

Some comments on magic squares and Survo puzzles

Kimmo Vehkalahti

Department of Mathematics and Statistics University of Helsinki, Finland Kimmo.Vehkalahti@helsinki.fi http://www.helsinki.fi/people/Kimmo.Vehkalahti

16th IWMS, Windsor, Canada, June 1-3, 2007

Outline

Magic Squares

UNIVERSITY OF HELSINKI

Survo Puzzles

References

Magic Squares

Preliminaries Examples Magic Survo Results Conclusions

Survo Puzzles

Preliminaries
Examples
Solving F299
Some topics
More topics

References

Magic Squares

Magic Squares

Preliminaries

- Examples
- ✤ Magic Survo
- ✤ Results
- Conclusions
- Survo Puzzles

References

There is a huge number of literature related to magic squares, see the new magic bibliography by Styan and Trenkler (2007b).

Here we consider the 640 essentially different, classic 4 \times 4 magic squares of Dudeney Types I–VI¹ having rank equal to 3.

Their eigenvalues $\lambda_1 = 34$ (the magic sum) and $\lambda_4 = 0$. We focus on the rest of the eigenvalues as well as the magic key, denoted by κ (Styan and Trenkler, 2007a). Now, we have simply $\kappa = |\lambda_2|^2 = |\lambda_3|^2$, since $|\lambda_2| = |\lambda_3|$.

Variations of each magic square matrix can be constructed by using a **flip matrix**, see Chu and Styan (2007). The two main groups are called **sweet** and **sour** by Styan and Trenkler (2007a).

¹Thus we omit the 240 non-singular squares of Dudeney Types VII–XII here. All the 880 4 \times 4 magic squares are listed, e.g., on Harvey D. Heinz's website http://www.geocities.com/~harveyh/magicsquare.htm.

Examples of Magic Squares

Magic Squares

Preliminaries

Examples

✤ Magic Survo

✤ Results

Conclusions

Survo Puzzles

References

In the fol	lowing, F	refers	s to Fréi	nicle index:
------------	------------------	--------	-----------	--------------

F294 (Type I)	F298 (Type VI)	F299 (Type III)
$\begin{bmatrix} 2 & 7 & 12 & 13 \end{bmatrix}$	$\begin{bmatrix} 2 & 7 & 13 & 12 \end{bmatrix}$	$\begin{bmatrix} 2 & 7 & 13 & 12 \end{bmatrix}$
16 9 6 3	14 11 1 8	16 9 3 6
5 4 15 10	$3 \ 6 \ 16 \ 9$	11 14 8 1
$\begin{bmatrix} 11 & 14 & 1 & 8 \end{bmatrix}$	$\begin{bmatrix} 15 & 10 & 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 4 & 10 & 15 \end{bmatrix}$
$\lambda_2 = \lambda_3 = 0$	$\lambda_2 = +8, \lambda_3 = -8$	$\lambda_2 = \lambda_3 = 0$ (sweet)
$\kappa = 0$	$\kappa = -64$	$\kappa = 0$
$\lambda_2 = +8i, \lambda_3 = -8i$	$\lambda_2 = -8, \lambda_3 = +8$	$\lambda_2 = \lambda_3 = 0$ (sour)
$\kappa = 64$	$\kappa = -64$	$\kappa = 0$

Note that κ is equal to the sum of the principal minors, e.g. **F294**: $\kappa = \begin{vmatrix} 2 & 7 \\ 16 & 9 \end{vmatrix} + \begin{vmatrix} 9 & 6 \\ 4 & 15 \end{vmatrix} + \begin{vmatrix} 15 & 10 \\ 1 & 8 \end{vmatrix} + \begin{vmatrix} 2 & 12 \\ 5 & 15 \end{vmatrix} + \begin{vmatrix} 2 & 13 \\ 11 & 8 \end{vmatrix} + \begin{vmatrix} 9 & 3 \\ 14 & 8 \end{vmatrix} = 0.$

Magic Survo

Magic Squares

UNIVERSITY OF HELSINKI

Preliminaries

✤ Examples

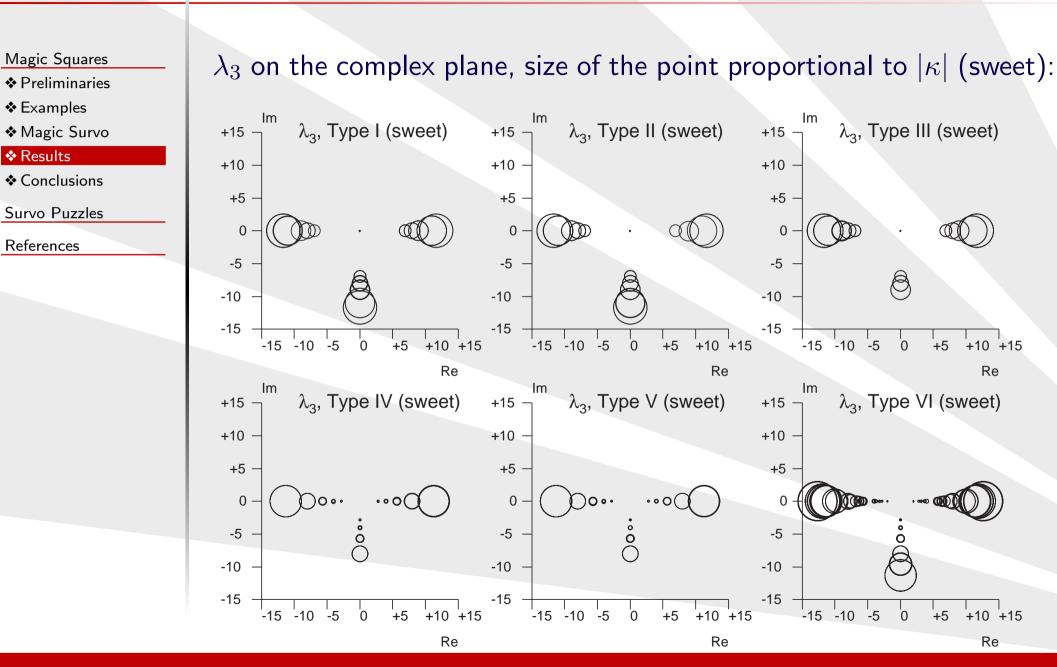
✤ Magic Survo

Results

Conclusions

Survo Puzzles

References


I computed² the numerical results of the sweet-and-sours of the 640 magic square matrices using **SURVO MM** (Mustonen, 2001), especially its matrix interpreter and *sucro* (*Su*rvo ma*cro*) language. Below, a **Survo data file** is created for the results:

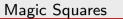
	EATE DUDE	NEY3		
FIELDS:				
1 N 2	Frenicle	Frenicle index	(###)	
2 N 1	Dudeney	Dudeney Type {1,6}	(#)	Here, I would like
3 N 8	eig2Re	eigenval #2 real	(###.##########)	
4 N 8	eig2Im	eigenval #2 imaginary	(###.##########)	to demonstrate
5 N 8	eig3Re	eigenval #3 real	(###.#########)	
6 N 8	eig3Im	eigenval #3 imaginary	(###.##########)	some computations
7 N 8	pm1	principal minor 1	(####)	
8 N 8	pm2	principal minor 2	(####)	using Survo (SURVO MM).
9 N 8	pm3	principal minor 3	(####)	
10 N 8	pm4	principal minor 4	(####)	Let us see
11 N 8	pm5	principal minor 5	(####)	
12 N 8	pm6	principal minor 6	(####)	
13 N 8	kappa	kappa (sum of pm's)	(####)	

² I am grateful to **Seppo Mustonen** for his advice on the complex eigenvalues. I am also grateful to **George P. H. Styan** for his advice on the principal minors.

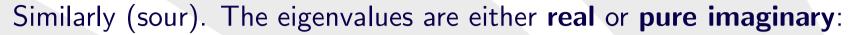
END

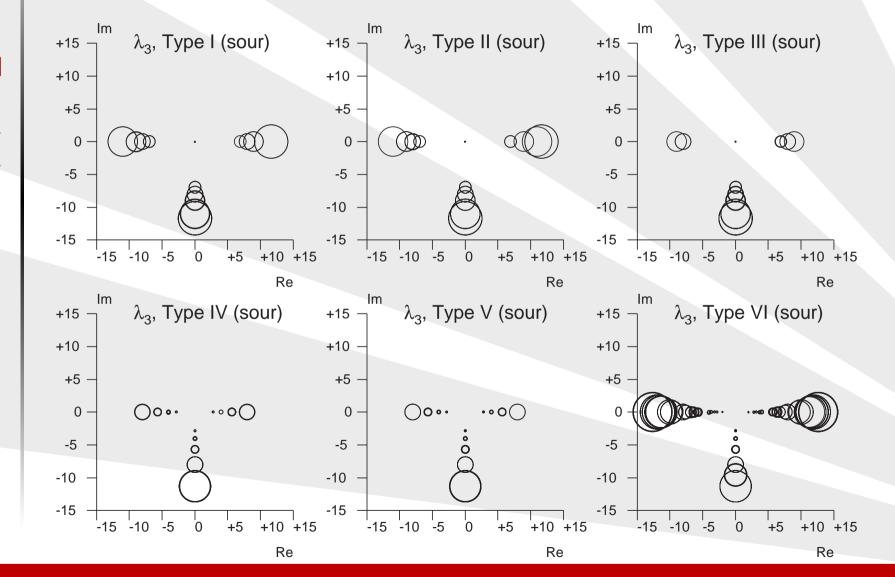
Results as Survo graphs (1) UNIVERSITY OF HELSINKI

June 1–3, 2007 – 6 / 16


+10 +15

Re


+10 +15


Re

Results as Survo graphs (2)

- Preliminaries
- ✤ Examples
- ✤ Magic Survo
- ✤ Results
- Conclusions
- Survo Puzzles
- References

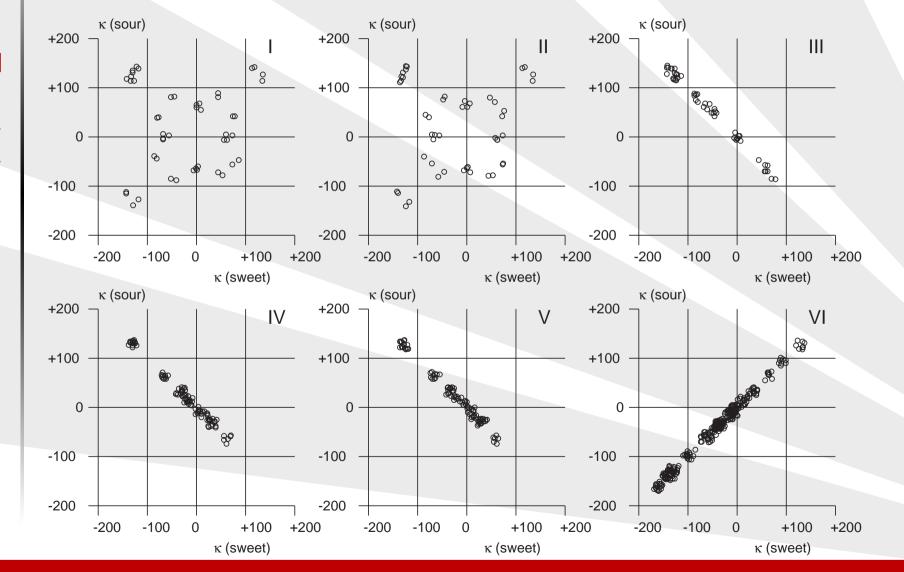
UNIVERSITY OF HELSINKI Results as Survo graphs (3)

Magic Squares

Preliminaries

Examples

✤ Magic Survo


✤ Results

Conclusions

Survo Puzzles

References

κ (sweet) vs κ (sour), *points jittered*:

June 1–3, 2007 – 8 / 16

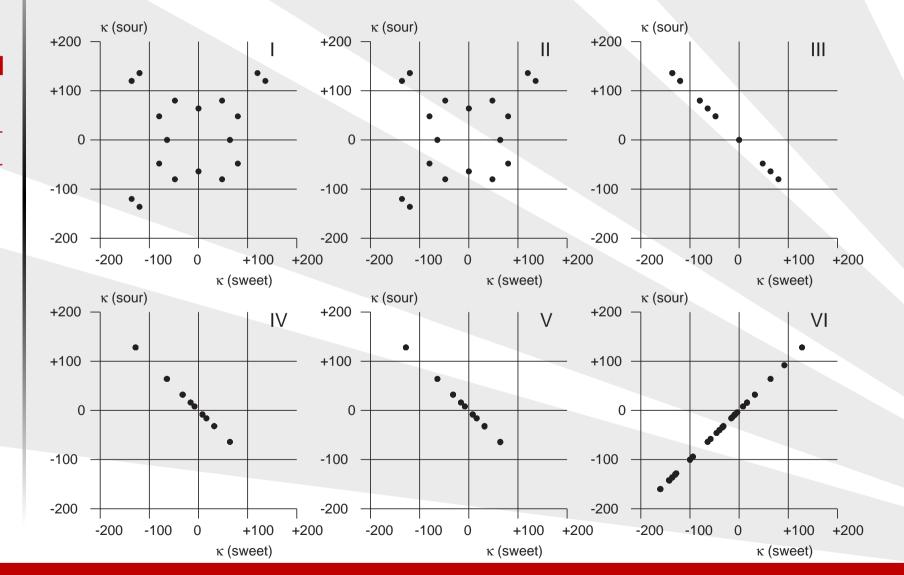
UNIVERSITY OF HELSINKI Results as Survo graphs (4)

Magic Squares

Preliminaries

✤ Examples

✤ Magic Survo


✤ Results

Conclusions

Survo Puzzles

References

κ (sweet) vs κ (sour), *points NOT jittered*:

Conclusions based on the graphs and the data

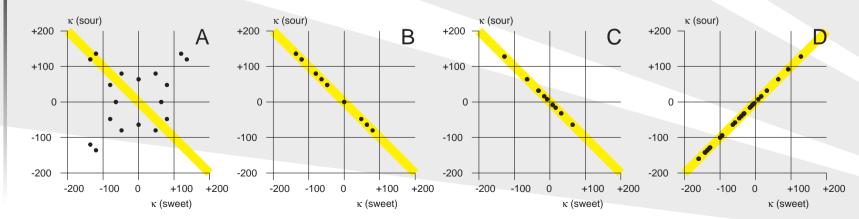
Magic Squares

UNIVERSITY OF HELSINKI

- \bullet Preliminaries
- $\textbf{\textbf{\&} Examples}$
- ✤ Magic Survo
- ✤ Results

Conclusions

Survo Puzzles


References

Type III includes 8 cases where $\kappa = 0$ for both sweet and sour. These are the non-diagonable cases (Styan and Trenkler, 2007a).

Further, we have only **4 groups**, since some Types are identical:

- Group A: 96 squares of Types I & II (48+48)
- Group B: 48 squares of Type III
- Group C: 192 squares of Types IV & V (96+96)
- Group D: 304 squares of Type VI

The graphs below illustrate these groups:

Survo Puzzles

Magic Squares

UNIVERSITY OF HELSINKI

Survo Puzzles

- PreliminariesExamples
- Solving F299
- Some topics
- More topics

References

Survo Puzzles (Mustonen, 2006) offer new challenges for the players of *Sudoku* or *Kakuro*, but also give rise to interesting research questions, e.g., in combinatorics and linear algebra.

Properties compared to magic squares:

- dimensions $m \times n$ (i.e., not necessarily squares)
- elements consequtive integers $1, 2, \ldots, mn$
- row sums not necessarily equal
- column sums not necessarily equal
- no conditions for the diagonal sums

Hence, magic squares are *(rare)* special cases of Survo Puzzles. However, Survo Puzzles are more interesting when some elements are **missing**. In **open** Survo Puzzles, **all** elements are missing.

Examples of Survo Puzzles

Magic Squares

Survo Puzzles

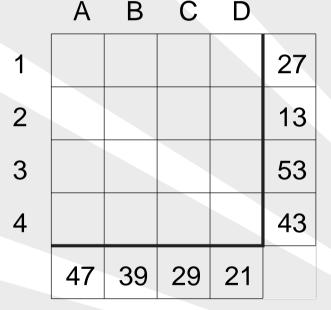
Preliminaries

Examples

Solving F299

 $\boldsymbol{\diamondsuit}$ Some topics

More topics


References

The task is to **fill in the missing integers**, given the sums of the rows and columns (some of the integers may be given, too).

Easy (Mustonen, 2007, p. 25):

Quite difficult:³

	А	В	С	D		
1		1			23	
2	10		2		31	
3		4		6	24	
	21	12	22	23		

³Degree of difficulty (Mustonen, 2006) equal to 1100. Originally published in http://www.survo.fi/puzzles/index.html#090407. The solution is given in http://www.survo.fi/puzzles/solutions.html#230407.

UNIVERSITY OF HELSINKI	So	olv	ing	F299	as a Survo Puzzle
Magic Squares		A	вC	D	Let us look at row 1 and column A:
Survo Puzzles	1	2	* 13	* 34	row 1: 34-2-13=19 and column A: 34-2-5=27
• F Teliminaries	2	*	0 *	* 3/	(both are missing two numbers)

(both are missing two numbers). Examples * 34 3 * * 8 * 34 o We require that DISTINCT=1 and MAX=16 ♦ Solving F299 4 5 * * 15 34 Some topics o We also have set OFF=2,9,8,15,13,5 More topics 34 34 34 34 Now, we list the possible partitions: References COMB row1 END+2 / row1=PARTITIONS, 19,2 (these apply the DISTINCT, COMB colA END+2 / colA=PARTITIONS,27,2 MAX and OFF specs above) Partitions 2 of 19: N[row1]=2 3 16 Can't be, see below! 7 12 ** Must be this, then. Partitions 2 of 27: N[colA]=1 11 16 ** Only choice! Thus 7,12 enter row 1 and 11,16 enter column A (in some order). We may continue this example live in Survo...

UNIVERSITY OF HELSINKI Some topics for recreation and research

Magic Squares

- Survo Puzzles
- Preliminaries
- Examples
- Solving F299
- Some topics
- More topics

References

Usually it is quite demanding to 1) solve a Survo Puzzle **and** (simultaneously) 2) prove the **uniqueness** of the solution.

Surprisingly fascinating approaches have been developed by many people and undoubtedly more will be found. Various computational features of Survo have been helpful especially in harder cases.

Recently, solving a 4×4 puzzle, I came up with an approach based on the binary representation of the puzzle and operations of **Boolean algebra**. The matrix computations of Survo, e.g., the **Kronecker product**, have a central role in this approach.⁴

	A	В	С	D				A	В	С	D		A	В	С	D	
1	0	+	+	•	27		1	[7]	[12]	[39]	[3]	27	1 11	8	5	3	27
2	+	0	+	•	13	>>	2	[10]	[8]	[26]	[2]	13>>	26	4	1	2	13
3	+	+	0		53	>>	3	[55]	[44]	[17]	[11]	53>>	3 16	15	13	9	53
4				*	43		4	[5]	[4]	[13]	[1]	43	4 14	12	10	7	43
	47	39	29	21				47	39	29	21		47	39	29	21	

⁴A sketch of my Survo-based implementation can be found in http://www.survo.fi/puzzles/solutions.html#230407.

UNIVERSITY OF HELSINKI More topics for research and recreation

Magic Squares

Survo Puzzles

Preliminaries

Examples

Solving F299

Some topics

✤ More topics

References

"Nobody knows the number of essentially different 5×5 , uniquely solvable open Survo Puzzles" (Mustonen, 2007, p. 25).

This is just one of the open questions related to Survo Puzzles. More can be found, e.g., from Mustonen (2006).

Still different recreational challenges are provided by **quick games** as Seppo Mustonen's *Java applets*⁵, where the task is to fill in the missing numbers — **as quickly as possible**!

⁵See: http://www.survo.fi/java/quick5x5.html.

Thank you for your attention!

Magic Squares

Survo Puzzles

References

References

Ka Lok Chu and George P. H. Styan. Some comments on magic square matrices with three nonzero eigenvalues, Jun 2007. Invited talk at the IWMS 2007, Windsor, Canada.

Seppo Mustonen. On Survo cross sum puzzles, May 2007. Invited talk at the Annual Conference of Finnish Statisticians, Tampere, Finland, http://www.survo.fi/papers/tampere07.pdf.

Seppo Mustonen. SURVO MM: Computing environment for creative processing of text and numerical data.

http://www.survo.fi/mm/english.html, 2001.

Seppo Mustonen. On certain cross sum puzzles.

http://www.survo.fi/papers/puzzles.pdf, 2006.

George P. H. Styan and Götz Trenkler. An annotated bibliography on magic squares, with special emphasis on linear-algebraic results, as well as on very old and very new results, May 2007b.

George P. H. Styan and Götz Trenkler. An illustrated philatelic introduction to magic square matrices, Mar 2007a. Invited talk at the MAT-TRIAD 2007, Będlewo, Poland.