Invisibility cloaking and cosmology

Matti Lassas

University of Helsinki in collaboration with:

Tracey Balehowsky, Pekka Pankka, Ville Sirviö

Slides available at www.mv.helsinki.fi/home/lassas/

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Invisibility cloaking was used to find a counterexample for the inverse conductivity problem in Greenleaf-L.-Uhlmann 2003. The example was based on a blow-up map $F: B(2)-\{0\} \rightarrow B(2)-\overline{B}(1)$.

Using a similar map, Pendry, Schurig and Smith (Science 2006) suggested invisibility cloaking for Maxwell's equations, see also Leonhardt (Science 2006).

Figure: Implementation of an invisibility cloak for 4 cm waves build using metamaterials by Schurig et al (Science 2006).

Cosmic Microwave Background measurements

The Friedmann-Robertson-Walker model of the Universe is the space-time $M \times (0, \infty)$ with the metric

$$g=-dt^2+a(t)ig(\sum_{j,k=1}^3g_{jk}(x)dx^jdx^kig),\quad (x,t)\in M imes(0,\infty).$$

Here, M can be a compact or an unbounded manifold, $\dim(M) = 3$. In 2008, J-P. Luminet suggested that the cosmic microwave background in our Universe (the WMAP data) is compatible with this model, where M is Poincare dodecahedral space \mathbb{S}^3/Γ . Here, Γ is the binary icosahedral group.

Pictures by Jean-Pierre Luminet.

The right picture shows the Poincare dodecahedral space \mathbb{S}^3/Γ .

Next we consider a metamaterial device that can simulate waves in the space-time $M \times (0, \infty)$ with a static metric $g = -dt^2 + g_M(x)$, Here, M is a 3-dimensional manifold with a Riemannian metric g_M . We proved an extension of the Lickorish-Wallace surgery theorem

Proposition

Let M be a smooth, closed, oriented, and connected Riemannian manifold of dimension n. When n = 3, there exists a subset $L \subset M$, having capacity zero and Hausdorff dimension n - 2, such that there is a C^{∞} -smooth embedding $F : M - L \rightarrow \mathbb{R}^3$. When n = 2, this result is not true if the genus of M is non-zero.

Theorem (Cosmological cloaking)

Let (M,g) be a smooth, closed, oriented, and connected Riemannian manifold of dimension 3 and $k^2 \notin \sigma(-\Delta_g)$. Let $\widetilde{M} = F(M-L) \subset \mathbb{R}^3$ and $\widetilde{g} = F_*g$. Also, let $V \subset M-L$ and $\widetilde{V} = F(V) \subset \widetilde{M}$. Then $\Delta_{\widetilde{g}} : H^2(\widetilde{M}, \widetilde{g}) \to L^2(\widetilde{M}, \widetilde{g})$ is self-adjoint and the source-to-solution map on (M, g),

$$L_V(s) = u|_V, \quad (\Delta_g + k^2)u = s, \quad s \in C_0^\infty(V),$$

coincides with the source-to-solution map $L_{\widetilde{V}}$ on $(\widetilde{M}, \widetilde{g})$. A similar result holds for the approximative cloaking.

A cosmological metamaterial device

Consider the interior of a twisted torus $T \subset \mathbb{R}^3$ and remove several knotted, twisted toruses K_1, \ldots, K_J . This defines the domain $\widetilde{M} = T - (\bigcup_{j=1}^J K_j)$. Make gratings on the boundary $\partial \widetilde{M}$ and cover it with the Schurig-type metamaterial. This construction gives a metamaterial device that simulates waves on the 3-manifold M.