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Main sources of uncertainty in statistical research:

● sampling (well known)
● measurement (too often neglected!)

1. validity: are we measuring the right thing?

✦ closely connected to the substantial theory
✦ only partially a statistical question
✦ within the measurement framework we can assess:

(a) structural validity of the measurement model

(b) predictive validity of the measurement scale

2. reliability: are we measuring accurately enough?

✦ relevant: only if validity acceptable

✦ definition: ratio of true variance to total variance

✦ required: estimate of measurement error variance
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Estimation of reliability depends on the assumptions made about
the measurement model and the measurement scale.

Several estimators suggested, we focus on two of them:

● new alternative: Tarkkonen’s rho

✦ based on measurement framework approach [1, 2, 3]
✦ realistic assumptions, well applicable in practice

✦ multidimensionality now stressed in psychology [4, 5]

● most widely used: Cronbach’s alpha

✦ based on Spearman’s one-factor model (>100 years ago)

✦ routinely used for >50 years (despite of criticism)

✦ problem: underestimation (too strict assumptions)
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● guidelines of the study from the plans to the analyses

● basis for a consistent assessment of measurement quality
Measurement scale

Measurement model

Second order scale

Validity criteria
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Let x = (x1, . . . , xp)
′ measure k (important here: k < p)

unobservable true scores τ = (τ1, . . . , τk)
′ with

unobservable measurement errors ε = (ε1, . . . , εp)
′.

Assume E(ε) = 0, cov(τ , ε) = 0. The measurement model is

x = µ + Bτ + ε, (1)

where B ∈ R
p×k specifies the relationship between x and τ .

Denoting cov(τ ) = Φ and cov(ε) = Ψ we have

cov(x) = Σ = BΦB′ + Ψ , (2)

where it is assumed that Σ > 0 and B has full column rank.
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The parameters are the pk + k(k + 1)/2 + p(p+ 1)/2
(unique) elements of the matrices B, Φ, and Ψ . In general,
there are too many, since Σ has only p(p+ 1)/2 elements.

● Identifiability is obtained by imposing assumptions on the
true scores and the measurement errors.

● Typical: assume that cov(τ ) = Ik, an identity matrix of
order k, and cov(ε) = Ψ d = diag(ψ2

1
, . . . , ψ2

p).
● With these the model conforms with the orthogonal factor

analysis model where the common factors are directly

associated with the true scores and the specific factors are

interpreted as measurement errors .

Assuming multinormality the parameters can be estimated using
e.g., the maximum likelihood method of factor analysis.
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Structural validity is a property of the measurement model.

● Important, as the model forms the core of the framework
and hence affects the quality of all scales created.

● Lack of structural validity revealed by testing hypotheses

✦ on the dimension of τ

✦ on the effects of τ on x (matrix B)

● Whole approach could be called semi-confirmatory .
● Also: appropriate factor rotation and residuals of the model.

Similarly with other questions of validity, knowledge of the
theory and practice of the application needed.
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In further analyses, the variables x are best used by creating
multivariate measurement scales u = A′x, where
A ∈ R

p×m is a matrix of the weights. Using (2) we obtain

cov(u) = A′ΣA = A′BΦB′A + A′ΨA, (3)

the (co)variances generated by the true scores and
the (co)variances generated by the measurement errors.

Some examples of measurement scales: factor scores,
psychological test scales, or any other linear combinations of the
observed variables. The weights of the scale may also be
predetermined values according to a theory.
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Predictive validity is a property of the measurement scale.

● Assessed by the correlation(s) between the (second order)
scale and an external criterion.

● In general, a second order scale is denoted by
z = W ′u = W ′A′x, where W ∈ R

m×s is a weight matrix
and a criterion is denoted by y = (y1, . . . , yq)

′.
● Often, these scales are produced by regression analysis,

discriminant analysis, or other multivariate statistical
methods.

In the most general case, the predictive validity would be
assessed by the canonical correlations between z and y.



Scale: Predictive validity, example
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Example: consider the regression model y = β0 + β′u + δ,
where y is the response variable, β0 is the intercept,
β = (β1, . . . , βm)′ is the vector of the regression coefficients,
u is the vector of the predictors (e.g., factor scores), and
δ is a model error.

Now, the criterion y is a scalar, and the second order scale is

given by the prediction scale z = β̂
′
u, where β̂ = (β̂1, . . . , β̂m)′.

Hence the predictive validity is equal to ρzy, the multiple
correlation of the regression model.

Monte Carlo simulations carried out using SURVO MM [6]
indicate that the factor scores offer the most stable method for
predictor selection in the regression model. See [1] for details.
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According to the definition of reliability, Tarkkonen’s rho is
obtained as a ratio of the variances, i.e., the diagonal
elements of the matrices in (3). Hence we have [1, 2, 3]

ρ
u

= diag

(

a′
1
BΦB′a1

a′
1
Σa1

, . . . ,
a′

mBΦB′am

a′
mΣam

)

= (A′BΦB′A)d × [(A′ΣA)d]
−1

or, in a form where the matrix Ψ is explicitly present:

ρ
u

= diag

(

[

1 +
a′

1
Ψa1

a′
1
BΦB′a1

]−1

, . . . ,

[

1 +
a′

mΨam

a′
mBΦB′am

]−1
)

= {Im + (A′ΨA)d × [(A′BΦB′A)d]
−1}−1



Special cases

Introduction

Framework

❖ Framework

❖ Model

❖ Scale

❖ Tarkkonen’s rho

❖ Special cases

Propositions

References

Kimmo Vehkalahti | McGill Matrix Wednesday May 30, 2007 – 13 / 15

Many models, scales, and reliability coefficients established in the
test theory of psychometrics are special cases of the framework.

Example: x = µ + 1τ + ε and u = 1
′x (unweighted sum).

Now, Σ = σ2

τ11
′ + Ψ d and σ2

u = 1
′Σ1 = p2σ2

τ + tr(Ψ d).

ρuu =
p2σ2

τ

1
′Σ1

=
p

p− 1

(

p2σ2

τ − pσ2

τ

1
′Σ1

)

=
p

p− 1

(

1
′Σ1 − tr(Ψ d) − tr(Σ) + tr(Ψ d)

1
′Σ1

)

=
p

p− 1

(

1 −
tr(Σ)

1
′Σ1

)

=
p

p− 1

(

1 −

∑p

i=1
σ2

xi

σ2
u

)

,

which is the original form of Cronbach’s alpha [7].
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● developing means for the correction for attenuation in
various statistics (e.g. regression coefficients) (see [1])

● specifying the connections between the measurement
framework and multivariate statistical methods
(discriminant analysis, canonical correlations,
correspondence analysis etc.) (see [1])

● examining the connections between the measurement
framework and generalizability theory (see [8])

● studying the statistical properties of Tarkkonen’s rho
(sampling distribution etc.)

● modifying t-test for the measurement error variances
● building confidence intervals using the standard error of

measurement
● determining the scales that maximize the reliability
● . . .



Thank you for your attention!
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