ-harmonic counterparts of the usual exponential functions eiξz.
They are the building blocks of the nonlinear Fourier transform to be
discussed in more detail in Section 2.6.

2.4. The Hilbert Transform Hσ. Assume that u ∈ W 1,2(D) is a
weak solution to ∇ · σ(z)∇u(z) = 0. Then, by Theorem 2.3, u admits
a conjugate function v ∈W 1,2(D) such that

∂xv = −σ∂yu, ∂yv = σ∂xu.

Let us now elaborate on the relationship between u and v. Since
the function v is defined only up to a constant, we will normalize it by
assuming

(45)

∫

∂D

v ds = 0.

This way we obtain a unique map Hµ : W 1/2,2(∂D) → W 1/2,2(∂D) by
setting

(46) Hµ : u
∣∣
∂D

7→ v
∣∣
∂D
.

In other words, v = Hµ(u) if and only if
∫
∂D
v ds = 0, and u + iv has

a W 1,2-extension f to the disk D satisfying fz = µfz. We call Hµ the
Hilbert transform corresponding to (37).

Since the function g = −if = v − iu satisfies gz̄ = −µgz, we have

(47) Hµ ◦ H−µu = H−µ ◦ Hµu = −u+
1

2π

∫

∂D

u ds.

So far we have defined Hµ(u) only for real-valued functions u. By
setting

Hµ(iu) = iH−µ(u),

we extend the definition of Hµ(·) to all C-valued functions inW 1/2,2(∂D).
Note, however, that Hµ still remains only R-linear.

As in the case of analytic functions, the Hilbert transform defines
a projection, now on the “µ-analytic” functions. That is, we define
Qµ : W 1/2,2(∂D) →W 1/2,2(∂D) by

(48) Qµ(g) =
1

2
(g − iHµg) +

1

4π

∫

∂D

g ds.

Then Qµ is a projector in the sense that Q2
µ = Qµ. Furthermore, we

have the following lemma.
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Lemma 2.8. If g ∈ W 1/2,2(∂D), the following conditions are equiva-
lent:

(a) g = f
∣∣
∂D

, where f ∈W 1,2(D) satisfies fz = µfz

(b) Qµ(g) is a constant

Proof. Condition (a) holds if and only if g = u + iHµu + ic for
some real-valued u ∈ W 1/2,2(∂D) and real constant c. If g has this
representation, then Qµ(g) = 1

4π

∫
∂D
uds + ic. On the other hand, if

Qµ(g) is a constant, then we put g = u+ iw into (48) and use (47) to
show that w = Hµu+ constant. This shows that (a) holds. �

The Dirichlet-to-Neumann map (5) and the Hilbert transform (46)
are closely related, as the next lemma shows.

Theorem 2.9. Choose the counterclockwise orientation for ∂D and de-
note by ∂T the tangential (distributional) derivative on ∂D correspond-
ing to this orientation. We then have

(49) ∂THµ(u) = Λσ(u).

In particular, the Dirichlet-to-Neumann map Λσ uniquely determines
Hµ, H−µ and Λ1/σ.

Proof. By the definition of Λσ we have∫

∂D

ϕΛσu ds =

∫

D

∇ϕ · σ∇u dm(x) , ϕ ∈ C∞(D).

Thus, by (7) and integration by parts, we get∫

∂D

ϕΛσu ds =

∫

D

(∂xϕ∂yv − ∂yϕ∂xv) dm(x) = −
∫

∂D

v ∂Tϕ ds,

and (49) follows. Next,

−µ = (1 − 1/σ)/(1 + 1/σ),

and so Λ1/σ(u) = ∂TH−µ(u). Since by (47) Hµ uniquely determines
H−µ, the proof is complete. �

With these identities we can now show that, for the points z that lie
outside D, the values of the complex geometric optics solutions fµ(z, ξ)
and f−µ(z, ξ) are determined by the Dirichlet-to-Neumann operator Λσ.

Theorem 2.10. Let σ and σ̃ be two conductivities satisfying the as-
sumptions of Theorem 2.1 and assume Λσ = Λeσ. Then if µ and µ̃ are
the corresponding Beltrami coefficients, we have

(50) fµ(z, ξ) = feµ(z, ξ) and f−µ(z, ξ) = f−eµ(z, ξ)

for all z ∈ C \ D and ξ ∈ C.
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Proof. By Theorem 2.9 the condition Λσ = Λeσ implies that Hµ = Heµ.
In the same way Λσ determines Λσ−1 , and so it is enough to prove the
first claim of (50).

Fix the value of the parameter ξ ∈ C. From (48) we see that the
projections Qµ = Qeµ, and thus by Lemma 2.8

Qµ(f̃) = Qeµ(f̃) is constant.

Here we used the notation f̃ = feµ|∂D. Using Lemma 2.8 again, we see
that there exists a function G ∈ W 1,2(D) such that Gz = µGz in D and

G
∣∣
∂D

= f̃ .

We then define G(z) = feµ(z, ξ) for z outside D. Now G ∈W 1,2
loc (C), and

it satisfies Gz = µGz in the whole plane. Thus it is quasiregular, and
so G ∈ W 1,p

loc (C) for all 2 ≤ p < 2 + 1/k, k = ‖µ‖∞. But now G is a
solution to (35) and (36). By the uniqueness part of Theorem 2.6, we
obtain G(z) ≡ fµ(z, ξ). �

Similarly, the Dirichlet-to-Neumann operator determines the com-
plex geometric optics solutions to the conductivity equation at every
point z outside the disk D.

Corollary 2.11. Let σ and σ̃ be two conductivities satisfying the as-
sumptions of Theorem 2.1 and assume Λσ = Λeσ.

Then

uσ(z, ξ) = ueσ(z, ξ) for all z ∈ C \ D and ξ ∈ C.

Proof. The claim follows immediately from the previous theorem
and the representation uσ(z, ξ) = Re fµ(z, ξ) + iIm f−µ(z, ξ). �

2.5. Dependence on Parameters. Our strategy will be to extend
the identities fµ(z, ξ) = feµ(z, ξ) and uσ(z, ξ) = ueσ(z, ξ) from outside
the disk to points z inside D. Once we do that, Theorem 2.1 follows
via the equation fz = µfz.

For this purpose we need to understand the ξ-dependence in fµ(z, ξ)
and the quantities controlling it. In particular, we will derive equa-
tions relating the solutions and their derivatives with respect to the
ξ-variable. For this purpose we prove the following theorem.

Theorem 2.12. The complex geometric optics solutions uσ(z, ξ) and
fµ(z, ξ) are (Hölder)-continuous in z and C∞-smooth in the parameter
ξ.

The continuity in the z-variable is clear since fµ is a quasiregular
function of z. However, for analyzing the ξ-dependence we need to
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realize the solutions in a different manner, by identities involving linear
operators that depend smoothly on the variable ξ.

Let

fµ(z, ξ) = eiξzMµ(z, ξ), f−µ(z, ξ) = eiξzM−µ(z, ξ)

be the solutions of Theorem 2.6 corresponding to conductivities σ and
σ−1, respectively. We can write (8), (35) and (36) in the form

(51)
∂

∂z̄
Mµ = µ(z)

∂

∂z
(eξMµ), Mµ − 1 ∈W 1,p(C)

when 2 < p < 1+1/k. By taking the Cauchy transform and introducing
a R-linear operator Lµ,

(52) Lµg = C
(
µ
∂

∂z̄

(
e−ξ g

))
,

we see that (51) is equivalent to

(53) (I − Lµ)Mµ = 1.

Theorem 2.13. Assume that ξ ∈ C and µ ∈ L∞(C) is compactly
supported with ‖µ‖∞ ≤ k < 1. Then for 2 < p < 1 + 1/k the operator

I − Lµ : W 1,p(C) ⊕ C →W 1,p(C) ⊕ C

is bounded and invertible.

Here we denote by W 1,p(C)⊕C the Banach space consisting of functions
of the form f = constant + f0, where f0 ∈W 1,p(C).

Proof. We write Lµ(g) as

(54) Lµ(g) = C
(
µ e−ξ gz − i ξ µ e−ξ g

)
.

Then Theorem B.2 shows that

(55) Lµ : W 1,p(C) ⊕ C →W 1,p(C)

is bounded. Thus we need only establish invertibility.
To this end let us assume h ∈W 1,p(C). Consider the equation

(56) (I − Lµ)(g + C0) = h + C1,

where g ∈W 1,p(C) and C0, C1 are constants. Then

C0 − C1 = g − h− Lµ(g + C0),

which by (55) gives C0 = C1. By differentiating and rearranging we see
that (56) is equivalent to gz − µ(e−ξ g)z = hz + µ(C0e−ξ)z, or in other
words, to

(57) gz − (I−µe−ξS)−1
(
µ(e−ξ)zg

)
= (I−µe−ξS)−1

(
hz +µ(C0e−ξ)z

)
.
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We analyze this by using the real linear operator R defined by

R(g) = C
(
I − νS

)−1
(αg),

where ν(z) = µe−ξ satisfies |ν(z)| ≤ kχD(z) and α is defined by α =

µ(e−ξ)z = −iξ µ e−ξ. According to Theorem B.4, I− νS is invertible in
Lp(C) when 1+ k < p < 1+1/k, while the boundedness of the Cauchy
transform requires p > 2. Therefore R is a well-defined and bounded
operator on Lp(C) for 2 < p < 1 + 1/k.

Moreover, the right hand side of (57) belongs to Lp(C) for each h ∈
W 1,p(C). Hence this equation admits a unique solution g ∈ W 1,p(C) if
and only if the operator I −R is invertible in Lp(C), 2 < p < 1 + 1/k.

To get this we will use Fredholm theory. First, Theorem B.3 shows
thatR is a compact operator on Lp(C) when 2 < p < 1+1/k. Therefore
it suffices to show that I−R is injective. Suppose now that g ∈ Lp(C)
satisfies

g = Rg = C
(
I − νS

)−1
(αg).

Then g ∈ W 1,p(C) by Theorem B.2 and gz =
(
I − νS

)−1
(αg). Equiv-

alently,

(58) gz − νgz = αg

Thus the assumptions of Theorem B.8 are fulfilled, and we must have
g ≡ 0. Therefore I − R is indeed injective on Lp(C). By the Fredholm
alternative, it therefore is invertible in Lp(C). Therefore the operator
I− Lµ is invertible in W 1,p(C), 2 < p < 1 + 1/k. �

A glance at (52) shows that ξ → Lµ is an infinitely differentiable
family of operators. Therefore, with Theorem 2.13, we see that Mµ =
(I−Lµ)

−11 is C∞-smooth in the parameter ξ. Thus we have obtained
Theorem 2.12.

2.6. Nonlinear Fourier Transform. The idea of studying the ξ-
dependence of operators associated with complex geometric optics so-
lutions was used by Beals and Coifman [13] in connection with the
inverse scattering approach to KdV-equations. Here we will apply
this method to the solutions uσ to the conductivity equation (1) and
show that they satisfy a simple ∂-equation with respect to the param-
eter ξ.

We start with the representation uσ(z, ξ) = Re fµ(z, ξ)+i Im f−µ(z, ξ),
where f±µ are the solutions to the corresponding Beltrami equations;
in particular, they are analytic outside the unit disk. Hence with the
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asymptotics (36) they admit the following power series development,

(59) f±µ(z, ξ) = eiξz
(
1 +

∞∑

n=1

b±n (ξ)z−n
)
, |z| > 1,

where b+n (ξ) and b−n (ξ) are the coefficients of the series, depending on
the parameter ξ. For the solutions to the conductivity equation, this
gives

uσ(z, ξ) = eiξz +
a(ξ)

z
eiξz +

b(ξ)

z̄
e−iξ̄z̄ + eiξz O(

1

|z|2 )

as z → ∞, where

(60) a(ξ) =
b+1 (ξ) + b−1 (ξ)

2
, b(ξ) =

b+1 (ξ) − b−1 (ξ)

2 z̄
.

Fixing the z-variable, we take the ∂ξ-derivative of uσ(z, ξ) and get

(61) ∂ξ uσ(z, ξ) = −iτσ(ξ) e−iξ̄z̄
(
1 + O(

1

|z|)
)
,

with the coefficient

(62) τσ(ξ) := b(ξ).

However, the derivative ∂ξ uσ(z, ξ) is another solution to the conduc-
tivity equation! From the uniqueness of the complex geometric optics
solutions under the given exponential asymptotics, Corollary 2.7, we
therefore have the simple but important relation

(63) ∂ξ uσ(z, ξ) = −i τσ(ξ) uσ(z, ξ) for all ξ, z ∈ C.

The remarkable feature of this relation is that the coefficient τσ(ξ)
does not depend on the space variable z. Later, this phenomenon will
become of crucial importance in solving the inverse problem.

In analogy with the one-dimensional scattering theory of integrable
systems and associated inverse problems (see [13, 67, 68]), we call τσ
the nonlinear Fourier transform of σ.

To understand the basic properties of the nonlinear Fourier trans-
form, we need to return to the Beltrami equation. We will first show
that the Dirichlet-to-Neumann data determines τσ. This is straightfor-
ward. Then the later sections are devoted to showing that the nonlinear
Fourier transform τσ determines the coefficient σ almost everywhere.
There does not seem to be any direct method for this, rather we will
have to show that from τσ we can determine the exponentially growing
solutions f±µ defined in the entire plane. From this information the
coefficient µ, and hence σ, can be found.
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The non-linear Fourier transform τσ has many properties which are
valid for the linear Fourier transform. We have the usual transforma-
tion rules under scaling and and translation,

σ1(z) = σ(Rz) ⇒ τσ1(ξ) =
1

R
τσ(ξ/R),

σ2(z) = σ(z + p) ⇒ τσ2(ξ) = ei(pξ+p̄ξ̄)τσ(ξ).

but not much is known concerning questions such as the possibility of
a Plancherel formula. However, some simple mapping properties of it
can be proven. We will show that for σ as above, τσ ∈ L∞. For this
we need the following result, which is useful also elsewhere.

Here let fµ(z, ξ) = eiξzMµ(z, ξ) and f−µ(z, ξ) = eiξzM−µ(z, ξ) be the
solutions of Theorem 2.6 corresponding to conductivities σ and σ−1,
respectively, which are holomorphic outside D.

Theorem 2.14. For every ξ, z ∈ C we have M±µ(z, ξ) 6= 0. Moreover,

(64) Re

(
Mµ(z, ξ)

M−µ(z, ξ)

)
> 0 .

Proof. First, note that (8) implies, for M±µ,

(65)
∂

∂z̄
M±µ ∓ µe−ξ

∂

∂z
M±µ = ∓iξµe−ξM±µ.

Thus we may apply Theorem B.8 to get

(66) M±µ(z) = exp(η±(z)) 6= 0,

and consequently Mµ/M−µ is well defined. Second, if (64) is not true,
the continuity of M±µ and the fact limz→∞M±µ(z, ξ) = 1 imply the
existence of z0 ∈ C such that

Mµ(z0, ξ) = itM−µ(z0, ξ)

for some t ∈ R \ {0} and ξ ∈ C. But then, g = Mµ − itM−µ satisfies

∂

∂z̄
g = µ(z)

∂

∂z

(
eξg
)
,

g(z) = 1 − it+ O
(

1

z

)
, as z → ∞.

According to Theorem B.8, this implies

g(z) = (1 − it) exp(η(z)) 6= 0,

contradicting the assumption g(z0) = 0. �

The boundedness of the nonlinear Fourier transform is now a simple
corollary of Schwarz’s lemma.
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Theorem 2.15. The functions f±µ(z, ξ) = eiξzM±µ(z, ξ) satisfy, for
|z| > 1 and for all ξ ∈ C,

(67) |m(z)| ≤ 1

|z| , where m(z) =
Mµ(z, ξ) −M−µ(z, ξ)

Mµ(z, ξ) +M−µ(z, ξ)
.

Moreover, for the nonlinear Fourier transform τσ, we have

(68) |τσ(ξ)| ≤ 1 for all ξ ∈ C.

Proof. Fix the parameter ξ ∈ C. Then by Theorem 2.14, |m(z)| < 1
for all z ∈ C. Moreover, m is holomorphic for z ∈ C \ D, m(∞) = 0,
and thus by Schwarz’s lemma we have |m(z)| ≤ 1/|z| for all z ∈ C \ D.

On the other hand, from the development (59),

Mµ(z, ξ) = 1 +

∞∑

n=1

bn(ξ)z
−n for |z| > 1,

and similarly for M−µ(z, ξ). We see that

τσ(ξ) =
1

2

(
b+1 (ξ) − b−1 (ξ)

)
= lim

z→∞
z m(z) .

Therefore the second claim also follows. �

With these results the Calderón problem reduces to the question
whether we can invert the nonlinear Fourier transform.

Theorem 2.16. The operator Λσ uniquely determines the nonlinear
Fourier transform τσ.

Proof. The claim follows immediately from Theorem 2.10, from the
development (59) and from the definition (62) of τσ. �

From the relation −µ = (1 − 1/σ)/(1 + 1/σ) we see the symmetry

τσ(ξ) = −τ1/σ(ξ).
It follows that the functions

(69) u1 = Re fµ+i Im f−µ = uσ and u2 = iRe f−µ−Im fµ = iu1/σ

form a “primary pair” of complex geometric optics solutions:

Corollary 2.17. The functions u1 = uσ and u2 = iu1/σ are complex-

valued W 1,2
loc (C)-solutions to the conductivity equations

(70) ∇ · σ∇u1 = 0 and ∇ · 1

σ
∇u2 = 0,

respectively. In the ξ-variable they are solutions to the same ∂ξ -equation,

(71)
∂

∂ξ
uj(z, ξ) = −i τσ(ξ) uj(z, ξ), j = 1, 2,
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and their asymptotics, as |z| → ∞, are

uσ(z, ξ) = eiξz
(

1 + O
(

1

|z|

))
, u1/σ(z, ξ) = eiξz

(
i+ O

(
1

|z|

))
.

2.7. Subexponential Growth. A basic difficulty in the solution to
Calderón’s problem is to find methods to control the asymptotic be-
havior in the parameter ξ for complex geometric optics solutions. If
we knew that the assumptions of the Liouville type Theorem B.8 were
valid in (71), then the equation, hence the Dirichlet-to-Neumann map,
would uniquely determine uσ(z, ξ) with u1/σ(z, ξ), and the inverse prob-
lem could easily be solved. However, we only know from Theorem 2.15
that τσ(ξ) is bounded in ξ. It takes considerably more effort to prove
the counterpart of the Riemann-Lebesgue lemma, that is,

τσ(ξ) → 0, as ξ → ∞.

Indeed, this will be one of the consequences of the results in the present
section.

It is clear that some control of the parameter ξ is needed for uσ(z, ξ).
Within the category of conductivity equations with L∞-coefficients σ,
the complex analytic and quasiconformal methods provide by most
powerful tools. Therefore we return to the Beltrami equation. The
purpose of this section is to study the ξ-behavior in the functions
fµ(z, ξ) = eiξzMµ(z, ξ) and to show that for a fixed z, Mµ(z, ξ) grows
at most subexponentially in ξ as ξ → ∞. Subsequently, the result will
be applied to uj(z, ξ).

For some later purposes we will also need to generalize the situ-
ation a bit by considering complex Beltrami coefficients µλ of the
form µλ = λµ, where the constant λ ∈ ∂D and µ is as before. Ex-
actly as in Theorem 2.6, we can show the existence and uniqueness of
fλµ ∈W 1,p

loc (C) satisfying

(72)
∂

∂z̄
fλµ = λµ

∂

∂z
fλµ in C,

(73) fλµ(z, ξ) = eiξz
(

1 + O
(

1

z

))
as |z| → ∞.

In fact, we have that the function fλµ admits a representation of the
form

(74) fλµ(z, ξ) = ei ξ ϕλ(z,ξ),

where for each fixed ξ ∈ C \ {0} and λ ∈ ∂D, ϕλ(z, ξ) = z + O
(

1
z

)

for z → ∞. The principal solution ϕ = ϕλ(z, ξ) satisfies the nonlinear
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equation

(75)
∂

∂z̄
ϕ(z) = κλ,ξ e−ξ

(
ϕ(z)

)
µ(z)

∂

∂z
ϕ(z)

where κ = κλ,ξ = −λ ξ 2|ξ|−2 is constant in z with |κλ,ξ| = 1.

The main goal of this section is to show the following theorem.

Theorem 2.18. If ϕ = ϕλ and fλµ are as in (72)–(75), then

lim
ξ→∞

ϕλ(z, ξ) = z

uniformly in z ∈ C and λ ∈ ∂D.

From the theorem we have the immediate consequence,

Corollary 2.19. If σ, σ−1 ∈ L∞(C) with σ(z) = 1 outside a compact
set, then limξ→∞ τσ(ξ) = 0.

Proof of Corollary 2.19. Let λ = 1. The principal solutions in (74)
have the development

ϕ(z, ξ) = z +
∞∑

n=1

cn(ξ)

zn
, |z| > 1.

By Cauchy integral formula and Theorem 2.18 we have limξ→∞ cn(ξ) =
0 for all n ∈ N. Comparing now with (59)-(62) proves the claim. �

It remains to prove Theorem 2.18, which will the rest of this section.
We shall split the proof up into several lemmas.

Lemma 2.20. Suppose ε > 0 is given. Suppose also that for µλ(z) =
λµ(z), we have

(76) fn = µλSnµλSn−1µλ · · ·µλS1µλ,

where Sj : L2(C) → L2(C) are Fourier multiplier operators, each with a
unimodular symbol. Then there is a number Rn = Rn(k, ε) depending
only on k = ‖µ‖∞, n and ε such that

(77) |f̂n(η)| < ε for |η| > Rn.

Proof. It is enough to prove the claim for λ = 1. By assumption,

Ŝjg(η) = mj(η)ĝ(η),

where |mj(η)| = 1 for η ∈ C. We have by (76),

(78) ‖fn‖L2 ≤ ‖µ‖nL∞‖µ‖L2 ≤ √
πkn+1
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since supp(µ) ⊂ D. Choose ρn so that

(79)

∫

|η|>ρn

|µ̂(η)|2 dm(η) < ε2.

After this, choose ρn−1, ρn−2, . . . , ρ1 inductively so that for l = n −
1, . . . , 1,

(80) π

∫

|η|>ρl

|µ̂(η)|2 dm(η) ≤ ε2

(
n∏

j=l+1

πρj

)−2

.

Finally, choose ρ0 so that

(81) |µ̂(η)| < επ−n

(
n∏

j=1

ρj

)−1

when |η| > ρ0.

All these choices are possible since µ ∈ L1(C) ∩ L2(C).
Now, we set Rn =

∑n
j=0 ρj and claim that (77) holds for this choice

of Rn. Hence assume that |η| >∑n
j=0 ρj . We have

|f̂n(η)| ≤
(∫

|η−ζ|≤ρn

+

∫

|η−ζ|≥ρn

)
|µ̂(η − ζ)| |f̂n−1(ζ)| dm(ζ).(82)

But if |η − ζ | ≤ ρn, then |ζ | >∑n−1
j=0 ρj . Thus, if we denote

∆n = sup

{
|f̂n(η)| : |η| >

n∑

j=0

ρj

}
,

it follows from (82) and (78) that

∆n ≤ ∆n−1(πρ
2
n)

1/2‖µ‖L2 +

(∫

|ζ|≥ρn

|µ̂(ζ)|2 dm(ζ)

)1/2

‖f̂n−1‖L2

≤ πρnk∆n−1 + kn
(
π

∫

|ζ|≥ρn

|µ̂(ζ)|2 dm(ζ)

)1/2

for n ≥ 2. Moreover, the same argument shows that

∆1 ≤ πρ1 k sup{|µ̂(η)| : |η| > ρ0} + k

(
π

∫

|ζ|>ρ1

|µ̂(ζ)|2 dm(ζ)

)1/2

.
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In conclusion, after iteration we will have

∆n ≤ (kπ)n

(
n∏

j=1

ρj

)
sup{|µ̂(η)| : |η| > ρ0}

+ kn
n∑

l=1

(
n∏

j=l+1

πρj

)(
π

∫

|ζ|>ρl

|µ̂(ζ)|2 dm(ζ)

)1/2

.

With the choices (79)–(81), this leads to

∆n ≤ (n + 1)knε ≤ ε

1 − k
,

which proves the claim. �

Our next goal is to use Lemma 2.20 to prove the asymptotic result
required in Theorem 2.18 for the solution of a closely related linear
equation.

Theorem 2.21. Suppose ψ ∈W 1,2
loc (C) satisfies

∂ψ

∂z̄
= κµ(z) e−ξ(z)

∂ψ

∂z
in C,(83)

ψ(z) = z + O
(

1

z

)
as z → ∞,(84)

where κ is a constant with |κ| = 1.
Then ψ(z, ξ) → z, uniformly in z ∈ C and κ ∈ ∂D, as ξ → ∞.

To prove Theorem 2.21 we need some preparation. First, since the
Lp-norm of the Beurling transform, denoted as Sp, tends to 1 when
p→ 2, we can choose a δk > 0 so that kSp < 1 whenever 2 − δk ≤ p ≤
2 + δk. With this notation we then have the following lemma.

Lemma 2.22. Let ψ = ψ(·, ξ) be the solution of (83) and let ε > 0.
Then ψz̄ can be decomposed as ψz̄ = g + h, where

(1) ‖h(·, ξ)‖Lp < ε for 2 − δk ≤ p ≤ 2 + δk uniformly in ξ,
(2) ‖g(·, ξ)‖Lp ≤ C0 = C0(k) uniformly in ξ,
(3) ĝ(η, ξ) → 0 as ξ → ∞.

In statement 3 convergence is uniform on compact subsets of the η-
plane and also uniform in κ ∈ ∂D. Here, the Fourier transform is
taken with respect to the first variable only.

Proof. We may solve (83) using a Neumann series, which will con-
verge in Lp,

∂ψ

∂z̄
=

∞∑

n=0

(κµ e−ξ S)n (κµ e−ξ) .
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Let

h =

∞∑

n=n0

(κµe−ξ S)n (κµ e−ξ) .

Then

‖h‖Lp ≤ π1/p
kn0+1Sn0

p

1 − kSp
and we obtain the first statement by choosing n0 large enough.

The remaining part clearly satisfies the second statement with a
constant C0 that is independent of ξ and λ. To prove statement 3 we
first note that

S(e−ξ φ) = e−ξ Sξ φ,

where (̂Sξφ)(η) = m(η − ξ) φ̂(η) and m(η) = η/η. Consequently,

(µe−ξ S)nµ e−ξ = e−(n+1)ξ µSnξ µS(n−1)ξ · · ·µSξ µ,
and so

g =

n0∑

j=1

κj e−jξ µS(j−1)ξ µ · · ·µSξµ.

Therefore,

g =

n0∑

j=1

e−jξGj,

where by Lemma 2.20, |Ĝj(η)| < ε̃ whenever |η| > R = maxj≤n0 Rj.

As ̂(ejξGj)(η) = Ĝj(η+ jξ), for any fixed compact set K0, we can take
ξ so large that jξ +K0 ⊂ C \ D(0, R) for each 1 ≤ j ≤ n0. Then

sup
η∈K0

|ĝ(η, ξ)| ≤ n0ε̃.

This proves the lemma. �

Proof of Theorem 2.21. We show first that when ξ → ∞, ψz̄ → 0
weakly in Lp(C), 2−δk ≤ p ≤ 2+ δk. For this suppose that f0 ∈ Lq(C),
q = p/(p− 1), is fixed and choose ε > 0. Then there exists f ∈ C∞

0 (C)
such that ‖f0 − f‖Lq(C) < ε, and so by Lemma 2.22,

|〈f0, ψz̄〉| ≤ εC1 +
∣∣
∫

C

f̂(η)ĝ(η, ξ) dm(η)
∣∣.

First choose R so large that
∫

C\D(0,R)

|f̂(η)|2 dm(η) ≤ ε2
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and then |ξ| so large that |ĝ(η, ξ)| ≤ ε/(
√
πR) for all η ∈ D(R). Now,

∣∣∣∣
∫

C

f̂(η)ĝ(η, ξ) dη

∣∣∣∣ ≤
∫

D(R)

f̂(η)ĝ(η, ξ) dη +

∫

C\D(R)

f̂(η)ĝ(η, ξ) dη

≤ ε(‖f‖L2(C) + ‖g‖L2(C)) ≤ C2(f)ε.(85)

The bound is the same for all κ, hence

(86) lim
|ξ|→∞

sup
κ∈∂D

|〈f0, ψz̄〉| = 0.

To prove the uniform convergence of ψ itself, we write

(87) ψ(z, ξ) = z − 1

π

∫

D

1

ζ − z

∂

∂ζ
ψ(ζ, ξ) dm(ζ).

Here note that supp(ψz̄) ⊂ D and χ
D(ζ)/(ζ − z) ∈ Lq(C) for all q < 2.

Thus by the weak convergence we have for each fixed z ∈ C

(88) lim
ξ→∞

ψ(z, ξ) = z, uniformly in κ ∈ ∂D.

On the other hand, as

sup
ξ

∥∥∥∥
∂ψ

∂z̄

∥∥∥∥
Lp(C)

≤ C0 = C0(p, ‖µ‖∞) <∞

for all z sufficiently large, |ψ(z, ξ) − z| < ε, uniformly in ξ ∈ C and
κ ∈ ∂D. Moreover, (87) shows also that the family {ψ(·, ξ) : ξ ∈
C, κ ∈ ∂D} is equicontinuous. Combining all these observations shows
that the convergence in (88) is uniform in z ∈ C and κ ∈ ∂D. �

Finally, we proceed to the nonlinear case: Assume that ϕλ satisfies
(72) and (74). Since ϕ is a (quasiconformal) homeomorphism, we may
consider its inverse ψλ : C → C,

(89) ψλ ◦ ϕλ(z) = z,

which also is quasiconformal. By differentiating (89) with respect to z
and z̄ we find that ψ satisfies

∂

∂z̄
ψλ(z, ξ) = −ξ

ξ
λ (µ(ψλ(z, ξ))) e−ξ(z)

∂

∂z
ψλ(z, ξ) and(90)

ψλ(z, ξ) = z + O
(

1

z

)
as z → ∞.(91)

Proof of Theorem 2.18. It is enough to show that

(92) lim
ξ→∞

ψλ(z, ξ) = z.
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uniformly in z and λ. For this we introduce the notation
(93)

Σk = {g ∈W 1,2
loc (C) : gz̄ = ν gz, |ν| ≤ kχD, g = z+O

(
1

z

)
as z → ∞}.

Note that all mappings g ∈ Σk are principal solutions of Beltrami
equations and hence homeomorphisms g : C → C.

The support of the coefficient µ ◦ ψλ in (90) need no longer be
contained in D. However, by Koebe distortion theorem, see e.g. [5, p.
44], ϕλ(D) ⊂ D and thus supp(µ ◦ ψλ) ⊂ D. Accordingly, ψλ ∈ Σk.

Since normalized quasiconformal mappings form a normal family, we
see that the family Σk is compact in the topology of uniform conver-
gence. Given sequences ξn → ∞ and λn ∈ ∂D, we may pass to a subse-

quence and assume that κλn,ξn = −λn ξn
2|ξn|−2 → κ ∈ ∂D as n → ∞

and that the corresponding mappings satisfy limn→∞ ψλn(·, ξn) = ψ∞

uniformly, where the limit satisfies ψ∞ ∈ Σk. To prove Theorem 2.18
it is enough to show that for any such sequence ψ∞(z) ≡ z.

Let ψ∞ be an arbitrary above obtained limit function. We consider
the W 1,2

loc -solution Φ(z) = Φλ(z, ξ) of

∂Φ

∂z̄
= κ (µ ◦ ψ∞) e−ξ

∂Φ

∂z̄
,

Φ(z) = z + O
(

1

z

)
as z → ∞.

Observe that this equation is a linear Beltrami equation which by The-
orem 2.5 has a unique solution Φ ∈ Σk for each ξ ∈ C and |λ| = 1.
According to Theorem 2.21,

(94) Φλ(z, ξ) → z as ξ → ∞.

Further, when 2 < p < 1 + 1/k, by Lemma B.7,

|ψλn(z, ξn) − Φλ(z, ξn)|

=
1

π

∣∣∣∣
∫

D

1

ζ − z

∂

∂z̄

(
ψλn(ζ, ξn) − Φλ(ζ, ξn)

)
dm(ζ)

∣∣∣∣

≤ C1

∥∥∥∥
∂

∂z̄

(
ψλn(ζ, ξn) − Φλ(ζ, ξn)

)∥∥∥∥
Lp(D(2))

≤ C2

∣∣κλn,ξn − κ|

+ C2

(∫

D(2)

∣∣µ
(
ψλn(ζ, ξn)

)
− µ

(
ψ∞(ζ)

)∣∣ p(1+ε)
ε dm(ζ)

) ε
p(1+ε)

.(95)

Finally, we apply the higher-integrability results for quasiconformal
mappings, such as Theorem B.5: For all 2 < p < 1 + 1/k and g = ψ−1,



30 K. ASTALA, M. LASSAS, L. PÄIVÄRINTA

ψ ∈ Σk, we have the estimate for the Jacobian J(z, g),

(96)

∫

D

J(z, g)p/2 dm(z) ≤
∫

D

∣∣∣∣
∂g

∂z

∣∣∣∣
p

dm(z) ≤ C(k) <∞,

where C(k) depends only on k. We use this estimate in the cases ψ(z)
is equal to ψλn(z, ξn) or ψ∞. Then, we see for any γ ∈ C∞

0 (D) that
∫

D(2)

|µ(ψ(y))− γ(ψ(y))| p(1+ε)
ε dy =

∫

D

|µ(z) − γ(z)| p(1+ε)
ε J(z, g) dm(z)

≤
(∫

D

|µ(z) − γ(z)|
p2(1+ε)
ε(p−2) dm(z)

)(p−2)/p(∫

D

J(z, g)p/2 dm(z)

)2/p

.

Since µ can be approximated in the mean by γ ∈ C∞
0 (D), the last term

can be made arbitrarily small. By uniform convergence ψλn(z, ξn)) →
ψ∞(z) we see that γ(ψλn(z, ξn)) → γ(ψ∞(z)) uniformly in z as n→ ∞.
Also, κλn,ξn → κ. Using these we see that right hand side of (95)
converges to zero. In view of (94) and (95), we have established that

lim
n→∞

ψλn(z, ξn) = z

and thus ψ∞(z) ≡ z. The theorem is proved. �

2.8. Completion of the proof of Theorem 2.1. The Jacobian J(z, f)
of a quasiregular map can vanish only on a set of Lebesque measure
zero. Since J(z, f) = |fz|2 − |fz̄|2 ≤ |fz|2, this implies that once we
know the values fµ(z, ξ) for every z ∈ C, then we can recover the values
µ(z) and hence σ(z) almost everywhere, from fµ by the formulas

(97)
∂fµ
∂z̄

= µ(z)
∂fµ
∂z

and σ =
1 − µ

1 + µ
.

On the other hand, considering the functions

u1 := uσ = Re fµ + i Im f−µ and u2 := iu1/σ = iRe f−µ − Im fµ

that were described in Corollary 2.17, it is clear that the pair {u1(z, ξ), u2(z, ξ)}
determines the pair {fµ(z, ξ), f−µ(z, ξ)}, and vice versa. Therefore to
prove Theorem 2.1 it will suffice to establish the following result.

Theorem 2.23. Assume that Λσ = Λeσ for two scalar conductivities σ
and σ̃ for which σ, σ̃, 1/σ, 1/σ̃ ∈ L∞(D). Then for all z, ξ ∈ C,

uσ(z, ξ) = ueσ(z, ξ) and u1/σ(z, ξ) = u1/eσ(z, ξ).

For the proof of the theorem, our first task it to determine the as-
ymptotic behavior of uσ(z, ξ). We state this as a separate result.
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Lemma 2.24. We have uσ(z, ξ) 6= 0 for every (z, ξ) ∈ C×C. Further-
more, for each fixed ξ 6= 0, we have with respect to z

uσ(z, ξ) = exp(iξz + v(z)),

where v = vξ ∈ L∞(C). On the other hand, for each fixed z we have
with respect to ξ

(98) uσ(z, ξ) = exp(iξz + ξε(ξ)),

where ε(ξ) → 0 as ξ → ∞.

Proof. For the first claim we write

uσ =
1

2

(
fµ + f−µ + fµ − f−µ

)

= fµ

(
1 +

fµ − f−µ
fµ + f−µ

)−1(
1 +

fµ − f−µ
fµ + f−µ

)
.

Each factor in the product is continuous and nonvanishing in z by
Theorem 2.14. Taking the logarithm and using f±µ(z, ξ) = eiξz(1 +
Oξ(1/z)) we obtain

uσ(z, ξ) = exp

(
iξz + Oξ

(
1

z

))
.

Here, Oξ(1/z)) denotes a function g(z, ξ) satisfying for each ξ an esti-
mate |g(z, ξ)| ≤ Cξ1/|z| with some Cξ > 0. For the ξ-asymptotics we
apply Theorem 2.18, which governs the growth of the functions fµ for
ξ → ∞. We see that for (98) it is enough to show that

(99) inf
t

∣∣∣∣
fµ − f−µ
fµ + f−µ

+ eit
∣∣∣∣ ≥ e−|ξ|ε(ξ).

For this, define

Φt = e−it/2(fµ cos t/2 + if−µ sin t/2).

Then for each fixed ξ,

Φt(z, ξ) = eiξz
(

1 + Oξ

(
1

z

))
as z → ∞,

and

∂

∂z̄
Φt = µe−it

∂

∂z
Φt.
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Thus for λ = e−it, the mapping Φt = fλµ is precisely the exponentially
growing solution satisfying the equations (72) and (73). A simple com-
putation shows that

(100)
fµ − f−µ
fµ + f−µ

+ eit =
2eit Φt

fµ + f−µ
=
fλµ
fµ

2eit

1 +M−µ/Mµ
.

By Theorem 2.18,

(101) e−|ξ|ε1(ξ) ≤ |M±µ(z, ξ)| ≤ e|ξ|ε1(ξ)

and

(102) e−|ξ|ε2(ξ) ≤ inf
λ∈∂D

∣∣∣∣
fλµ(z, ξ)

fµ(z, ξ)

∣∣∣∣ ≤ sup
λ∈∂D

∣∣∣∣
fλµ(z, ξ)

fµ(z, ξ)

∣∣∣∣ ≤ e|ξ|ε2(ξ),

where εj(ξ) → 0 as ξ → ∞. Since Re (M−µ/Mµ) > 0, the inequality
(99) follows. Thus the lemma is proven. �

As discussed earlier, the functions u1 = uσ and u2 = iu1/σ satisfy a
∂ξ̄-equation as a function of the parameter ξ, but unfortunately, for a
fixed z the asymptotics in (98) are not strong enough to determine the
individual solution uj(z, ξ). However, if we consider the entire family
{uj(z, ξ) : z ∈ C}, then, somewhat surprisingly, uniqueness properties
do arise.

To consider the uniqueness properties, assume that the Dirichlet-
to-Neumann operators are equal for the conductivities σ and σ̃. By
Lemma 2.24, we have that uσ(z, ξ) 6= 0 and ueσ(z, ξ) 6= 0 at every point
(z, ξ). Therefore their logarithms, denoted by δσ and δeσ, respectively,
are well defined. Moreover, for each fixed z ∈ C,

δσ(z, ξ) = log uσ(z, ξ) = iξz + ξε1(ξ),(103)

δeσ(z, ξ) = log ueσ(z, ξ) = iξz + ξε2(ξ),(104)

where εj(ξ) → 0 as for |ξ| → ∞. Moreover, by Theorem 2.6,

δσ(z, 0) ≡ δeσ(z, 0) ≡ 0

for all z ∈ C.
In addition, for each fixed ξ 6= 0 the function z 7→ δσ(z, ξ) is contin-

uous. By Lemma 2.24, we can write

(105) δσ(z, ξ) = iξz

(
1 +

vξ(z)

iξz

)
,

where vξ ∈ L∞(C) for each fixed ξ ∈ C. This means that that δσ(z, ξ)
is close to a multiple of the identity for large |z|. Using an elementary
homotopy argument, (105) yields that for any fixed ξ 6= 0 the map
z 7→ δσ(z, ξ) is surjective C → C.
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To prove the theorem it suffices to show that, if Λσ = Λeσ, then

(106) δeσ(z, ξ) 6= δσ(w, ξ) for z 6= w and ξ 6= 0.

Indeed, if the claim (106) is established, then (106) and the surjectivity
of z 7→ δσ(z, ξ) show that we necessarily have δσ(z, ξ) = δeσ(z, ξ) for all
ξ, z ∈ C. Hence ueσ(z, ξ) = uσ(z, ξ).

We are now at a point where the ∂ξ -method and (71) can be applied.
Substituting uσ = exp (δσ) in this identity shows that ξ 7→ δσ(z, ξ) and
ξ 7→ δeσ(w, ξ) both satisfy the ∂ξ -equation

(107)
∂δ

∂ξ
= −iτ(ξ) e( δ−δ), ξ ∈ C,

where by Theorem 2.10 and the assumption Λσ = Λeσ, the coefficient
τ(ξ) is the same for both functions δσ and δeσ. A simple computations
shows then that the difference

g(ξ) := δeσ(w, ξ) − δσ(z, ξ)

thus satisfies the identity

∂g

∂ξ
= −iτ(ξ) e( δ−δ)

[
e( g−g) − 1

]
.

In particular,

(108)

∣∣∣∣
∂g

∂ξ

∣∣∣∣ ≤ | g − g| ≤ 2|g|.

Using (103) we we see that g(ξ) = i(w − z)ξ + ξε(ξ) wheree ε(ξ) → 0
as ξ → ∞. Appling Theorem A.1 (with respect to ξ) we see that for
w 6= z the function g vanishes only at ξ = 0. This proves (106).

According to Theorem 2.9 (or by the identity τσ = −τ1/σ), if Λσ =
Λeσ, the same argument works to show that u1/eσ(z, ξ) = u1/σ(z, ξ) as
well. Thus Theorem 2.23 is proved. As the pair {u1(z, ξ), u2(z, ξ)}
pointwise determines the pair {fµ(z, ξ), f−µ(z, ξ)}, we find via (97) that
σ ≡ σ̃. Therefore the proof of Theorem 2.1 is complete. �

3. Invisibility cloaking and the borderlines of visibility
and invisibility

Next we consider the anisotropic conductivity equation in Ω ⊂ R2,

∇ · σ∇u =
2∑

j,k=1

∂

∂xj

(
σjk(x)

∂

∂xk
u(x)

)
= 0 in Ω,(109)
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where the conductivity σ = [σjk(x)]2j,k=1 is a measurable function whose
values are symmetric, positive definite matrixes. We say that a con-
ductivity σ is regular if there are c1, c2 > 0 such that

c1I ≤ σ(x) ≤ c2I, for a.e. x ∈ Ω.

If conductivity is not regular, it is said to be degenerate. We will con-
sider uniqueness results for the inverse problem in classes of degenerate
conductivities both in the isotropic and the anisotropic case. We will
also construct counterexamples for the uniqueness of the inverse prob-
lem having a close connection to the invisibility cloaking, a very topical
subject in recent studies in mathematics, physics, and material science
[2, 28, 36, 60, 55, 61, 71, 79]. By invisibility cloaking we mean the pos-
sibility, both theoretical and practical, of shielding a region or object
from detection via electromagnetic fields.

The counterexamples for inverse problems and the proposals for in-
visibility cloaking are closely related. In 2003, before the appearance
of practical possibilities for cloaking, it was shown in [35, 36] that pas-
sive objects can be coated with a layer of material with a degenerate
conductivity which makes the object undetectable by the electrostatic
boundary measurements. These constructions were based on the blow
up maps and gave counterexamples for the uniqueness of inverse con-
ductivity problem in the three and higher dimensional cases. In two
dimensional case, the mathematical theory of the cloaking examples
for conductivity equation have been studied in [45, 46, 52, 64].

The interest in cloaking was raised in particular in 2006 when it
was realized that practical cloaking constructions are possible using so-
called metamaterials which allow fairly arbitrary specification of elec-
tromagnetic material parameters. The construction of Leonhardt [55]
was based on conformal mapping on a non-trivial Riemannian surface.
At the same time, Pendry et al [71] proposed a cloaking construction
for Maxwell’s equations using a blow up map and the idea was demon-
strated in laboratory experiments [72]. There are also other suggestions
for cloaking based on active sources [61] or negative material parame-
ters [2, 60].

Let Σ = Σ(Ω) be the class of measurable matrix valued functions
σ : Ω →M , where M is the set of symmetric non-negative definite ma-
trices. Instead of defining the Dirichlet-to-Neumann operator which
may not be well defined for these conductivities, we consider the cor-
responding quadratic forms.
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Definition 3.1. Let h ∈ H1/2(∂Ω). The Dirichlet-to-Neumann qua-
dratic form corresponding to the conductivity σ ∈ Σ(Ω) is given by

(110)

Qσ[h] = inf Aσ[u], where Aσ[u] =

∫

Ω

σ(z)∇u(z) · ∇u(z) dm(z),

and the infimum is taken over real valued u ∈ L1(Ω) such that ∇u ∈
L1(Ω)3 and u|∂Ω = h. In the case where Qσ[h] <∞ and Aσ[u] reaches
its minimum at some u, we say that u is a W 1,1(Ω) solution of the
conductivity problem.

In the case when σ is smooth, bounded from below and above by pos-
itive constants, Qσ[h] is the quadratic form corresponding the Dirichlet-
to-Neumann map (5),

Qσ[h] =

∫

∂Ω

hΛσh ds,(111)

where ds is the length measure on ∂Ω. Physically, Qσ[h] corresponds
to the power needed to keep voltage h at the boundary. As discussed
above, for smooth conductivities bounded from below, for every h ∈
H1/2(∂Ω) the integral Aσ[u] always has a unique minimizer u ∈ H1(Ω)
with u|∂Ω = h. It is also a distributional solution to (4). Conversely,
for functions u ∈ H1(Ω) the traces lie in H1/2(∂Ω). As we mostly
consider conductivities which are bounded from below and above near
the boundary we chose to consider the H1/2-boundary values also in
the general case. We interpret that the Dirichlet-to-Neumann form
corresponds to the idealization of the boundary measurements for σ ∈
Σ(Ω).

Next we present few examples where the solutions u turn out to be
non-smooth or do not exist.

Example 1. Let us consider 1-dimensional conductivity equation on
interval I = [0, 1]. Let (qj)

∞
j=1 be a sequence containing all rational

numbers Q ∩ (0, 1) so that each number appears only once in the se-
quence. Let aj = 2−1j−4, Kj = (qj − 2−j−2, qj + 2−j−2) ∩ I, and define
conductivity

σ(x) = 1 +

∞∑

j=1

σj(x), σj(x) =
aj

|x− qj |
χKj

(x).(112)

Note that the setKj has the measure |Kj| ≤ 2−j−1. As |⋃j≥lKj| ≤ 2−l,

we see that the series (112) has only finitely many nonzero terms for
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x ∈ ⋂l≥1

⋃
j≥lKj and in particular, the sum σ(x) is finite and positive

function a.e. Now, assume that u ∈ C1(I) is a function for which
∫

I

σ(x)|u′(x)|2dm(x) <∞.

If u′(qj) 6= 0, we see that there is an open non-empty interval Ij ⊂ I
containing qj such that |u′(x)| ≥ t > 0 for all x ∈ Ij , and

∫

I

σ(x)|u′(x)|2dm(x) ≥
∫

Ij

σj(x)|u′(x)|2dm(x) = ∞.

This implies that u′(qj) = 0 for all qj, and as {qj} is dense in I, we
see that u vanishes identically. Thus if the minimization (110) is taken
only over u ∈ C1(I) with u(0) = f0 and u(1) = f1, the Dirichlet-to-
Neumann form is infinite for all non-constant boundary values f0 6= f1.
However, if the infimum is taken over all u ∈ W 1,1(I), we see that the
function

u0(x) =
|[0, x] \K|
|I \K| , K =

∞⋃

j=1

Kj , 0 < |K| < 1

2

satisfies u′(x) = 0 for x ∈ K and
∫

I

σ(x)|u′0(x)|2dm(x) = 1, u0(0) = 0, u0(1) = 1.

Using functions f0+(f1−f0)u0(x) we see that the Dirichlet-to-Neumann
form for σ defined as a minimization over all W 1,1-functions is finite for
all boundary values. Later we will show also examples of conductivities
encountered in cloaking where the solution of the conductivity problem
will be in W 1,p for all p < 2 but not in W 1,2. This is another reason
why W 1,1 is a convenient class to consider the minimisation.

Example 2. Consider in the disc D(2) a strongly twisting map,

G(reiθ) = rei(θ+t(r)), 0 < r ≤ 2,

where t(r) = exp(r−1 − 2−1). When γ = 1 is the homogeneous con-
ductivity, let σ be the conductivity in D(2) such that σ = G∗γ in
the set D(2) \ {0}. We see that if the problem (110) has a minimizer
u ∈W 1,1(D) with the boundary value f for which Aσ(u) <∞, then it
has to satisfy ∇ · σ∇u = 0 in the set D(2) \ {0}. Then v = u ◦G is har-
monic function in D(2) \ {0} having boundary value f ∈ H1/2(∂D(2))
and finite norm in H1(D(2)\{0}). This implies that v can be extended
to a harmonic function in the whole disc D(2), see e.g. [44]. Thus, if the
problem (110) has a minimizer u ∈ W 1,1(D(2)) for f(x1, x2) = x1 we
see that v(x1, x2) = x1 and u = v ◦ F, where F := G−1. Then, by the
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chain rule we have ∇u(x) = DF (x)t (Dv)(F (x)) 6∈ L1(D(2)\{0}). This
shows that the minimizer u does not exists in the space W 1,1(D(2)).
Thus for a general degenerate conductivity it is reasonable to define
the boundary measurements using infimum of a quadratic form instead
of a distributional solution of the differential equation ∇ · σ∇u = 0.

3.0.1. Existence results for solutions with degenerate conductivities. As
seen in the above examples, if σ is unbounded it is possible that
Qσ[h] = ∞. Moreover, even if Qσ[h] is finite, the minimization prob-
lem in (110) may generally have no minimizer and even if they exist
the minimizers need not be distributional solutions to (4). However,
if the singularities of σ are not too strong, minimizers satisfying (4)
do always exist. Below we will consider singular conductivity of expo-
nentially integrable ellipticity function Kσ(z) and show that for such
conductivities solutions exists. To study of these solutions, we consider
the regularity gauge

Q(t) =
t2

log(e+ t)
, t ≥ 0.(113)

We say accordingly that f belongs to the Orlicz space W 1,Q(Ω) if f
and its first distributional derivatives are in L1(Ω) and

∫

Ω

|∇f(z)|2
log(e+ |∇f(z)|) dm(z) <∞.

In [8] the following existence result for solutions corresponding to
singular conductivity of exponentially integrable ellipticity is proven:

Theorem 3.2. Let σ(z) be a measurable symmetric matrix valued func-
tion. Suppose further that for some p > 0,

∫

Ω

exp(p [trace(σ(z)) + trace(σ(z)−1)]) dm(z) = C1 <∞.(114)

Then, if h ∈ H1/2(∂Ω) is such that Qσ[h] < ∞ and X = {v ∈
W 1,1(Ω); v|∂Ω = h}, there is a unique w ∈ X such that

Aσ[w] = inf{Aσ[v] ; v ∈ X}.(115)

Moreover, w satisfies the conductivity equation

∇ · σ∇w = 0 in Ω(116)

in sense of distributions, and it has the regularity w ∈W 1,Q(Ω)∩C(Ω).

Let F : Ω1 → Ω2, y = F (x) be an orientation preserving homeomor-
phism between domains Ω1,Ω2 ⊂ C for which F and its inverse F−1
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are at least W 1,1-smooth and let σ(x) = [σjk(x)]2j,k=1 ∈ Σ(Ω1) be a con-
ductivity on Ω1. Then the map F pushes σ forward to a conductivity
(F∗σ)(y), defined on Ω2 and given by

(F∗σ)(y) =
1

detDF (x)
DF (x) σ(x)DF (x)t, x = F−1(y).(117)

The main methods for constructing counterexamples to Calderón’s
problem are based on the following principle.

Proposition 3.3. Assume that σ, σ̃ ∈ Σ(Ω) satisfy (114), and let F :
Ω → Ω be a homeomorphism so that F and F−1 are W 1,Q-smooth and
C1-smooth near the boundary, and F |∂Ω = id. Suppose that σ̃ = F∗σ.
Then Qσ = Qeσ.

This proposition generalizes the previously known results [47] to less
smooth diffeomorphisms and conductivities.

Sketch of the proof. Two implications of the assumptions for F
are essential in the proof. First one is that as F is a homeomorphism
satisfying F ∈ W 1,Q(Ω), it satisfies the condition N , that is, for any
measurable set E ⊂ Ω we have |E| = 0 ⇒ |F (E)| = 0, see e.g. [5,
Thm. 19.3.2]. Also F−1 satisfies this condition. These imply that we
have the area formula∫

Ω

H(y) dm(y) =

∫

Ω

H(F (x))det (DF (x)) dm(x)(118)

for H ∈ L1(Ω).
The second implication is that by Gehring-Lehto theorem, see [5,

Cor. 3.3.3], a homeomorphism F ∈ W 1,1
loc (Ω) is differentiable almost

everywhere in Ω, say in the set Ω \ A, where A has Lebesgue measure
zero. This pointwise differentiability at almost every point is essential
in using the chain rule.

Let h ∈ H1/2(∂Ω) and assume that Qeσ[h] < ∞. By Theorem 3.2
there is ũ ∈W 1,1(Ω) solving

(119) ∇ · σ̃∇ũ = 0, ũ|∂Ω = h.

We define u = ũ ◦ F : Ω → C. As F is C1-smooth near the boundary
we see that u|∂Ω = h.

By Stoilow factorization theorem, see Theorem B.9, ũ can be written

in the form ũ = w̃ ◦ G̃ where w̃ is harmonic and G̃ ∈ W 1,1
loc (C) is a

homeomorphism G̃ : C → C. By Gehring-Lehto theorem G̃ and the
solution ũ are differentiable almost everywhere, say in the set Ω \ A′,
where A′ has Lebesgue measure zero.
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Since F−1 has the property N , we see that A′′ = A′ ∪ F−1(A′) ⊂ Ω
has measure zero, and for x ∈ Ω \ A′′ the chain rule gives

∇u(x) = DF (x)t (∇ũ)(F (x)).(120)

Using this, the area formula and the definition (117) of F∗σ one can
show that

Qσ[h] =

∫

Ω

∇u(x) · σ(x)∇u(x) dm(x)

=

∫

Ω

DF (x)t∇ũ(F (x)) · σ(x)

det (DF (x))
DF (x)t∇ũ(F (x)) det (DF (x))dm(x)

=

∫

Ω

∇ũ(y) · σ̃(y)∇ũ(y) dy = Qeσ[h].

�

Let us next consider various counterexamples for the solvability of
inverse conductivity problem with degenerate conductivities.

3.1. Counterexample 1: Invisibility cloaking. We consider here
invisibility cloaking in general background σ, that is, we aim to coat an
arbitrary body with a layer of exotic material so that the coated body
appears in measurements the same as the background conductivity σ.
Usually one is interested in the case when the background conductivity
σ is equal to the constant γ = 1. However, we consider here a more
general case and assume that σ is a L∞-smooth conductivity in D(2),
σ(z) ≥ c0I, c0 > 0. Here, D(ρ) is an open 2-dimensional disc of radius
ρ and center zero and D(ρ) is its closure. Consider a homeomorphism

F : D(2) \ {0} → D(2) \ K(121)

where K ⊂ D(2) is a compact set which is the closure of a smooth open
set and suppose F : D(2) \ {0} → D(2) \ K and its inverse F−1 are
C1-smooth in D(2)\{0} and D(2)\K, correspondingly. We also require
that F (z) = z for z ∈ ∂D(2). The standard example of invisibility
cloaking is the case when K = D(1) and the map

F0(z) = (
|z|
2

+ 1)
z

|z| .(122)

Using the map (121), we define a singular conductivity

σ̃(z) =

{
(F∗σ)(z) for z ∈ D(2) \ K,
η(z) for z ∈ K,(123)

where η(z) = [ηjk(x)] is any symmetric measurable matrix satisfying
c1I ≤ η(z) ≤ c2I with c1, c2 > 0. The conductivity σ̃ is called the
cloaking conductivity obtained from the transformation map F and
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background conductivity σ and η(z) is the conductivity of the cloaked
(i.e. hidden) object.

In particular, choosing σ to be the constant conductivity σ = 1,
K = D(1), and F to be the map F0 given in (122), we obtain the
standard example of the invisibility cloaking. In dimensions n ≥ 3 it
shown in 2003 in [35, 36] that the Dirichlet-to-Neumann map corre-
sponding to H1(Ω) solutions for the conductivity (123) coincide with
the Dirichlet-to-Neumann map for σ = 1. In 2008, the analogous result
was proven in the two-dimensional case in [45]. For cloaking results for
the Helmholtz equation with frequency k 6= 0 and for Maxwell’s sys-
tem in dimensions n ≥ 3, see results in [28]. We note also that John
Ball [12] has used the push forward by the analogous radial blow-up
maps to study the discontinuity of the solutions of partial differential
equations, in particular the appearance of cavitation in the non-linear
elasticity.

In [8] the following generalization of [35, 36, 45] is proven for cloaking
in the context where measurements given in Definition 3.1.

Theorem 3.4. (i) Let σ ∈ L∞(D(2)) be a scalar conductivity, σ(x) ≥
c0 > 0, K ⊂ D(2) be a relatively compact open set with smooth boundary
and F : D(2) \ {0} → D(2) \ K be a homeomorphism. Assume that F
and F−1 are C1-smooth in D(2)\{0} and D(2)\K, correspondingly and
F |∂D(2) = id. Moreover, assume there is C0 > 0 such that ‖DF−1(x)‖ ≤
C0 for all x ∈ D(2) \ K. Let σ̃ be the conductivity defined in (123).
Then the boundary measurements for σ̃ and σ coincide in the sense
that Qeσ = Qσ.

(ii) Let σ̃ be a cloaking conductivity of the form (123) obtained from
the transformation map F and the background conductivity σ where F
and σ satisfy the conditions in (i). Then

trace(σ̃) 6∈ L1(D(2) \ K).(124)

Sketch of the proof. We consider the case when F = F0 is given by
(122) and σ = 1 is constant function.

(i) For 0 ≤ r ≤ 2 and a conductivity η we define the quadratic form
Arη : W 1,1(D(2)) → R+ ∪ {0,∞},

Arη[u] =

∫

D(2)\D(r)

η(x)∇u · ∇u dm(x).

Considering F0 as a change of variables similarly to Proposition 3.3,
we see that

Ar
eσ[u] = Aργ[v], u = v ◦ F0, ρ = 2(r − 1), r > 1.
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Now for the conductivity γ = 1 the minimization problem (110) is
solved by the unique minimizer u satisfying

∆u = 0 in D(2), u|∂D(2) = f.

The solution u is C∞-smooth in D(2) and we see that v = u ◦ F0 is
a W 1,1-function on D(2) \ D(1) which trace on ∂D(1) is equal to the
constant function h(x) = u(0) on ∂D(1). Let ṽ be a function that is
equal to v in D(2)\D(1) and has the constant value u(0) in D(1). Then
ṽ ∈W 1,1(D(2)) and

Qeσ[f ] ≤ A1
eσ[v] = lim

r→1
Ar

eσ[v] = lim
ρ→0

Aργ [u] = Qγ [f ].(125)

To construct an inequality opposite to (125), let ηρ be a conductiv-
ity which coincides with σ̃ in D(2) \ D(ρ) and is 0 in D(ρ). For this
conductivity the minimization problem (110) has a minimizer that in
D(2) \ D(ρ) coincides with the solution of the boundary value problem

∆u = 0 in D(2) \ D(ρ), u|∂D(2) = f, ∂νu|∂D(ρ) = 0

and is arbitraryW 1,1-smooth extension of u to D(ρ). Then ηρ(x) ≤ σ̃(x)
for all x ∈ D(2) and thus Qηρ [f ] ≤ Qeσ[f ]. It is not difficult to see that

lim
ρ→0

Qηρ [f ] = Qγ [f ],

that is, the effect of an insulating disc of radius ρ in the boundary
measurements vanishes as ρ→ 0. These and (125) yield Qeσ[f ] = Qγ[f ].
This proves (i).

(ii) Assume that (124) is not valid, i.e., trace(σ̃) ∈ L1(D(2) \ D(1)).
As σ = 1 and det (σ̃) = 1, simple linear algebra yields that Keσ ∈
L1(D(2) \ D(1)) and

‖σ̃(y)‖ =
‖DF (x) · σ(x) ·DF (x)t‖

J(x, F )
≥ ‖DF (x)‖2

J(x, F )
= KF (x), x = F−1(y).

Then G = F−1 satisfies KG = KF ◦F−1 ∈ L1(D(2) \D(1)) which yields
that F ∈ W 1,2(D(2) \ {0}) and ‖DF‖L2(D(2)\{0}) ≤ 2‖KG‖L1(D(2)\D(1)),
see e.g. [5, Thm. 21.1.4]. By the removability of singularities in Sobol-
ev spaces, see [44], this implies that F : D(2)\{0} → D(2)\D(1) can be
extended to a function F ext : D(2) → C, F ext ∈ W 1,2(D(2)). It follows
from this and the continuity theorem of finite distortion maps [5, Thm.
20.1.1] that F ext : D(2) → C is continuous, which is not possible. Thus
(124) has to be valid. �

The result (124) is optimal in the following sense. When F is the
map F0 in (122) and σ = 1, the eigenvalues of the cloaking conductivity
σ̃ in D(2) \ D(1) behaves asymptotically as (|z| − 1) and (|z| − 1)−1 as
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|z| → 1. This cloaking conductivity has so strong degeneracy that
(124) holds. On the other hand,

trace(σ̃) ∈ L1
weak(D(2)).(126)

where L1
weak is the weak-L1 space. We note that in the case when σ = 1,

det (σ̃) is identically 1 in D(2) \ D(1).
The formula (126) for the blow up map F0 in (122) and Theorem

3.4 identify the borderline of the invisibility for the trace of the conduc-
tivity: Any cloaking conductivity σ̃ satisfies trace(σ̃) 6∈ L1(D(2)) and
there is an example of a cloaking conductivity for which trace(σ̃) ∈
L1
weak(D(2)). Thus the borderline of invisibility is the same as the bor-

der between the space L1 and the weak-L1 space.

3.2. Counterexample 2: Illusion of a non-existent obstacle.

Next we consider new counterexamples for the inverse problem which
could be considered as creating an illusion of a non-existing obstacle.
The example is based on a radial shrinking map, that is, a mapping
D(2) \ D(1) → D(2) \ {0}. The suitable maps are the inverse maps of
the blow-up maps F1 : D(2) \ {0} → D(2) \ D(1) which are constructed
by Iwaniec and Martin [39] and have the optimal smoothness. Using
the properties of these maps and defining a conductivity σ1 = (F−1

1 )∗1
on D(2) \ {0} we will later prove the following result.

Theorem 3.5. Let γ1 be a conductivity in D(2) which is identically 1
in D(2) \ D(1) and zero in D(1) and A : [1,∞] → [0,∞] be any strictly
increasing positive smooth function with A(1) = 0 which is sub-linear
in the sense that

∫ ∞

1

A(t)

t2
dt <∞.(127)

Then there is a conductivity σ1 ∈ Σ(B2) satisfying det (σ1) = 1 and
∫

D(2)

exp(A(trace(σ1) + trace(σ−1
1 ))) dm(z) <∞,(128)

such that Qσ1 = Qγ1 , i.e., the boundary measurements corresponding
to σ1 and γ1 coincide.

Sketch of the proof. Following [39, Sect. 11.2.1], there is k(s) satis-
fies the relation

k(s)eA(k(s)) =
e

s2
, 0 < s < 1
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that is strictly decreasing function and satisfies k(s) ≤ s−1 and k(1) =
1. Then

ρ(t) = exp

(∫ t

0

ds

sk(s)

)

is a function for which ρ(0) = 1. Then by defining fucntion the maps

h(t) = 2ρ( |x|
2

)/ρ(1) and

Fh : D(2) \ {0} → D(2) \ D(1), Fh(x) = h(t)
x

|x|(129)

and σ1 = (Fh)∗γ1, we obtain a conductivity that satisfies conditions of
the statement.

Finally, the identity Qσ1 = Qγ1 follows considering Fh as a change of
variables similarly to the proof of Proposition 3.3. �
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Figure 1. Left. trace(σ) of three radial and singular conductivities
on the positive x axis. The curves correspond to the invisibility cloak-
ing conductivity (red), with the singularity σ22(x, 0) ∼ (|x| − 1)−1 for
|x| > 1, a visible conductivity (blue) with a log log type singularity at
|x| = 1, and an electric hologram (black) with the conductivity having
the singularity σ11(x, 0) ∼ |x|−1. Right, Top. All measurements on
the boundary of the invisibility cloak (left) coincide with the measure-
ments for the homogeneous disc (right). The color shows the value of
the solution u with the boundary value u(x, y)|∂D(2) = x and the black
curves are the integral curves of the current −σ∇u. Right, Bottom.
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All measurements on the boundary of the electric hologram (left) co-
incide with the measurements for an isolating disc covered with the
homogeneous medium (right). The solutions and the current lines cor-
responding to the boundary value u|∂D(2) = x are shown.

We observe that for instance the function A0(t) = t/(1 + log t)1+ε

satisfies (127) and for such weight function σ1 ∈ L1(B2).
Note that γ1 corresponds to the case when D(2) is a perfect insulator

which is surrounded with constant conductivity 1. Thus Theorem 3.5
can be interpreted by saying that there is a relatively weakly degener-
ated conductivity satisfying integrability condition (128) that creates
in the boundary observations an illusion of an obstacle that does not
exists. Thus the conductivity can be considered as ”electric hologram”.
As the obstacle can be considered as a ”hole” in the domain, we can
say also that even the topology of the domain can not be detected.
In other words, Calderón’s program to image the conductivity inside
a domain using the boundary measurements can not work within the
class of degenerate conductivities satisfying (127) and (128).

3.3. Positive results for Calderón’s inverse problem. In this sec-
tion we formulate positive results for uniqueness of the inverse prob-
lems. Proof of the results can be found in [8].

For inverse problems for anisotropic conductivities where both the
trace and the determinant of the conductivity are degenerate the fol-
lowing result holds.

Theorem 3.6. Let Ω ⊂ C be a bounded simply connected domain with
smooth boundary. Let σ1, σ2 ∈ Σ(Ω) be matrix valued conductivities in
Ω which satisfy the integrability condition

∫

Ω

exp(p(trace(σ(z)) + trace(σ(z)−1))) dm(z) <∞

for some p > 1. Moreover, assume that
∫

Ω

E(q det σj(z)) dm(z) <∞, for some q > 0,(130)

where E(t) = exp(exp(exp(t1/2 + t−1/2))) and Qσ1 = Qσ2 . Then there is
a W 1,1

loc -homeomorphism F : Ω → Ω satisfying F |∂Ω = id such that

σ1 = F∗ σ2.(131)

Equation (131) can be stated as saying that σ1 and σ2 are the same
up to a change of coordinates, that is, the invariant manifold structures
corresponding to these conductivities are the same, cf. [53, 51].
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In the case when the conductivities are isotropic one can improve
the result of Theorem 3.6 as follows.

Theorem 3.7. Let Ω ⊂ C be a bounded simply connected domain with
smooth boundary. If σ1, σ2 ∈ Σ(Ω) are isotropic conductivities, i.e.,
σj(z) = γj(z)I, γj(z) ∈ [0,∞] satisfying for some q > 0

∫

Ω

exp
(
exp
[
q(γj(z) +

1

γj(z)
)
])
dm(z) <∞(132)

and Qσ1 = Qσ2 , then σ1 = σ2.

Let us next consider anisotropic conductivities with bounded deter-
minant but more degenerate ellipticity function Kσ(z) and ask how far
can we then generalize Theorem 3.6. Motivated by the counterexam-
ple given in Theorem 3.5 we consider the following class: We say that
σ ∈ Σ(Ω) has an exponentially degenerated anisotropy with a weight
A and denote σ ∈ ΣA = ΣA(Ω) if σ(z) ∈ R2×2 for a.e. z ∈ Ω and

(133)

∫

Ω

exp(A(trace(σ) + trace(σ−1))) dm(z) <∞.

In view of Theorem 3.5, for obtaining uniqueness for the inverse prob-
lem we need to consider weights that are strictly increasing positive
smooth functions A : [1,∞] → [0,∞], A(1) = 0, with

∫ ∞

1

A(t)

t2
dt = ∞ and tA′(t) → ∞, as t→ ∞.(134)

We say that A has almost linear growth if (134) holds.
Note in particular that affine weights A(t) = pt − p, p > 0 satisfy

the condition (134). To develop uniqueness results for inverse problems
within the class ΣA, one needs to find the right Sobolev-Orlicz regu-
larity for the solutions u of finite energy, i.e., for solutions satisfying
Aσ[u] <∞. For this, we use the counterpart of the gauge Q(t) defined
at (113). In the case of a general weight A we define

(135) P (t) =

{
t2, for 0 ≤ t < 1,

t2

A−1(log(t2))
, for t ≥ 1

where A−1 is the inverse function of A. We note that the condition∫∞

1
A(t)
t2
dt = ∞ is equivalent to

∫ ∞

1

P (t)

t3
dt =

1

2

∫ ∞

1

A′(t)

t
dt =

1

2

∫ ∞

1

A(t)

t2
dt = ∞(136)
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where we have used the substitution A(s) = log(t2). A function u ∈
W 1,1
loc (Ω) is in the Orlicz space W 1,P (Ω) if

∫

Ω

P
(
|∇u(z)|

)
dm(z) <∞.

When A satisfies the almost linear growth condition (134) and P is
as above one can show for σ ∈ ΣA(Ω) and u ∈W 1,1

loc (Ω) an inequality

(137)∫

Ω

P
(
|∇u|

)
dm(z) ≤ 2

∫

Ω

eA(trσ+tr (σ−1)) dm(z) + 2

∫

Ω

∇u · σ∇u dm(z).

This implies that any solution u of the conductivity equation (4) with
σ ∈ ΣA(Ω) satisfies u ∈W 1,P (Ω).

The Sobolev-Orlicz gauge P (t) is essential also in the study of the
counterexamples for solvability of the inverse problem and the optimal
smoothness of conductivities corresponding to electric holograms: As-
sume that G : D(2) \ D(1) → D(2) \ {0} is a homeomorphic map which
produces a hologram conductivity σ̃ = G∗1 in D(2) \ {0}. Assume also
that G and its inverse map, denoted F = G−1, are W 1,1

loc -smooth. By
the definition of the push forward of a conductivity (117), we see that

Keσ(z) = KF (z), z ∈ D(2) \ {0}.
This implies that F satisfies a Beltrami equation

∂z̄F (z) = µ̃(z)∂zF (z), z ∈ D(2) \ {0}
where Keµ(z) = Keσ(z). By Theorem 2.3, the functions w1 = ReF and
w2 = ImF satisfy a conductivity equation with a conductivity A(z)
with KA(z) = Keµ(z). Thus, if it happens that σ̃ ∈ ΣA(D(2)) where A
satisfies the almost linear growth condition (134), so that P satisfies
condition (136), we see using (137) that w1, w2 ∈W 1,P (D(2) \ {0}). By
using Stoilow factorization, Theorem B.9, we see that F can be written
in the form F (z) = φ(f(z)) where f : C → C is a homeomorphism and
φ : f(D(2) \ {0}) → C is analytic. As F and thus φ are bounded, we

see that φ can be extended to an analytic function φ̃ : f(D(2)) → C

and thus also F can then be extended to a continuous function to
F̃ : D(2) → C. However, this is not possible as F : D(2) \ {0} →
D(2)\D(1) is a homeomorphism. This proves that no electric hologram
conductivity σ̃ can be in ΣA(D(2)) where A satisfies the almost linear
growth condition (134).

The above non-existence of electric hologram conductivities in ΣA(D(2))
motivates the following sharp result for the uniqueness of the inverse
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problem for singular anisotropic conductivities with a determinant bound-
ed from above and below by positive constants.

Theorem 3.8. Let Ω ⊂ C be a bounded simply connected domain with
smooth boundary and A : [1,∞) → [0,∞) be a strictly increasing
smooth function satisfying the almost linear growth condition (134).
Let σ1, σ2 ∈ Σ(Ω) be matrix valued conductivities in Ω which satisfy
the integrability condition

(138)

∫

Ω

exp(A(trace(σ(z)) + trace(σ(z)−1))) dm(z) <∞.

Moreover, suppose that c1 ≤ det (σj(z)) ≤ c2, z ∈ Ω, j = 1, 2 for

some c1, c2 > 0 and Qσ1 = Qσ2 . Then there is a W 1,1
loc -homeomorphism

F : Ω → Ω satisfying F |∂Ω = id such that

σ1 = F∗ σ2.

We note that the determination of σ from Qσ in Theorems 3.6, 3.7,
and 3.8 is constructive in the sense that one can write an algorithm
which constructs σ from Λσ. For example, for the non-degenerate scalar
conductivities such a construction has been numerically implemented
in [9].

Let us next discuss the borderline of the visibility somewhat formally.
Below we say that a conductivity is visible if there is an algorithm which
reconstructs the conductivity σ from the boundary measurements Qσ,
possibly up to a change of coordinates. In other words, for visible
conductivities one can use the boundary measurements to produce an
image of the conductivity in the interior of Ω in some deformed coordi-
nates. For simplicity, let us consider conductivities with det σ bounded
from above and below. Then, Theorems 3.5 and 3.8 can be interpreted
by saying that the almost linear growth condition (134) for the weight
function A gives the borderline of visibility for the trace of the con-
ductivity matrix: If A satisfies (134), the conductivities satisfying the
integrability condition (138) are visible. However, if A does not satisfy
(134) we can construct a conductivity in Ω satisfying the integrability
condition (138) which appears as if an obstacle (which does not exist
in reality) would have included in the domain.

Thus the borderline of the visibility is between any spaces ΣA1 and
ΣA2 where A1 satisfies condition (134) and A2 does not satisfy it. Ex-
ample of such gauge functions are A1(t) = t(1 + log t)−1 and A2(t) =
t(1 + log t)−1−ε with ε > 0.

Summarizing, in terms of the trace of the conductivity, the above
results identify the borderline of visible conductivities and the border-
line of invisibility cloaking conductivities. Moreover, these borderlines
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are not the same and between the visible and the invisibility cloaking
conductivities there are conductivities creating electric holograms.

Finally, let us comment the techniques needed to prove the above
uniqueness results. The degeneracy of the conductivity causes that
the exponentially growing solutions, the standard tools used to study
Calderón’s inverse problem, can not be constructed using purely mi-
crolocal or functional analytic methods. Instead, one needs to use the
topological properties of the solutions: By Stoilow’s theorem the so-
lutions Beltrami equations are compositions of analytic functions and
homeomorphisms. Using this, the continuity properties of the weakly
monotone maps, and the Orlicz-estimates holding for homeomorphisms
one can prove the existence of the exponentially growing solutions for
Beltrami equations. Combining solutions of the appropriate Beltrami
equations, see (44), one obtains exponentially growing solutions for
conductivity equation in the Sobolev-Orlicz space W 1,Q for isotropic
conductivity and in W 1,P for anisotropic conductivity.

Using these results one can obtain subexponential asymptotics for
the families of exponentially growing solutions needed to apply similar
∂ technique that were used to solve the inverse problem for the non-
degenerate conductivity.

Appendix A. Argument Principle

The solution to the Calderón problem combines analysis with topo-
logical arguments that are specific to two dimensions. For instance, we
need a version of the argument principle, which we here consider.

Theorem A.1. Let F ∈ W 1,p
loc (C) and γ ∈ Lploc(C) for some p > 2.

Suppose that, for some constant 0 ≤ k < 1, the differential inequality

(139)

∣∣∣∣
∂F

∂z̄

∣∣∣∣ ≤ k

∣∣∣∣
∂F

∂z

∣∣∣∣+ γ(z)
∣∣F (z)

∣∣

holds for almost every z ∈ C and assume that, for large z, F (z) =
λz + ε(z)z, where the constant λ 6= 0 and ε(z) → 0 as |z| → ∞.

Then F (z) = 0 at exactly one point, z = z0 ∈ C.

Proof. The continuity of F (z) = λz + ε(z)z and an elementary
topological argument show that F is surjective, and consequently there
exists at least one point z0 ∈ C such that F (z0) = 0.

To show that F can not have more zeros, let z1 ∈ C and choose a
large disk B = D(R) containing both z1 and z0. If R is so large that
ε(z) < λ/2 for |z| = R, then F

∣∣
{|z|=R}

is homotopic to the identity
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relative to C \ {0}. Next, we express (139) in the form

(140)
∂F

∂z̄
= ν(z)

∂F

∂z
+ A(z)F,

where |ν(z)| ≤ k < 1 and |A(z)| ≤ γ(z) for almost every z ∈ C. Now
AχB ∈ Lr(C) for all 2 ≤ r ≤ p′ = min{p, 1 + 1/k}, and we obtain from
Theorem B.4 that (I−νS)−1(AχB) ∈ Lr(C) for all p′/(p′−1) < r < p′.

Next, we define η = C
(
(I − νS)−1(AχB)

)
. Then by Theorem B.3 we

have η ∈ C0(C), and we also have

(141)
∂η

∂z̄
− ν

∂η

∂z
= A(z), z ∈ B.

Therefore simply by differentation we see that the function

(142) g = e−ηF

satisfies

(143)
∂g

∂z̄
− ν

∂g

∂z
= 0, z ∈ B.

Since η has derivatives in Lr(C), we have g ∈ W 1,r
loc (C). As r ≥ 2,

the mapping g is quasiregular in B. The Stoilow factorization theorem
gives g = h◦ψ, where ψ : B → B is a quasiconformal homeomorphism
and h is holomorphic, both continuous up to the boundary.

Since η is continuous, (142) shows that g
∣∣
|z|=R

is homotopic to the

identity relative to C\{0}, as is the holomorphic function h. Therefore
the argument principle shows that h has precisely one zero inB = D(R).
Already, h(ψ(z0)) = e−η(z0)F (z0) = 0, and there can be no further zeros
for F either. This finishes the proof. �

Appendix B. Some Background in complex analysis and
quasiconformal mappings.

Here we collect, without proof, some basic facts related to quasicon-
formal mappings. The proofs can be found e.g. in [5].

We start with harmonic analysis, where we often need refine esti-
mates of the Cauchy transform.

Definition B.1. The Cauchy transform is defined by the rule

(144) (Cφ)(z) :=
1

π

∫

C

φ(τ)

z − τ
dτ.

Theorem B.2. Let 1 < p < ∞. If φ ∈ Lp(C) and φ(τ) = 0 for
|τ | ≥ R, then

(1) ‖Cφ‖Lp
(D2R) ≤ 6R ‖φ‖p,
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(2) ‖Cφ(z) − 1
πz

∫
φ‖Lp

(C\D2R) ≤ 2 R
(p−1)1/p ‖φ‖p.

Thus, in particular, for 1 < p ≤ 2,

‖Cφ‖Lp(C) ≤
8 R

(p− 1)1/p
‖φ‖p provided

∫

C

φ(z)dm(z) = 0.

For p > 2 the vanishing condition for the integral over C is not needed,
and we have

‖Cφ‖Lp(C) ≤ (6 + 3(p− 2)−1/p) R ‖φ‖p, p > 2.

Concerning compactness, we have

Theorem B.3. Let Ω be a bounded measurable subset of C. Then the
following operators are compact

(1) χΩ ◦ C : Lp(C) → Cα(Ω), or 2 < p ≤ ∞ and 0 ≤ α < 1 − 2
p

(2) χΩ ◦ C : Lp(C) → Ls(C), for 1 ≤ p ≤ 2, and 1 ≤ s < 2p
2−p

.

The fundamental operator in the theory of planar quasiconformal
mappings is the Beurling transform,

(145) (Sφ)(z) := −1

π

∫

C

φ(τ)

(z − τ)2
dτ.

The importance of the Beurling transform in complex analysis is
furnished by the identity

(146) S ◦ ∂

∂z̄
=

∂

∂z
,

initially valid for functions contained in the space C∞
0 (C). Moreover,

S extends to abounded operator on Lp(C), 1 < p < ∞; on L2(C) it is
an isometry. We denote by

Sp := ‖S‖Lp(C)→Lp(C)

the norm of this operator. By Riesz-Thorin interpolation, Sp → 1 as
p→ 2.

In other words, S intertwines the Cauchy-Riemann operators ∂
∂z̄

and
∂
∂z

, a fact that explains the importance of the operator in complex
analysis. For instance we have [5, p.363] the following result.

Theorem B.4. Let µ be measurable with ‖µ‖∞ ≤ k < 1. Then the
operator I − µS is invertible on Lp(C) whenever ‖µ‖∞ ≤ k < 1 and
1 + k < p < 1 + 1/k.

The result has important consequences on the regularity of elliptic
systems. In fact, it is equivalent to the improved Sobolev regularity of
quasiregular mappings.
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Theorem B.5. Let µ, ν ∈ L∞(C) with |µ|+ |ν| ≤ k < 1 almost every-
where. Then the equation

∂f

∂z̄
− µ(z)

∂f

∂z
− ν(z)

∂f

∂z
= h(z)

has a solution f , locally integrable with gradient in Lp(C), whenever
1 + k < p < 1 + 1/k and h ∈ Lp(C). Further, f is unique up to an
additive constant.

We will also need a simple version of the Koebe distortion theorem.

Lemma B.6. [5, p. 42] If f ∈ W 1,1
loc (C) is a homeomorphism analytic

outside the disk D(r) with |f(z) − z| = o(1) at ∞, then

(147) |f(z)| < |z| + 3r, for all z ∈ C.

Next, we have the continuous dependence of the quasiconformal map-
pings on the complex dilatation.

Lemma B.7. Suppose |µ|, |ν| ≤ kχD(r), where 0 ≤ k < 1. Let f, g ∈
W 1,2
loc (C) be the principal solutions to the equations

∂f

∂z̄
= µ(z)

∂f

∂z
,

∂g

∂z̄
= ν(z)

∂g

∂z
.

If for a number s we have 2 ≤ p < ps < P (k), then

‖fz̄ − gz̄‖Lp(C) ≤ C(p, s, k) r2/ps ‖µ− ν‖Lps/(s−1)(C).

To prove uniqueness, Liouville type result are often valuable. Here
we have collected a number of such results.

Theorem B.8. Suppose that F ∈ W 1,q
loc (C) satisfies the distortion in-

equality

(148) |Fz̄| ≤ k|Fz| + σ(z)|F |, 0 ≤ k < 1,

where σ ∈ L2(C) and the Sobolev regularity exponent q lies in the critical
interval 1 + k < q < 1 + 1/k. Then F = eθg, where g is quasiregular
and θ ∈ VMO. If σ ∈ L2±(C), then θ is continuous, and if furthermore
F is bounded, then F = C1e

θ.
In addition, if one of the following additional hypotheses holds,

(1) σ has compact support and limz→∞ F (z) = 0, or
(2) F ∈ Lp(C) for some p > 0 and lim supz→∞ |F (z)| <∞,

then F ≡ 0.

Here we used the notation

L2±(C) = {f : f ∈ Ls(C) ∩ Lt(C) for some s < 2 < t}.
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Finally, we formulate a generalization of the Stoilow factorization
theorem for the solutions of Beltrami equation in the space W 1,P

loc (Ω).

Theorem B.9. Let A satisfy the almost linear growth condition (134).
Suppose the Beltrami coefficient, with |µ(z)| < 1 almost everywhere, is
compactly supported and the associated distortion function Kµ(z) =
1+ |µ(z)|
1−|µ(z)|

satisfies

(149) eA(Kµ(z)) ∈ L1
loc(C)

Then the Beltrami equation fz̄(z) = µ(z) fz(z) admits a unique princi-

pal solution f ∈W 1,P
loc (C) with P (t) as in (135). Moreover, any solution

h ∈ W 1,P
loc (Ω) to this Beltrami equation in a domain Ω ⊂ C admits a

factorization
h = φ ◦ f,

where φ is holomorphic in f(Ω).
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[11] K. Astala and L. Päivärinta, Calderón’s inverse problem for anisotropic con-
ductivity in the plane, Ann. of Math., 163 (2006), 265–299.

[12] J. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elas-
ticity. Phil. Trans. Royal Soc. London A 306 (1982), 557–611.

[13] R. Beals and R. Coifman, The spectral problem for the Davey-Stewartson and
Ishimori hierarchies, Nonlinear Evolution Equations: Integrability and Spec-
tral Methods, Manchester University Press, 1988, pp. 15–23.
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[34] A. Greenleaf, M. Lassas, and G. Uhlmann, The Calderón problem for conormal
potentials, I: Global uniqueness and reconstruction, Comm. Pure Appl. Math
56 (2003), 328–352.

[35] A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that
cannot detected in EIT, Physiolog. Meas. 24 (2003), 413–420.

[36] A. Greenleaf, M. Lassas, G. Uhlmann, On nonuniqueness for Calderón’s inverse
problem, Math. Res. Lett. 10 (2003), 685–693.

[37] B. Haberman, D. Tataru, Uniqueness in Calderón’s problem with Lipschitz
conductivities, preprint 2011, arXiv:1108.6068.

[38] O. Imanuvilov, G. Uhlmann, M. Yamamoto, The Calderón Problem with Par-
tial Data in Two Dimensions. J. American Math. Soc. 23 (2010), 655–691.

[39] T. Iwaniec and G.J. Martin Geometric Function Theory and Nonlinear Anal-
ysis, Oxford University Press, 2001.

[40] T. Iwaniec and G.J. Martin The Beltrami equation, Mem. Amer. Math. Soc.
191, 2008.

[41] T. Iwaniec, T, P. Koskela and G.Martin Mappings of BMO-distortion and
Beltrami-type operators. J. Anal. Math. 88, (2002), 337–381.

[42] T. Iwaniec, T, P. Koskela, G. Martin and C. Sbordone, Mappings of finite
distortion: Ln logχ L-integrability, J. London Math. Soc. (2) 67, (2003), 123–
136.
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